01.12.2014 Views

Mechanisms and treatment of hypercalcemia of malignancy

Mechanisms and treatment of hypercalcemia of malignancy

Mechanisms and treatment of hypercalcemia of malignancy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mechanisms</strong> <strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong><br />

Gregory A. Clines a,b<br />

a Division <strong>of</strong> Endocrinology, Diabetes, <strong>and</strong> Metabolism,<br />

Department <strong>of</strong> Medicine, University <strong>of</strong> Alabama at<br />

Birmingham <strong>and</strong> b Veterans Affairs Medical Center,<br />

Birmingham, Alabama, USA<br />

Correspondence to Gregory A. Clines, MD, PhD,<br />

Assistant Pr<strong>of</strong>essor <strong>of</strong> Medicine <strong>and</strong> Cell Biology,<br />

Division <strong>of</strong> Endocrinology, Diabetes, <strong>and</strong> Metabolism,<br />

Department <strong>of</strong> Medicine, University <strong>of</strong> Alabama at<br />

Birmingham, 1808 7th Avenue South, BDB 730<br />

Birmingham, AL 35294-0012, USA<br />

Tel: +1 205 934 4187; fax: +1 205 975 9372;<br />

e-mail: clines@uab.edu<br />

Current Opinion in Endocrinology, Diabetes &<br />

Obesity 2011, 18:339–346<br />

Purpose <strong>of</strong> review<br />

Hypercalcemia <strong>of</strong> <strong>malignancy</strong> is a common paraneoplastic syndrome <strong>and</strong> a frequent<br />

complication <strong>of</strong> advanced breast <strong>and</strong> lung cancer, <strong>and</strong> multiple myeloma. The<br />

development <strong>of</strong> this <strong>malignancy</strong> complication <strong>of</strong>ten purports a poor prognosis.<br />

Thorough evaluation to establish the cause <strong>of</strong> <strong>hypercalcemia</strong> is essential because some<br />

patients may actually have undiagnosed primary hyperparathyroidism.<br />

Recent findings<br />

Production <strong>of</strong> humoral factors by the primary tumor, collectively known as humoral<br />

<strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> (HHM), is the mechanism responsible for 80% <strong>of</strong> cases.<br />

The vast majority <strong>of</strong> HHM is caused by tumor-produced parathyroid hormone-related<br />

protein followed by infrequent tumor production <strong>of</strong> 1,25-dihydroxyvitamin D <strong>and</strong><br />

parathyroid hormone. The remaining 20% <strong>of</strong> cases are caused by bone metastasis with<br />

consequent bone osteolysis <strong>and</strong> release <strong>of</strong> skeletal calcium. Key therapies are saline<br />

hydration to promote calciuresis <strong>and</strong> bisphosphonates to reduce pathologic<br />

osteoclastic bone resorption. Calcitonin <strong>and</strong> glucocorticoids, especially in 1,25-<br />

dihydroxyvitamin D-mediated HHM, also have calcium-lowering effects.<br />

Summary<br />

Recent discoveries on mechanisms <strong>of</strong> <strong>malignancy</strong>-associated <strong>hypercalcemia</strong> highlight<br />

the critical role <strong>of</strong> the osteoclast. Bisphosphonates <strong>and</strong> other novel therapies being<br />

evaluated in clinical trial target this bone-resorbing cell type <strong>and</strong> provide effective<br />

<strong>and</strong> durable serum calcium reduction.<br />

Keywords<br />

bisphosphonate, bone metastasis, <strong>hypercalcemia</strong>, <strong>malignancy</strong>, parathyroid hormonerelated<br />

protein<br />

Curr Opin Endocrinol Diabetes Obes 18:339–346<br />

ß 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins<br />

1752-296X<br />

Introduction<br />

Malignancy-associated <strong>hypercalcemia</strong> is a common paraneoplastic<br />

syndrome occurring in up to 20% <strong>of</strong> cancer<br />

patients. The development <strong>of</strong> <strong>hypercalcemia</strong> in a cancer<br />

patient <strong>of</strong>ten translates to a poor prognosis [1]. Despite<br />

strategies to lower serum calcium <strong>and</strong> treat the hypercalcemic<br />

symptoms, median survival after discovery <strong>of</strong><br />

<strong>hypercalcemia</strong> is approximately 30 days [2]. The poor<br />

prognosis is not necessarily due to the <strong>hypercalcemia</strong><br />

itself but reflects correlation <strong>of</strong> this condition with an<br />

advanced cancer stage. Although <strong>hypercalcemia</strong> can<br />

occur with many types <strong>of</strong> <strong>malignancy</strong>, it is most <strong>of</strong>ten<br />

associated with breast cancer, lung cancer <strong>and</strong> multiple<br />

myeloma [3,4].<br />

Signs <strong>and</strong> symptoms<br />

Symptoms <strong>of</strong> <strong>hypercalcemia</strong> vary in individual patients<br />

<strong>and</strong> are related to both the absolute concentration <strong>and</strong> the<br />

rate <strong>of</strong> rise <strong>of</strong> serum calcium [1,5]. Hypercalcemia associated<br />

with <strong>malignancy</strong> is likely to be more severe <strong>and</strong> rapid<br />

in onset, <strong>and</strong> therefore such patients are more likely to<br />

present with symptoms associated with acute onset.<br />

Gastrointestinal complaints that include nausea, vomiting,<br />

anorexia, abdominal pain <strong>and</strong> constipation are common.<br />

Pancreatitis is a less common but serious complication<br />

[6]. Neurologic manifestations range from fatigue<br />

to coma especially with very high calcium excursion.<br />

Psychiatric conditions such as depression, anxiety <strong>and</strong><br />

cognitive dysfunction can occur. Shortening <strong>of</strong> the electrocardiogram<br />

