26.11.2014 Views

CMB: Sound Waves in the Early Universe

CMB: Sound Waves in the Early Universe

CMB: Sound Waves in the Early Universe

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>CMB</strong>: <strong>Sound</strong> <strong>Waves</strong> <strong>in</strong> <strong>the</strong> <strong>Early</strong> <strong>Universe</strong><br />

Before recomb<strong>in</strong>ation:<br />

<strong>Universe</strong> is ionized. <br />

Photons provide enormous<br />

pressure and restor<strong>in</strong>g force. <br />

Photon-baryon perturbations<br />

oscillate as acoustic waves.<br />

After recomb<strong>in</strong>ation:<br />

<strong>Universe</strong> is neutral.<br />

Photons can travel freely<br />

past <strong>the</strong> baryons.<br />

Phase of oscillation at t rec<br />

affects late-time amplitude.<br />

Ionized<br />

Recomb<strong>in</strong>ation &<br />

Last scatter<strong>in</strong>g<br />

z ~ 1000<br />

~400,000 years<br />

Neutral<br />

Today<br />

Time


Acoustic Oscillations <strong>in</strong> <strong>the</strong> <strong>CMB</strong><br />

Temperature map of<br />

<strong>the</strong> cosmic microwave<br />

background radiation<br />

<br />

Although <strong>the</strong>re are fluctuations on all scales, <strong>the</strong>re is a characteristic angular<br />

scale, ~ 1 degree on <strong>the</strong> sky, set by <strong>the</strong> distance sound waves <strong>in</strong> <strong>the</strong> photonbaryon<br />

fluid can travel just before recomb<strong>in</strong>ation: sound horizon ~ c s t ls


WMAP


<strong>Sound</strong> <strong>Waves</strong><br />

Each <strong>in</strong>itial overdensity (<strong>in</strong> dark<br />

matter & gas) is an overpressure<br />

that launches a spherical sound<br />

wave.<br />

This wave travels outwards at <br />

57% of <strong>the</strong> speed of light.<br />

Pressure-provid<strong>in</strong>g photons<br />

decouple at recomb<strong>in</strong>ation.<br />

<strong>CMB</strong> travels to us from <strong>the</strong>se<br />

spheres.<br />

Eisenste<strong>in</strong>


Standard ruler


<strong>CMB</strong><br />

Hu<br />

Angular scale subtended by s


Geometry of three-dimensional space <br />

K>0 K


s<br />

θ<br />

<strong>CMB</strong> Maps


Angular<br />

positions<br />

of acoustic<br />

peaks<br />

probe<br />

spatial<br />

curvature<br />

of <strong>the</strong><br />

<strong>Universe</strong><br />

Hu<br />

~1/θ


Microwave Background Anisotropy<br />

Probes Spatial Curvature <br />

Boomerang (2001) Netterfield et al <br />

DASI (2001) Pryke et al<br />

Data <strong>in</strong>dicates nearly flat geometry if w =-1


<strong>CMB</strong> Results <br />


WMAP3 Results<br />

assum<strong>in</strong>g w=-1


Assum<strong>in</strong>g k=0<br />

as chang<strong>in</strong>g Ω DE


=1-Ω m


<strong>CMB</strong> shift parameter<br />

<strong>CMB</strong> anisotropy constra<strong>in</strong>t on<br />

Angular Diameter distance to lastscatter<strong>in</strong>g<br />

well approximated by:<br />

R = Ω m<br />

H 0<br />

2<br />

z LS<br />

( ) 1/ 2 dz<br />

∫ =1.715 ± 0.021<br />

H(z)<br />

0<br />

z LS<br />

=1089<br />

WMAP5 results Komatsu etal 2008<br />

€<br />


SALT MLCS<br />

SDSS only:<br />

Nearby+SDSS:<br />

MLCS<br />

w = −0.93± 0.13(stat) +0.10 −0.32<br />

(syst)<br />

SALT<br />

w = −0.92 ± 0.11(stat) +0.07 −0.15<br />

(syst)<br />

18 Ω M


Standard ruler


The Structure Formation Cookbook<br />

1. Initial Conditions: A Theory for <strong>the</strong> Orig<strong>in</strong> of Density <br />

Perturbations <strong>in</strong> <strong>the</strong> <strong>Early</strong> <strong>Universe</strong><br />

