25.11.2014 Views

High Speed Propulsion - KTH

High Speed Propulsion - KTH

High Speed Propulsion - KTH

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>High</strong> <strong>Speed</strong> <strong>Propulsion</strong><br />

<strong>KTH</strong> Rocket Course 2008<br />

Ulf.Olsson.Thn @Telia.com


What velocities?<br />

Isaac Newton:<br />

Law of gravity 1687<br />

g<br />

=<br />

R<br />

g R<br />

2<br />

0<br />

0 2<br />

Perigee<br />

Apogee<br />

V<br />

= 2gR<br />

11200 m/s<br />

to leave earth.<br />

Hyperbolic velocity.<br />

V0<br />

=<br />

gR<br />

Circular velocity 7900 m/s.<br />

Mach 26.<br />

mg<br />

mV 2 /R


The spaceplane would give more flexible space access.<br />

(Eugen Sänger and Irene Bredt 1944).<br />

Wings and atmospheric oxygene


The SR71- the highest speed aircraft ever (Mach 3.2)<br />

The limits of the turbojet engine F = mV & ( −V)<br />

j


The turbine inlet temperature limits the thrust.<br />

F<br />

ma &<br />

0<br />

2<br />

= ( Tt<br />

4 / T0<br />

− 1)<br />

γ − 1<br />

Inlet<br />

efficiency<br />

Turbine<br />

inlet<br />

temperature<br />

Choking<br />

turbines<br />

Static<br />

pressure<br />

balance<br />

Choking<br />

bypass canal<br />

Rotational<br />

speed<br />

Compressor exit temperature<br />

Limits the pressure ratio


Efficiency %<br />

Turboramjet<br />

25<br />

20<br />

Max<br />

TIT,M tip<br />

Throttling down T t3 = T cm<br />

Main fuel=0, π c =1<br />

15<br />

10<br />

5<br />

Design<br />

point<br />

η =<br />

FV<br />

m&<br />

h V<br />

2<br />

f<br />

( + /2)<br />

Ramjet mode<br />

(afterburner)<br />

0<br />

0 1 2 3 4 5 6<br />

Close down the turbomachine at high speed<br />

Mach


Supersonic fan for less inlet losses<br />

LH2<br />

Precooling for extended turbojet operation


Efficiency %<br />

40<br />

35<br />

30<br />

Precooled +<br />

Supersonic fan<br />

25<br />

20<br />

15<br />

Base<br />

Supersonic fan<br />

10<br />

5<br />

Ramjet<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Mach


Fuel<br />

Jet<br />

Air<br />

The principle of a Pulse Detonation Engine (PDE)