QT interval <strong>and</strong> cardiac arrhythmia are<br />

associated with acute <strong>and</strong> markedly elevated serum<br />

calcium [7,8]. Muscular weakness is a common complaint<br />

with <strong>hypercalcemia</strong>. Nephrogenic diabetes insipidus is an<br />

incompletely understood complication <strong>of</strong> <strong>hypercalcemia</strong><br />

<strong>and</strong> is likely to be related to downregulation <strong>of</strong> aquaporin-<br />

2 water channels in the collecting ducts resulting in a<br />

renal concentrating defect [9,10]. As a result, dehydration<br />

<strong>and</strong> intravascular volume contraction is further exacerbated<br />

by anorexia, nausea <strong>and</strong> vomiting leading to<br />

worsening <strong>hypercalcemia</strong>.<br />

1752-296X ß 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins DOI:10.1097/MED.0b013e32834b4401<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


340 Parathyroids, bone <strong>and</strong> mineral metabolism<br />

Pathogenesis<br />

Four distinct mechanisms are responsible for <strong>hypercalcemia</strong><br />

<strong>of</strong> <strong>malignancy</strong>. Three <strong>of</strong> these involve secretion <strong>of</strong> an<br />

endocrine factor <strong>and</strong> are collectively described as humoral<br />

<strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> (HHM). The last is the<br />

result <strong>of</strong> bone metastasis <strong>and</strong> massive osteolysis (Fig. 1).<br />

Parathyroid hormone-related protein <strong>and</strong> humoral<br />

<strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong><br />

Before the discovery <strong>of</strong> parathyroid hormone-related<br />

protein (PTHrP), the presence <strong>of</strong> a parathyroid hormone<br />

(PTH)-like factor was proposed that possessed similar<br />

hypercalcemic <strong>and</strong> phosphaturic actions <strong>of</strong> PTH. In 1987,<br />

PTHrP was purified from human cancer cells [11,12] by<br />

independent groups <strong>and</strong> cloned shortly thereafter [13].<br />

PTHrP was subsequently found to have important biological<br />

roles in mammary gl<strong>and</strong> development [14], lactation<br />

[15], endochondral bone formation [16] <strong>and</strong> islet<br />

beta-cell function [17].<br />

The PTHrP gene encodes a 141 amino acid protein that<br />

shares a 60% sequence homology with PTH over the first<br />

13 amino acids at the N terminus [13]. Beyond the initial<br />

amino-terminal sequence, the two proteins are unique<br />

<strong>and</strong> show no further sequence homology. Other PTHrP<br />

endoproteolytic fragment species have been identified,<br />

with the PTHrP (1–36) fragment having similar activity<br />

as the full-length protein. PTHrP (38–94) may have<br />

antitumorigenic properties [18,19 ] <strong>and</strong> PTHrP (107–<br />

139), also known as osteostatin, may inhibit osteoclastic<br />

bone resorption [20,21].<br />

Despite differences between PTH <strong>and</strong> PTHrP protein<br />

structure, both bind to a common PTH/PTHrP receptor<br />

(PTH1R) [22,23]. Three mechanisms <strong>of</strong> PTH1R activation<br />

by PTH that increase serum calcium <strong>and</strong> alter<br />

phosphate homeostasis are well described: PTH activates<br />

osteoclastic bone resorption <strong>and</strong> release <strong>of</strong> skeletal<br />

calcium <strong>and</strong> phosphate through increased osteoblast<br />

receptor activator <strong>of</strong> nuclear factor kB lig<strong>and</strong> (RANKL)<br />

expression leading to activation <strong>of</strong> the receptor activator<br />

<strong>of</strong> nuclear factor kB (RANK) located on osteoclast precursors<br />

[24]. PTH increases calcium reabsorption in the<br />

loop <strong>of</strong> Henle ascending limb <strong>and</strong> distal convoluted<br />

tubule [25] <strong>and</strong> inhibits phosphate reabsorption in the<br />

proximal convoluted tubule [26]. PTH increases renal<br />

1a-hydroxylase with production <strong>of</strong> 1,25-dihydroxyvitamin<br />

D [1,25-(OH) 2 D], the active form <strong>of</strong> vitamin D, in<br />

the proximal convoluted tubule resulting in targeted<br />

intestinal absorption <strong>of</strong> calcium <strong>and</strong> phosphate [27].<br />

PTHrP has equivalent actions as PTH in regulating bone<br />

resorption <strong>and</strong> renal calcium/phosphorus. However,<br />

unlike PTH, PTHrP does not increase 1a-hydroxylase<br />

activity <strong>and</strong> 1,25-(OH) 2 D production. This is illustrated<br />

Key points<br />

Hypercalcemia <strong>of</strong> <strong>malignancy</strong> is associated with a<br />

poor prognosis.<br />

PTHrP is a common mediator <strong>of</strong> humoral <strong>hypercalcemia</strong><br />