P m (k)~k n , n~1<br />

Primordial Inflation: <strong>in</strong>itial spectrum of density perturbations <br />

2. Cook<strong>in</strong>g with Gravity: Grow<strong>in</strong>g Perturbations to Form Structure<br />

Set <strong>the</strong> Oven to Cold (or Hot or Warm) Dark Matter<br />

Season with a few Baryons and add Dark Energy P<br />

m (k)~T(k)k n<br />

3. Let Cool for 13 Billion years <br />

Turn Gas <strong>in</strong>to Stars<br />

<br />

P g (k)~b 2 (k)T(k)k n<br />

4. Tweak (1) and (2) until it tastes like <strong>the</strong> observed <strong>Universe</strong>.


Cold Dark<br />

Matter Models<br />

Power Spectrum <br />

of <strong>the</strong> Mass<br />

Density<br />

( ) = d 3<br />

δ k<br />

∫<br />

δ( k 1 )δ( k 2 ) =<br />

( 2π) 3 P k 1<br />

( )<br />

x ⋅ e i k ⋅x δρ x<br />

ρ<br />

( k 2 )<br />

( )δ <br />

3 k 1<br />

+


Cold Dark Matter<br />

Models<br />

Theoretical<br />

Power Spectrum <br />

of <strong>the</strong> Mass Density<br />

δ k<br />

∫<br />

( ) = d 3<br />

( )<br />

x ⋅ e i k ⋅x δρ x<br />

ρ<br />

P ~ k n <br />

Ω m h =0.2<br />

P ~ k –3 <br />

δ( k 1 )δ( k 2 ) =<br />

( 2π) 3 P k 1<br />

( k 2 )<br />

( )δ <br />

3 k 1<br />

+ <br />

Power spectrum<br />

measurements<br />

probe cosmological<br />

parameters<br />

Ω m h =0.5<br />

k eq ~ Ω m h <br />

L<strong>in</strong>ear<br />

h/Mpc<br />

Non-l<strong>in</strong>ear


<strong>Sound</strong> <strong>Waves</strong> aga<strong>in</strong><br />

<br />

<br />

<br />

<br />

<br />

Each <strong>in</strong>itial overdensity (<strong>in</strong> dark matter &<br />

gas) is an overpressure that launches a<br />

spherical sound wave.<br />

This wave travels outwards at <br />

57% of <strong>the</strong> speed of light.<br />

Pressure-provid<strong>in</strong>g photons decouple at<br />

recomb<strong>in</strong>ation. <strong>CMB</strong> travels to us from<br />

<strong>the</strong>se spheres.<br />

<strong>Sound</strong> speed plummets. Wave stalls at a<br />

radius of 150 Mpc.<br />

Overdensity <strong>in</strong> shell (gas) and <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al<br />

center (DM) both seed <strong>the</strong> formation of<br />

galaxies. Preferred separation of 150 Mpc.<br />

Eisenste<strong>in</strong>


A Statistical Signal<br />

The <strong>Universe</strong> is a superposition<br />

of <strong>the</strong>se shells.<br />

The shell is weaker than<br />

displayed.<br />

Hence, you do not expect to<br />

see bulls’ eyes <strong>in</strong> <strong>the</strong> galaxy<br />

distribution.<br />

Instead, we get a 1% bump<br />

<strong>in</strong> <strong>the</strong> correlation function.


