25.11.2014 Views

Optimal Design of Elastomer Composites for ... - Michael I Friswell

Optimal Design of Elastomer Composites for ... - Michael I Friswell

Optimal Design of Elastomer Composites for ... - Michael I Friswell

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

x 10 5<br />

Lamina E1, (MPa)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Boron<br />

SiCon<br />

GrpHS<br />

Al2O3<br />

Safil<br />

GrpAS<br />

Kev49<br />

Glass<br />

Fibers Kev29<br />

RP6444urtn<br />

Ritflx640A<br />

Arntel640A<br />

Tecflx100A<br />

RP6442urtn<br />

RP6410urtn<br />

Tecflx080A<br />

Silcoruber<br />

<strong>Elastomer</strong>s<br />

(a) LONGITUDINAL YOUNG’S MODULUS<br />

Major Poissons ratio v 12<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Boron<br />

SiCon<br />

GrpHS<br />

Al2O3<br />

Safil<br />

GrpAS<br />

Kev49<br />

Glass<br />

Fibers Kev29<br />

RP6444urtn<br />

Ritflx640A<br />

Arntel640A<br />

Tecflx100A<br />

RP6442urtn<br />

RP6410urtn<br />

Tecflx080A<br />

Silcoruber <strong>Elastomer</strong>s<br />

(a) MAJOR POISSON’S RATIO<br />

400<br />

Lamina E2, (MPa)<br />

300<br />

200<br />

100<br />

0<br />

Boron<br />

SiCon<br />

GrpHS<br />

Al2O3<br />

Safil<br />

GrpAS<br />

Kev49<br />

Glass<br />

Fibers Kev29<br />

RP6444urtn<br />

Ritflx640A<br />

Arntel640A<br />

Tecflx100A<br />

RP6442urtn<br />

RP6410urtn<br />

Tecflx080A<br />

Silcoruber<br />

<strong>Elastomer</strong>s<br />

(b) LATERAL YOUNG’S MODULUS<br />

FIGURE 2. MODULUS PROPERTIES OF LAMINA FOR VARI-<br />

OUS FIBER AND ELASTOMER MATERIALS FOR STRAINS LESS<br />

THAN 25%<br />

Minor Poissons ratio v 21<br />

5<br />

4<br />

3<br />

2<br />

1<br />

x 10 −3<br />

0<br />

Boron<br />

SiCon<br />

GrpHS<br />

Al2O3<br />

Safil<br />

GrpAS<br />

Kev49<br />

Glass<br />

Fibers Kev29<br />

RP6444urtn<br />

Ritflx640A<br />

Arntel640A<br />

Tecflx100A<br />

RP6442urtn<br />

RP6410urtn<br />

Tecflx080A<br />

Silcoruber <strong>Elastomer</strong>s<br />

(b) MINOR POISSON’S RATIO<br />

FIGURE 3. POISSON’S RATIO OF LAMINA FOR VARIOUS<br />

FIBER AND ELASTOMER MATERIALS FOR STRAINS LESS<br />

THAN 25%<br />

HOMOGENISATION-BASED MULTI-SCALE CONSTITU-<br />

TIVE MODEL<br />

The main assumption in the homogenisation-based multiscale<br />

constitutive theory <strong>of</strong> heterogenous solids is that the macroscopic<br />

or homogenised strain tensor ε at any arbitrary point x <strong>of</strong><br />

the macroscopic continuum is the volume average <strong>of</strong> the microscopic<br />

strain tensor field ε µ defined over a local representative<br />

volume element (RVE). The RVE is such that its domain Ω µ has<br />

a characteristic length much smaller than that <strong>of</strong> the macroscopic<br />

continuum and, at the same time, is sufficiently large to represent<br />

the mechanical behaviour <strong>of</strong> the heterogeneous medium in the<br />

averaged sense.<br />

At any instant t, the macroscopic or homogenised strain ten-<br />

sor ε at a point x can be expressed as<br />

ε(x,t) = 1<br />

V µ<br />

∫<br />

Ω µ<br />

ε µ (y,t)dV, (2)<br />

where V µ is the volume <strong>of</strong> the RVE associated to point x, y denotes<br />

the local RVE coordinates and ε µ = ∇ s u µ , with ∇ s denoting<br />

the symmetric gradient operator and u µ the RVE (or microscropic)<br />

displacement field.<br />

Further, it is possible to decompose the displacement field<br />

u µ as a sum <strong>of</strong> a linear displacement ε(x,t)y, which represents<br />

a homogeneous strain, and a displacement fluctuation field ũu µ ,<br />

4 Copyright c⃝ 2011 by ASME

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!