<strong>of</strong> <strong>malignancy</strong>.<br />

Local production <strong>of</strong> PTHrP <strong>and</strong> other factors mediate<br />

local bone osteolysis <strong>and</strong> <strong>hypercalcemia</strong> during<br />

bone metastasis.<br />

Saline hydration <strong>and</strong> bisphosphonates are the key<br />

therapies for <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>.<br />

in patients with primary hyperparathyroidism who generally<br />

have an elevated circulating 1,25-(OH) 2 D, which is<br />

reflective <strong>of</strong> heightened PTH activity. Such an increase is<br />

not seen in patients with PTHrP-dependent HHM, even<br />

though stores <strong>of</strong> the vitamin D precursor may be normal<br />

[28]. Differences between PTH <strong>and</strong> PTHrP lig<strong>and</strong>–<br />

receptor binding kinetics <strong>and</strong> activation <strong>of</strong> PTH1R<br />

downstream signaling pathways are the likely mechanisms<br />

responsible for this difference [23,29]. The discordant<br />

effects between PTH <strong>and</strong> PTHrP on 1,25-(OH) 2 D<br />

production were confirmed in human controlled trials<br />

studying PTH (1–34) versus PTHrP (1–36) infusion<br />

[30].<br />

Normally, PTHrP circulates at a concentration <strong>of</strong> less<br />

than 2.0 pmol/l. Approximately 80% <strong>of</strong> the hypercalcemic<br />

patients with solid tumors have plasma PTHrP concentration<br />

above this value [31,32]. Hypercalcemia ensues<br />

only when PTHrP reaches a threshold concentration that<br />

replaces <strong>and</strong> surpasses the analogous actions <strong>of</strong> PTH.<br />

Hypercalcemia attributed to elevated concentrations<br />

<strong>of</strong> humoral PTHrP has been estimated to occur in 33–<br />

84% <strong>of</strong> breast cancers [33–38], 46–76% <strong>of</strong> lung cancers<br />

[35,36,38], 21–63% <strong>of</strong> non-Hodgkin’s lymphomas<br />

(NHLs) [38–40] <strong>and</strong> 92% <strong>of</strong> adult T-cell leukemia/<br />

lymphomas due to the human T-lymphotropic virus<br />

type 1 (HTLV-1) infection [39]. Infrequently, PTHrPmediated<br />

<strong>hypercalcemia</strong> occurs in head <strong>and</strong> neck tumors<br />

[41,42], renal cell carcinoma [43,44], bladder cancer [45],<br />

pancreatic carcinoma [46], hepatocellular carcinoma [47],<br />

carcinoid tumors [48] <strong>and</strong> melanoma [49].<br />

Parathyroid hormone <strong>and</strong> humoral <strong>hypercalcemia</strong> <strong>of</strong><br />

<strong>malignancy</strong><br />

PTHrP is responsible for the vast majority <strong>of</strong> cases HHM.<br />

However, rare cases have been reported <strong>of</strong> ectopic PTH<br />

secretion by tumors, which is <strong>of</strong>ten clinically indistinguishable<br />

from primary hyperparathyroidism. Suspicion<br />

<strong>of</strong> <strong>malignancy</strong>-associated ectopic PTH should arise in a<br />

patient with a known <strong>malignancy</strong> that has an elevated<br />

calcium <strong>and</strong> PTH, <strong>and</strong> when a st<strong>and</strong>ard technetium<br />

( 99m Tc) sestamibi scan does not identify a parathyroid<br />

adenoma in the neck. Ectopic PTH production has been<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


<strong>Mechanisms</strong> <strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> Clines 341<br />

Figure 1 Production <strong>of</strong> a humoral factor by the primary tumor comprises 80% <strong>of</strong> cases <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>, collectively<br />

known as humoral <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong><br />

PTHrP is by far the most common factor implicated in HHM, especially in cases <strong>of</strong> breast <strong>and</strong> lung cancer. PTH is a rare cause <strong>of</strong> HHM. PTHrP <strong>and</strong> PTH<br />

activate a common PTH1R receptor located on osteoblasts precursors resulting in RANKL expression, osteoclast activation <strong>and</strong> bone resorption.<br />

Tumor-produced 1,25-(OH) 2 D by hematologic malignancies is an uncommon mechanism <strong>of</strong> HHM. The principal action <strong>of</strong> tumor-produced 1,25-<br />

(OH) 2 D is to promote excessive calcium gut absorption. Approximately 20% <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> cases is the result <strong>of</strong> bone metastasis <strong>and</strong><br />

local production <strong>of</strong> tumor factors in the bone microenvironment. Breast <strong>and</strong> lung cancer bone metastasis primarily produce PTHrP. Osteolytic lesions <strong>of</strong><br />

multiple myeloma are the result <strong>of</strong> a complement <strong>of</strong> other bone-resorbing factors. 1,25-(OH) 2 D, 1,25-dihydroxyvitamin D; ATLL, adult T-cell leukemia/<br />

lymphoma; HHM, humoral <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>; HL, Hodgkin’s lymphoma; NHL, non-Hodgkin’s lymphoma; PTHrP, parathyroid hormonerelated<br />

protein; RANKL, receptor activator <strong>of</strong> nuclear factor kB lig<strong>and</strong>.<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