Orig<strong>in</strong> of Baryon Acoustic<br />

Oscillations (BAO)<br />

28


Collision Term<br />

29


sound horizon scale<br />

30


k A =2π/s<br />

32


Simulation<br />

plus Poisson errors: multiply<br />

by (1+1/nP) 2<br />

Assumes Gaussian errors (l<strong>in</strong>ear <strong>the</strong>ory)<br />

Fit with::


Power Spectrum<br />

34


Correlation Function<br />

Measure redshifts<br />

and angular<br />

positions<br />

Convert to<br />

comov<strong>in</strong>g<br />

separation us<strong>in</strong>g<br />

redshift-distance<br />

relation<br />

35


Dependence on w<br />

Tangential<br />

Radial<br />

Assum<strong>in</strong>g<br />

constant<br />

Ω m<br />

Measure<br />

k A to 1%<br />

plus<br />

known s<br />

yields w<br />

to ~5%


SDSS<br />

Galaxy<br />

Distribution<br />

Lum<strong>in</strong>ous<br />

Red<br />

Galaxies<br />

SDSS Galaxy<br />

Distribution


Large-scale Correlations of <br />

SDSS Lum<strong>in</strong>ous Red Galaxies<br />

Redshiftspace<br />

Correlation<br />

Function<br />

ξ(r) =<br />

δ( x )δ( x + r )<br />

Baryon<br />

Acoustic<br />

Oscillations<br />

seen <strong>in</strong><br />

Large-scale<br />

Structure<br />

Warn<strong>in</strong>g:<br />

Correlated<br />

Error Bars<br />

Eisenste<strong>in</strong>, etal


Model Comparison<br />

Fixed Ω b h 2 =0.024<br />

n s =0.98, flat<br />

CDM with baryons is a good fit: χ 2 = 16.1 with 17 dof.<br />

Pure CDM rejected at Δχ 2 = 11.7<br />

Equality scale depends<br />

on (Ω m h 2 ) -1 .<br />

Acoustic scale depends<br />

on (Ω m h 2 ) -0.25 .<br />

Ω m h 2 = 0.12<br />

Ω m h 2 = 0.13<br />

Ω m h 2 = 0.14<br />

Ω b h 2 = 0.00


Constra<strong>in</strong>ts<br />

€<br />

Galaxy pair with separations Δz, Δθ :<br />

Δr c<br />

= cΔz /H(z) radial comov<strong>in</strong>g separation<br />

Δr c<br />

= Δθ(1+ z)d A<br />

angular comov<strong>in</strong>g separation<br />

Spherically averaged correlation<br />

function probes<br />

⎡<br />

D V<br />

(z) = ⎢ (1+ z) 2 d 2 A<br />

(z)<br />

⎣<br />

cz ⎤<br />

⎥<br />

H(z) ⎦<br />

1/ 3<br />

SDSS : D V<br />

(z = 0.35) =1370 ± 64 Mpc<br />

R 0.35<br />

= D V<br />

(0.35) /d A<br />

(z LS<br />

) = 0.0979 ± 0.0036<br />

A = D V<br />

(0.35)<br />

Ω m<br />

H 0<br />

2<br />

0.35c = 0.469 ± 0.017 Eisenste<strong>in</strong> etal 2005<br />


SALT MLCS<br />

SDSS only:<br />

Nearby+SDSS:<br />

MLCS<br />

w = −0.93± 0.13(stat) +0.10 −0.32<br />

(syst)<br />

SALT<br />

w = −0.92 ± 0.11(stat) +0.07 −0.15<br />

(syst)<br />

44 Ω M


BAO from SDSS + 2dFGRS<br />

BAO detected at low redshift<br />

0


Cosmological constra<strong>in</strong>ts: BAO<br />

Consider two simple models:<br />

1. ΛCDM<br />

2. Flat, constant w<br />

Constra<strong>in</strong>t from<br />

D V (0.35)/D V (0.2)<br />

Constra<strong>in</strong>t fitt<strong>in</strong>g s/D V<br />

with model for s<br />

Constra<strong>in</strong>t <strong>in</strong>clud<strong>in</strong>g<br />

distance to <strong>CMB</strong><br />

d A (z LS )/D V<br />

Percival et al. 2007<br />

46


Galaxy Cluster<strong>in</strong>g <br />

varies with Galaxy <br />

Type<br />

How are each of <strong>the</strong>m<br />

related to <strong>the</strong> <br />

underly<strong>in</strong>g Dark<br />

Matter distribution?<br />

BIAS<br />

Caveat for <strong>in</strong>ference<br />

of Cosmological<br />

Parameters from LSS


Galaxy Cluster<strong>in</strong>g as a function of Galaxy Lum<strong>in</strong>osity<br />