V1-German WW1 pulsejet


p<br />

4<br />

Humphrey (PDE) constant volume combustion<br />

3<br />

Brayton (ramjet and turbojet)<br />

Constant pressure combustion<br />

0<br />

9<br />

v<br />

Volvo Aero<br />

-id/datum/ 27


η<br />

%<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

PDE more efficient than ramjet – less fuel<br />

Ramjet<br />

•<strong>High</strong> efficicency<br />

•Light weight<br />

•Simple<br />

Pulsejet<br />

FV<br />

η =<br />

mh &<br />

f<br />

0<br />

0 1 2 3 4 5 6 7<br />

Fig. 18.4<br />

Mach


%<br />

40<br />

35<br />

30<br />

PDE has take-off thrust<br />

Same max speed:<br />

M Fa I a<br />

η = = mh h<br />

0 s 0<br />

/<br />

0<br />

&<br />

f<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Pulsejet<br />

M<br />

max<br />

T ta<br />

2<br />

= ( − 1)<br />

γ −1<br />

T<br />

where stagnation temp = combustion temp<br />

Ramjet<br />

0<br />

0<br />

0 1 2 3 4 5 6 7<br />

Fig. 18.4<br />

Mach


The idea of the scramjet<br />

Increase M 3 to keep T 3 low to prevent dissociation (1560 K)<br />

⎛ γ −1 2⎞ ⎛ γ −1<br />

2⎞<br />

Tt<br />

= T0⎜1+ M0 ⎟= T3⎜1+<br />

M3<br />

⎟<br />

⎝ 2 ⎠ ⎝ 2 ⎠<br />

0 3<br />

1560 K<br />

Scramjet M >1 if 2 ⎡⎛γ<br />

+ 1⎞T<br />

⎤<br />

3<br />

M<br />

0〉 ⎢⎜<br />

⎟ −1⎥<br />

=6<br />

3 γ −1⎣⎝ 2 ⎠T0<br />


US scramjet test hardware


The jet speed of a scramjet<br />

0<br />

3<br />

4<br />

M<br />

=<br />

M<br />

3 4<br />

Constant Mach<br />

in combustor<br />

Kinetic efficiencies<br />

V3 = V0 ηki<br />

V4 M4a4 T4<br />

T<br />

= = =<br />

V M a T T<br />

t 4<br />

3 3 3 3 t3<br />

T<br />

V = V η ηη T<br />

t 4<br />

j 0 ki kc kn<br />

t3


The scramjet performance<br />

0<br />

3 4<br />

T<br />

= T<br />

t3 t0<br />

Jet speed:<br />

T<br />

V = V η ηη T<br />

t 4<br />

j 0 ki kc kn<br />

t3<br />

Note max stoich f=0.0291 for hydrogen<br />

Heat release:<br />

Specific thrust:<br />

( ) 4 3<br />

1<br />

p t p t b<br />

+ f C T − C T =η fh<br />

F<br />

(1 f ) V j<br />

V<br />

m &<br />

= + −<br />

0<br />

There is a max flight speed of the scramjet at F=0


The maximum Mach number of the scramjet<br />

F=0 at:<br />

M<br />

max<br />

( 1+<br />

f )<br />

( f)<br />

2 ⎡η<br />

hf η<br />

⎢<br />

γ − 1⎢⎣<br />

CT<br />

p 0<br />

1-ηke<br />

1+<br />

b s ke<br />

= −<br />

⎤<br />

1⎥<br />

⎥⎦<br />

Kinetic efficiency 65-75% gives max Mach number 10-15.<br />

Run fuel rich to reach a higher Mach number:


%<br />

The scramjet functions between Mach 6 and Mach 15<br />

35<br />

30<br />

25<br />

η =<br />

FV<br />

mf & ( h + V /2)<br />

0<br />

2<br />

0<br />

Kin effic 90%<br />

20<br />

15<br />

10<br />

80%<br />

f = f stoich<br />

5<br />

0<br />

Fuel rich f = 2f stoich<br />

0 5 10 15 Mach 20<br />

The efficiency of a Scramjet


Problems with the scramjet<br />

p. 549<br />

3 4<br />

Fuel injection shock waves<br />

Note:<br />

M<br />

M<br />

≈<br />

T<br />

T<br />

3 0<br />

0 3<br />

Incomplete combustion<br />

<strong>High</strong> combustor Mach numbers<br />

Very sensitive to kinetic efficiencies<br />

T<br />

V = V η ηη T<br />

t 4<br />

j 0 ki kc kn<br />

t3


Scramjet powered spaceplane<br />

Large intake with variable geometry


T t 4<br />

Small specific thrust surplus<br />

F<br />

mV &<br />

0<br />

γ −1<br />

2<br />

Tt<br />

0<br />

= T0(1 + M0)<br />

2<br />

= (1 + f) η T / T −1<br />

ke t 4 t 0<br />

Potentially catastrophic thrust loss at large drag


6<br />

I s / V 0<br />

V 0<br />

=circular velocity<br />

5<br />

The rocket has a higher specific impulse than the<br />

scramjet engine over about Mach 15<br />

4<br />

3<br />

2<br />

What about low<br />

speed propulsion<br />

1<br />

?<br />

Scram 6


Combined engines<br />

Air<br />

Liquid air<br />

LH2<br />

LH2<br />

LOX<br />

LACE-Liquid Air Combustion Engine<br />

LOX<br />

Precooled turboram-rocket<br />

LH2<br />

Air/LOX<br />

Ramrocket<br />

Pulsed ramrocket


6<br />

I s / V 0<br />

Specific impulse for spaceplanes<br />

Pulsed ramrocket<br />

5<br />

4<br />

Ramrocket<br />

Precooled<br />

Turboram<br />

I<br />

s<br />

F<br />

=<br />

m &<br />

p<br />

3<br />

2<br />

Scram<br />

1<br />

0<br />

Rocket<br />

LACE<br />

0 2 4 6 8 10 12 14 16 18<br />

Mach


Heat protection is a big problem<br />

K<br />

2000<br />

1500<br />

1000<br />

500<br />

Al<br />

Ti<br />

Ceramics<br />

Superalloys<br />

0 1 2 3 4 5 6 7 8<br />

MACH<br />

Stagnation temperature and materials


Tsiolkovsky equation with gravity and atmosphere<br />

Ordinary Tsiolkovsky:<br />

mc<br />

m<br />

0<br />

=<br />

e<br />

−V / I s<br />

Modified for aero and gravity losses:<br />

Konstantin Tsiolkovsky<br />

V<br />

m m<br />

c<br />

p dV<br />

1 exp( )<br />

m m I<br />

= − = −∫ η<br />

0 0 0<br />

f<br />

s<br />

Flight efficiency


Flight efficiency<br />

2<br />

V<br />

m<br />

R +<br />

L<br />

α<br />

mg<br />

The Lift-to-Drag ratio decreases with speed<br />

Conventional L/D=4(M+3)/M<br />

Waverider L/D=6(M+2)/M<br />

2<br />

D⎛<br />

V ⎞ g g<br />

η<br />

f<br />

= 1/(1+ ⎜cosα − ⎟ + sin α)<br />

L ⎝ gR ⎠ a a


Spaceplane trajectory<br />

q=50 kPa<br />

α<br />

Ozon layer<br />

50 km<br />

Stratosphere<br />

10 km<br />

Atmospheric pressure:<br />

p<br />

p<br />

sl<br />

=<br />

e<br />

−h/<br />

h<br />

0<br />

h 0 =6670 m<br />

1 1 p γ p<br />

q = ρV = V = M<br />

2 2 RT 2<br />

2 2 2<br />

M<br />

=<br />

2q<br />

γ pe<br />

sl<br />

−h/<br />

h<br />

0<br />

Flight at constant dynamic pressure q


Rocket<br />

q=50 kPa<br />

50 km<br />

Stratosphere<br />

Ozon layer<br />

20 km<br />

Spaceplane and rocket trajectories


6<br />

5<br />

I s / V 0<br />

PDE<br />

Effective average specific impulses<br />

4<br />

3<br />

Precooled<br />

Turboram<br />

5730<br />

V<br />

I<br />

0<br />

V<br />

0<br />

dV<br />

= ∫ η I<br />

eff 0 f s<br />

2<br />

1<br />

Ramrocket<br />

5480<br />

Scram<br />

Rocket<br />

3409<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

<strong>Propulsion</strong> cycles for spaceplanes<br />

Mach


% take-off weight to satellite orbit<br />

m m = e −<br />

c<br />

0<br />

V0 / I eff<br />

20%<br />

Structure winged single stage<br />

Turbo/Scram/Rocket<br />

Ramrocket<br />

Stages<br />

10%<br />

Structure rocket<br />

Liquid<br />

rocket<br />

3<br />

2<br />

Payload %<br />

1<br />

Solid rocket<br />

Single stage<br />

Effective specific impulse m/s<br />

2000 4000


A jumbo to space?<br />

Yes, but how?<br />

I s / V 0<br />

14<br />

12<br />

Ideal engine η e =1<br />

I<br />

s<br />

F h V<br />

= = ηe( + )<br />

m&<br />

V 2<br />

p<br />

10<br />

8<br />

6<br />

PDE<br />

4<br />

2<br />

Turboram<br />

Scramjet<br />

m / m ≈ 0.4 ( η = η = 1)<br />

pl<br />

0 e f<br />

0<br />

0 5 10 15 20 25 30<br />

Limits to airbreathing propulsion<br />

Mach


Electricity; Magnetohydrodynamics<br />

The Soviet AJAX system<br />

Ionized boundary layer<br />

Virtual nose<br />

Electrical energy<br />

Magnetohydrodynamic airbreathing vehicle


Most powerful of all engines<br />

Humming bird 300 W/kg.<br />

Insect 60 W/kg.<br />

Gripen 2500 W/kg.<br />

Ariane<br />

20000 W/kg.<br />

Man 3 W/kg.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!