342 Parathyroids, bone <strong>and</strong> mineral metabolism<br />

documented in a small cell carcinoma <strong>of</strong> the lung [50], a<br />

squamous cell carcinoma <strong>of</strong> the lung [51], an ovarian<br />

cancer [52], a widely metastatic primitive neuroectodermal<br />

tumor [53], a papillary adenocarcinoma <strong>of</strong> the thyroid<br />

[54], a thymoma [55], a rhabdomyosarcoma [56] <strong>and</strong> a<br />

pancreatic cancer [57].<br />

1,25-Dihydroxyvitamin D <strong>and</strong> humoral <strong>hypercalcemia</strong> <strong>of</strong><br />

<strong>malignancy</strong><br />

Another mechanism <strong>of</strong> HHM is overproduction <strong>of</strong> 1,25-<br />

(OH) 2 D, a cause <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> in less<br />

than 1% <strong>of</strong> cases [32]. Analogous to granulomatous<br />

diseases such as sarcoidosis, certain cancers possess 1ahydroxylase<br />

activity that produce 1,25-(OH) 2 D from the<br />

available 25-(OH) 2 D precursor [58,59]. Activated tissue<br />

macrophages adjacent to tumor tissue may be another<br />

source <strong>of</strong> 1,25-(OH) 2 D [60].<br />

Most patients with 1,25-(OH) 2 D-mediated HHM have<br />

Hodgkin’s lymphoma <strong>and</strong> NHL [61]. In one report,<br />

4.1% <strong>of</strong> the patients with newly diagnosed NHL were<br />

hypercalcemic <strong>and</strong> the likelihood <strong>of</strong> <strong>hypercalcemia</strong><br />

increased with the higher grade <strong>of</strong> disease [61,62]. The<br />

incidence <strong>of</strong> <strong>hypercalcemia</strong> with Hodgkin’s lymphoma is<br />

similar to NHL with 5.4% <strong>of</strong> patients diagnosed with this<br />

complication [62]. Hypercalcemia from production <strong>of</strong> 1,25-<br />

(OH) 2 D in acute lymphoblastic leukemia <strong>and</strong> dysgerminomas<br />

are a rare complication <strong>of</strong> these malignancies<br />

[63,64].<br />

Bone metastasis <strong>and</strong> skeletal osteolysis<br />

Extensive bone metastasis <strong>and</strong> local osteolysis accounts<br />

for approximately 20% <strong>of</strong> cases <strong>of</strong> <strong>malignancy</strong>-associated<br />

<strong>hypercalcemia</strong> [32]. During massive osteolysis, the amount<br />

<strong>of</strong> calcium released from bone is greater than the renal<br />

calcium excretion capacity resulting in a net increase in<br />

serum calcium. Hypercalcemia-related nausea, anorexia,<br />

nephrogenic diabetes insipidus <strong>and</strong> volume depletion further<br />

impair renal function <strong>and</strong> exacerbate <strong>hypercalcemia</strong>.<br />

The most common <strong>malignancy</strong> associated with this mechanism<br />

<strong>of</strong> <strong>hypercalcemia</strong> is breast cancer metastasis to bone,<br />

a complication that occurs in 70% <strong>of</strong> patients with<br />

advanced disease. The formation <strong>of</strong> bone metastasis<br />

begins with a series <strong>of</strong> sequential steps starting with cancer<br />

cell escape from the primary tumor site, embolization in<br />

the circulation followed by cancer cell adherence to bone<br />

vascular endothelium <strong>and</strong> extravasation into the bone<br />

microenvironment [65]. With the arrival <strong>of</strong> cancer cells<br />

to bone, a unique synergetic interaction between cancer<br />

<strong>and</strong> bone was first recognized by Stephen Paget [66] in<br />

1889 <strong>and</strong> formed the basis for the ‘seed <strong>and</strong> soil’<br />

hypothesis.<br />

Humoral PTHrP is responsible for most cases <strong>of</strong> <strong>hypercalcemia</strong><br />

in lung cancer, but 30–40% <strong>of</strong> the patients with<br />

advanced disease develop bone metastasis <strong>and</strong> <strong>hypercalcemia</strong><br />

with localized osteolysis [67]. Multiple myeloma is<br />

far less common than breast or lung cancer, but osteolytic<br />

bone lesions are a nearly universal feature in advanced<br />

cases. Although not typically characterized as a metastatic<br />

<strong>malignancy</strong>, multiple myeloma shares many <strong>of</strong> the molecular<br />

mechanisms <strong>of</strong> pathologic bone resorption with<br />

breast cancer bone metastasis [65]. Other malignancies<br />

rarely causing <strong>hypercalcemia</strong> <strong>and</strong> osteolytic bone disease<br />

include melanoma [68], acute lymphoblastic leukemia<br />

[69–71] <strong>and</strong> NHL [72,73].<br />

PTHrP secretion into the metastatic bone microenvironment<br />

is the principal mechanism <strong>of</strong> pathogenic osteoclast<br />

activation <strong>and</strong> osteolysis from breast <strong>and</strong> lung cancer<br />

bone metastasis [74–77]. PTHrP also plays a significant<br />

role in the process <strong>of</strong> metastasis to bone, as evidenced by<br />

clinical studies indicating that PTHrP expression by<br />

primary breast cancer is more commonly associated with<br />

the development <strong>of</strong> bone metastasis <strong>and</strong> <strong>hypercalcemia</strong><br />