bright<br />

fa<strong>in</strong>t<br />

Zehavi, etal<br />

Based on sample of ~200,000 galaxies<br />

Tegmark, etal


δn gal<br />

Correct<br />

For<br />

Lum<strong>in</strong>osity<br />

Bias<br />

Vertical<br />

Shift:<br />

Constant<br />

Bias<br />

n gal<br />

( )<br />

( L)<br />

L, x<br />

= b L<br />

( ) δρ ( x<br />

)<br />

ρ


Systematic Issues for BAO<br />

Effects of non-l<strong>in</strong>earities on BAO signal<br />

Model<strong>in</strong>g redshift distortions precisely<br />

Effects of (non-l<strong>in</strong>ear) galaxy bias<br />


Halos vs. Dark Matter<br />

Real Space<br />

Redshift Space


III. Baryon Acoustic Oscillations<br />

Galaxy Angular<br />

Correlation Function<br />

<strong>in</strong> Photo-z b<strong>in</strong>s<br />

Systematics:<br />

photo-z’s,<br />

correlated<br />

photometric errors,<br />

non-l<strong>in</strong>earity, scaledependent<br />

bias<br />

Fosalba & Gaztanaga<br />

53


III. Baryon Acoustic Oscillations<br />

Blake & Bridle<br />

54


DES Science Program<br />

Four Probes of Dark Energy<br />

• Galaxy Clusters<br />

• ~100,000 clusters to z>1<br />

• ~10,000 with SZE measurements from SPT<br />

• Sensitive to growth of structure and geometry<br />

• Weak Lens<strong>in</strong>g<br />

• Shape measurements of 300 million galaxies <br />

• Sensitive to growth of structure and geometry<br />

• Baryon Acoustic Oscillations<br />

• 300 million galaxies to z = 1 and beyond<br />

• Sensitive to geometry<br />

• Supernovae<br />

• 15 sq deg time-doma<strong>in</strong> survey<br />

• ~3000 well-sampled SNe Ia to z ~1<br />

• Sensitive to geometry<br />

Forecast Constra<strong>in</strong>ts on DE<br />

Equation of State<br />

55


Photometric Redshifts<br />

• Measure relative flux <strong>in</strong><br />

multiple filters:<br />

track <strong>the</strong> 4000 A break<br />

• Estimate <strong>in</strong>dividual galaxy<br />

redshifts with accuracy<br />

σ(z) < 0.1 (~0.02 for clusters)<br />

• Precision is sufficient<br />

for Dark Energy probes,<br />

provided error distributions<br />

well measured.<br />

Elliptical galaxy spectrum<br />

56


Galaxy Photo-z Simulations<br />

DES +VHS*<br />

10σ Limit<strong>in</strong>g Magnitudes<br />

g 24.6<br />

r 24.1 J 20.3<br />

i 24.0 H 19.4<br />

Z z 23.8 23.9 Ks 18.3<br />

Y 21.6<br />

+2% photometric calibration<br />

error added <strong>in</strong> quadrature<br />

Photo-z systematic errors<br />

under control us<strong>in</strong>g exist<strong>in</strong>g<br />

spectroscopic tra<strong>in</strong><strong>in</strong>g sets to<br />

DES photometric depth: low-risk<br />

DES griz griZY<br />

+VHS JHKs on<br />

ESO VISTA 4-m<br />

enhances science<br />

reach<br />

*Vista Hemisphere Survey<br />

+Developed improved Photo-z & Error Estimates and robust methods of outlier rejection<br />

57<br />

Oyaizu, Cunha, Lima, Frieman, L<strong>in</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!