[78]. In the case <strong>of</strong> breast <strong>and</strong> lung cancer, HHM <strong>and</strong><br />

skeletal osteolysis share PTHrP as the principal factor<br />

leading to <strong>hypercalcemia</strong>; in one situation, it is a local<br />

mediator, whereas in another, it is a humoral mediator.<br />

Multiple myeloma secretes a complement <strong>of</strong> osteoclast<br />

activating factors that include macrophage inflammatory<br />

protein-1a [79], receptor activator <strong>of</strong> nuclear factor kB<br />

lig<strong>and</strong> (RANKL) [80], interleukin-3 <strong>and</strong> interleukin-6<br />

[81,82].<br />

Differential diagnosis<br />

Hypercalcemia, especially in the hospital setting <strong>and</strong><br />

when the serum calcium is above 13 mg/dl, is likely<br />

due to <strong>malignancy</strong>. In the outpatient setting, primary<br />

hyperparathyroidism is a more likely cause <strong>of</strong> <strong>hypercalcemia</strong>.<br />

Therefore, <strong>hypercalcemia</strong> in a patient with a<br />

known <strong>malignancy</strong> may not necessarily indicate an<br />

advanced disease stage or even be linked to the <strong>malignancy</strong><br />

itself [83]. In one study, seven out <strong>of</strong> 47 patients<br />

with <strong>hypercalcemia</strong> <strong>and</strong> a <strong>malignancy</strong> had coexisting<br />

primary hyperparathyroidism [84]. Differentiating<br />

between the two has prognostic value because the likelihood<br />

<strong>of</strong> survival past 100 days is likely with primary<br />

hyperparathyroidism, whereas an elevated PTHrP was<br />

associated with a high mortality within 100 days [84].<br />

Other conditions associated with <strong>hypercalcemia</strong> including<br />

excessive calcium intake, vitamin D toxicity <strong>and</strong><br />

thiazide diuretics may also coexist in <strong>malignancy</strong>. It is<br />

therefore critical to fully evaluate the cause <strong>of</strong> <strong>hypercalcemia</strong><br />

in all the patients with <strong>malignancy</strong>, even in those<br />

with advanced disease.<br />

Assessing circulating intact PTH concentration is the<br />

initial step in determining the cause <strong>of</strong> <strong>hypercalcemia</strong><br />

in all patients. During <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> <strong>and</strong><br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


<strong>Mechanisms</strong> <strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> Clines 343<br />

in the absence <strong>of</strong> parathyroid disease, <strong>hypercalcemia</strong> will<br />

overactivate the calcium-sensing receptor <strong>of</strong> the parathyroid<br />

gl<strong>and</strong>s resulting in suppressed PTH production. In<br />

patients without a known <strong>malignancy</strong>, PTHrP testing is<br />

generally not necessary in the initial diagnostic workup <strong>of</strong><br />

<strong>hypercalcemia</strong>. In patients with a <strong>malignancy</strong> <strong>and</strong> <strong>hypercalcemia</strong>,<br />

both PTH <strong>and</strong> PTHrP should be measured.<br />

Treatment<br />

The principal goals are two-fold: restore <strong>and</strong> promote<br />

renal calciuresis <strong>and</strong> inhibit pathologic osteoclastic bone<br />

resorption.<br />

Hydration<br />

Volume resuscitation is a critical early <strong>treatment</strong> to<br />

restore renal perfusion <strong>and</strong> calciuresis [85]. The rate <strong>of</strong><br />

hydration depends on the severity <strong>of</strong> <strong>hypercalcemia</strong>, the<br />

age <strong>of</strong> the patient <strong>and</strong> comorbidities such as congestive<br />

heart failure, which may limit the rate <strong>of</strong> saline infusion.<br />

A 1-liter normal saline bolus followed by 200–300 ml/h is<br />

a reasonable approach. Once euvolemia is established,<br />

either oral or maintenance intravenous fluids is continued<br />

to maintain a reasonable urine output. The addition <strong>of</strong><br />

furosemide to promote calciuresis is generally not recommended<br />

given the paucity <strong>of</strong> clinical evidence supporting<br />

its use in this setting [86].<br />

Calcitonin<br />

Calcitonin is a useful adjunctive initial therapy that inhibits<br />

osteoclastic bone resorption <strong>and</strong> renal calcium reabsorption.<br />

A disadvantage <strong>of</strong> calcitonin is the development<br />

<strong>of</strong> tachyphylaxis within 48 h <strong>of</strong> initiation. The effectiveness<br />

<strong>of</strong> this medication can be extended with the combination<br />

<strong>of</strong> glucocorticoids [87]. Calcitonin is administered<br />

either intramuscularly or subcutaneously at a dose <strong>of</strong> 4 U/<br />

kg every 12 h up to 8 U/kg every 6 h if the initial dose is not<br />

satisfactory. Intranasal administration <strong>of</strong> calcitonin has<br />

shown not to be effective [88]. Few studies have examined<br />

the efficacy <strong>of</strong> calcitonin alone in the acute management <strong>of</strong><br />

<strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> [87,89].<br />

Bisphosphonates<br />

Pamidronate <strong>and</strong> zoledronic acid are the two bisphosphonates<br />

approved by the US Food <strong>and</strong> Drug Administration<br />

for <strong>treatment</strong> <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>.<br />

These nitrogen-containing bisphosphonates have a high<br />

affinity for hydroxyapatite <strong>and</strong> are rapidly deposited<br />

within bone after administration. Bisphosphonate<br />

released during bone resorption becomes internalized<br />

within the osteoclast, blocking prenylation <strong>of</strong> small<br />

GTP-binding proteins important for structural integrity<br />

<strong>of</strong> the osteoclast resulting in apoptosis [90 ].<br />

Clinical trials have demonstrated efficacy <strong>of</strong> both 60 <strong>and</strong><br />

90 mg doses <strong>of</strong> pamidronate administered intravenously<br />

over 4 h [91,92]. The higher 90 mg dose can be used in<br />

patients with more severe <strong>hypercalcemia</strong>. With the 90 mg<br />

infusion <strong>of</strong> pamidronate, the mean time to normocalcemia<br />

was approximately 4 days, whereas the mean<br />

duration <strong>of</strong> normocalcemia was 28 days in one study<br />

[93]. An effective method for achieving a rapid <strong>and</strong><br />

sustained reduction in serum calcium concentration is<br />

to use pamidronate in combination with calcitonin. The<br />

combination <strong>of</strong> the durable action <strong>of</strong> a bisphosphonate<br />

with rapid-acting calcitonin lowers serum calcium levels<br />

more rapidly <strong>and</strong> effectively than either alone [94].<br />

Zoledronic acid, a more potent bisphosphonate, is administered<br />

at a dose <strong>of</strong> 4 mg intravenously over 15 min.<br />

Compared with pamidronate, zoledronic acid was<br />

superior in respect to response rates, time to calcium<br />

normalization <strong>and</strong> response duration [95]. Therefore,<br />

many clinicians consider zoledronic acid the bisphosphonate<br />

<strong>of</strong> choice. The bisphosphonate ib<strong>and</strong>ronate, currently<br />

approved in the USA for osteoporosis <strong>treatment</strong>,<br />

has similar efficacy as pamidronate but is not yet<br />

approved by the FDA for this indication [96]. Etidronate<br />

<strong>and</strong> clodronate have been studied in <strong>hypercalcemia</strong> <strong>of</strong><br />

<strong>malignancy</strong>, but the availability <strong>of</strong> more potent bisphosphonates<br />

has supplanted the use <strong>of</strong> these low-potency<br />

first-generation bisphosphonates. Disadvantages <strong>of</strong><br />

bisphosphonates are renal toxicity that can be minimized<br />

with a dose adjustment <strong>and</strong> risk <strong>of</strong> osteonecrosis <strong>of</strong> the<br />

jaw especially in patients who receive multiple doses <strong>and</strong><br />

those with poor dentition [97 ].<br />

Glucocorticoids<br />

Glucocorticoids are the preferred therapy for patients<br />

with 1,25-(OH) 2 D-mediated <strong>hypercalcemia</strong> <strong>and</strong> operate<br />

by reducing extrarenal vitamin D 1a-hydroxylase<br />

activity. Glucocorticoids also inhibit osteoclastic bone<br />

resorption by decreasing tumor production <strong>of</strong> locally<br />

active cytokines <strong>and</strong> maybe used in conjunction with<br />

other st<strong>and</strong>ard therapies in patients with other forms <strong>of</strong><br />

<strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> [87,98]. Prednisone at dose<br />

<strong>of</strong> 40–60 mg administered daily is typically effective. If<br />

no appreciable response is observed within 10 days, then<br />

glucocorticoid therapy should be discontinued.<br />

Other therapies<br />

Plicamycin <strong>and</strong> gallium nitrate are two antineoplastic<br />

agents that have calcium-lowering abilities. However,<br />

these medications are no longer recommended for treating<br />

<strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> due to poor side-effect<br />

pr<strong>of</strong>iles <strong>and</strong> inconvenient dosing schedules. Hemodialysis<br />

using a calcium-free dialysate effectively lowers<br />

calcium in case reports [99,100]. This mode <strong>of</strong> therapy<br />

should be reserved only for the most severe cases <strong>of</strong><br />

<strong>hypercalcemia</strong> when rapid normalization <strong>of</strong> calcium is<br />

required. Denosumab is a RANKL-targeted monoclonal<br />

antibody currently approved for treating osteoporosis <strong>and</strong><br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


344 Parathyroids, bone <strong>and</strong> mineral metabolism<br />

preventing skeletal-related events in bone metastasis<br />

[101,102 ]. The efficacy <strong>of</strong> denosumab for treating <strong>hypercalcemia</strong><br />

<strong>of</strong> <strong>malignancy</strong> is currently being evaluated in a<br />

phase II clinical trial.<br />

Conclusion<br />

Hypercalcemia is a common complication <strong>of</strong> <strong>malignancy</strong><br />

caused by a heterogeneous group <strong>of</strong> tumor-derived<br />

factors that disrupt normal calcium homeostasis. PTHrP,<br />

either acting as endocrine factor or locally in cancer<br />

metastasis to bone, is a central mediator <strong>of</strong> this paraneoplastic<br />

complication in breast <strong>and</strong> lung cancer. A complement<br />

<strong>of</strong> other factors is the foundation for <strong>hypercalcemia</strong><br />

associated with multiple myeloma. Rarely, tumorproduced<br />

PTH <strong>and</strong> 1,25-(OH) 2 D are implicated. The<br />

st<strong>and</strong>ard <strong>of</strong> care for <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> in most<br />

cases is bisphosphonate <strong>treatment</strong> combined with saline<br />

hydration. Alternative therapies with potential benefit<br />

include inhibitors <strong>of</strong> RANKL <strong>and</strong> neutralizing antibodies<br />

to PTHrP. Clinical trials, in progress, should determine<br />

whether these modalities would be as effective or complementary<br />

to bisphosphonate <strong>treatment</strong>.<br />

Acknowledgements<br />

The author receives funding from the National Institutes <strong>of</strong> Health<br />

(CA118428 <strong>and</strong> AR056826) <strong>and</strong> the Department <strong>of</strong> Defense<br />

(W81XWH-08-1-0030).<br />

Conflicts <strong>of</strong> interest<br />

There are no conflicts <strong>of</strong> interest.<br />

References <strong>and</strong> recommended reading<br />

Papers <strong>of</strong> particular interest, published within the annual period <strong>of</strong> review, have<br />

been highlighted as:<br />

<strong>of</strong> special interest<br />

<strong>of</strong> outst<strong>and</strong>ing interest<br />

Additional references related to this topic can also be found in the Current<br />

World Literature section in this issue (pp. 418–419).<br />

1 Grill V, Martin TJ. Hypercalcemia <strong>of</strong> <strong>malignancy</strong>. Rev Endocr Metab Disord<br />

2000; 1:253–263.<br />

2 Ralston SH, Gallacher SJ, Patel U, et al. Cancer-associated <strong>hypercalcemia</strong>:<br />

morbidity <strong>and</strong> mortality. Clinical experience in 126 treated patients. Ann Inter<br />

Med 1990; 112:499–504.<br />

3 Hiraki A, Ueoka H, Takata I, et al. Hypercalcemia-leukocytosis syndrome<br />

associated with lung cancer. Lung Cancer 2004; 43:301–307.<br />

4 Mundy GR, Martin TJ. The <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>: pathogenesis <strong>and</strong><br />

management. Metabolism 1982; 31:1247–1277.<br />

5 Horwitz MJ, Hodak SP, Stewart AF. Nonparathyroid <strong>hypercalcemia</strong>. In:<br />

Rosen, CJ, editor. Primer on the metabolic bone diseases <strong>and</strong> disorders<br />

<strong>of</strong> mineral metabolism. 7th ed. Washington, DC: American Society for Bone<br />

<strong>and</strong> Mineral Research; 2008. pp. 307–3012.<br />

6 Carnaille B, Oudar C, Pattou F, et al. Pancreatitis <strong>and</strong> primary hyperparathyroidism:<br />

forty cases. Aust N Z J Surg 1998; 68:117–119.<br />

7 Saikawa T, Tsumabuki S, Nakagawa M, et al. QT intervals as an index <strong>of</strong> high<br />

serum calcium in <strong>hypercalcemia</strong>. Clin Cardiol 1988; 11:75–78.<br />

8 Wolf ME, Ranade V, Molnar J, et al. Hypercalcemia, arrhythmia, <strong>and</strong> mood<br />

stabilizers. J Clin Psychopharmacol 2000; 20:260–264.<br />

9 Khanna A. Acquired nephrogenic diabetes insipidus. Semin Nephrol 2006;<br />

26:244–248.<br />

10 Earm JH, Christensen BM, Frokiaer J, et al. Decreased aquaporin-2 expression<br />

<strong>and</strong> apical plasma membrane delivery in kidney collecting ducts <strong>of</strong><br />

polyuric hypercalcemic rats. J Am Soc Nephrol 1998; 9:2181–2193.<br />

11 Moseley JM, Kubota M, Diefenbach-Jagger H, et al. Parathyroid hormonerelated<br />

protein purified from a human lung cancer cell line. Proc Natl Acad Sci<br />

U S A 1987; 84:5048–5052.<br />

12 Strewler GJ, Stern PH, Jacobs JW, et al. Parathyroid hormone-like protein<br />

from human renal carcinoma cells. Structural <strong>and</strong> functional homology with<br />

parathyroid hormone. J Clin Invest 1987; 80:1803–1807.<br />

13 Suva LJ, Winslow GA, Wettenhall RE, et al. A parathyroid hormone-related<br />

protein implicated in malignant <strong>hypercalcemia</strong>: cloning <strong>and</strong> expression.<br />

Science 1987; 237:893–896.<br />

14 Hens JR, Wysolmerski JJ. Key stages <strong>of</strong> mammary gl<strong>and</strong> development:<br />

molecular mechanisms involved in the formation <strong>of</strong> the embryonic mammary<br />

gl<strong>and</strong>. Breast Cancer Res 2005; 7:220–224.<br />

15 VanHouten JN, Dann P, Stewart AF, et al. Mammary-specific deletion <strong>of</strong><br />

parathyroid hormone-related protein preserves bone mass during lactation.<br />

J Clin Invest 2003; 112:1429–1436.<br />

16 Kobayashi T, Chung UI, Schipani E, et al. PTHrP <strong>and</strong> Indian hedgehog control<br />

differentiation <strong>of</strong> growth plate chondrocytes at multiple steps. Development<br />

2002; 129:2977–2986.<br />

17 Guthalu Kondegowda N, Joshi-Gokhale S, Harb G, et al. Parathyroid<br />

hormone-related protein enhances human ss-cell proliferation <strong>and</strong> function<br />

with associated induction <strong>of</strong> cyclin-dependent kinase 2 <strong>and</strong> cyclin E expression.<br />

Diabetes 2010; 59:3131–3138.<br />

18 Luparello C, Romanotto R, Tipa A, et al. Midregion parathyroid hormonerelated<br />

protein inhibits growth <strong>and</strong> invasion in vitro <strong>and</strong> tumorigenesis in vivo<br />

<strong>of</strong> human breast cancer cells. J Bone Miner Res 2001; 16:2173–2181.<br />

19<br />

<br />

Luparello C. Midregion PTHrP <strong>and</strong> human breast cancer cells. Scientific-<br />

WorldJournal 2010; 10:1016–1028.<br />

This report establishes a novel role <strong>of</strong> a PTHrP endoproteolytic fragment.<br />

20 Fenton AJ, Kemp BE, Hammonds RG Jr, et al. A potent inhibitor <strong>of</strong> osteoclastic<br />

bone resorption within a highly conserved pentapeptide region <strong>of</strong><br />

parathyroid hormone-related protein: PTHrP[107–111]. Endocrinology<br />

1991; 129:3424–3426.<br />

21 Zheng MH, McCaughan HB, Papadimitriou JM, et al. Tartrate resistant acid<br />

phosphatase activity in rat cultured osteoclasts is inhibited by a carboxyl<br />

terminal peptide (osteostatin) from parathyroid hormone-related protein.<br />

J Cell Biochem 1994; 54:145–153.<br />

22 Abou-Samra AB, Juppner H, Force T, et al. Expression cloning <strong>of</strong> a common<br />

receptor for parathyroid hormone <strong>and</strong> parathyroid hormone-related peptide<br />

from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation<br />

<strong>of</strong> both cAMP <strong>and</strong> inositol trisphosphates <strong>and</strong> increases intracellular<br />

free calcium. Proc Natl Acad Sci U S A 1992; 89:2732–2736.<br />

23 Pioszak AA, Parker NR, Gardella TJ, Xu HE. Structural basis for parathyroid<br />

hormone-related protein binding to the parathyroid hormone receptor <strong>and</strong><br />

design <strong>of</strong> conformation-selective peptides. J Biol Chem 2009; 284:28382–<br />

28391.<br />

24 Thomas RJ, Guise TA, Yin JJ, et al. Breast cancer cells interact with<br />

osteoblasts to support osteoclast formation. Endocrinology 1999; 140:<br />

4451–4458.<br />

25 Gesek FA, Friedman PA. On the mechanism <strong>of</strong> parathyroid hormone stimulation<br />

<strong>of</strong> calcium uptake by mouse distal convoluted tubule cells. J Clin Invest<br />

1992; 90:749–758.<br />

26 Pfister MF, Lederer E, Forgo J, et al. Parathyroid hormone-dependent<br />

degradation <strong>of</strong> type II Naþ/Pi cotransporters. J Biol Chem 1997;<br />

272:20125–20130.<br />

27 Bikle D, Adams J, Christakos S. Vitamin D: production, metabolism, mechanism<br />

<strong>of</strong> action, <strong>and</strong> clinical requirements. In: Rosen CJ, editor. Primer on the<br />

metabolic bone diseases <strong>and</strong> disorders <strong>of</strong> mineral metabolism. 7th ed.<br />

Washington, DC: American Society for Bone <strong>and</strong> Mineral Research;<br />

2008. pp. 141–149.<br />

28 Schilling T, Pecherstorfer M, Blind E, et al. Parathyroid hormone-related<br />

protein (PTHrP) does not regulate 1,25-dihydroxyvitamin D serum levels in<br />

<strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>. J Clin Endocrinol Metab 1993; 76:801–<br />

803.<br />

29 Dean T, Vilardaga JP, Potts JT Jr, Gardella TJ. Altered selectivity <strong>of</strong> parathyroid<br />

hormone (PTH) <strong>and</strong> PTH-related protein (PTHrP) for distinct conformations<br />

<strong>of</strong> the PTH/PTHrP receptor. Mol Endocrinol 2008; 22:156–166.<br />

30 Horwitz MJ, Tedesco MB, Sereika SM, et al. Continuous PTH <strong>and</strong> PTHrP<br />

infusion causes suppression <strong>of</strong> bone formation <strong>and</strong> discordant effects on<br />

1,25(OH)2 vitamin D. J Bone Miner Res 2005; 20:1792–1803.<br />

31 Burtis WJ, Brady TG, Orl<strong>of</strong>f JJ, et al. Immunochemical characterization <strong>of</strong><br />

circulating parathyroid hormone-related protein in patients with humoral<br />

<strong>hypercalcemia</strong> <strong>of</strong> cancer. N Engl J Med 1990; 322:1106–1112.<br />

32 Stewart AF. Hypercalcemia associated with cancer. N Engl J Med 2005;<br />

352:373–379.<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


<strong>Mechanisms</strong> <strong>and</strong> <strong>treatment</strong> <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> Clines 345<br />

33 Gallacher SJ, Fraser WD, Patel U, et al. Breast cancer-associated hypercalcaemia:<br />

a reassessment <strong>of</strong> renal calcium <strong>and</strong> phosphate h<strong>and</strong>ling.<br />

Ann Clin Biochem 1990; 27 (Pt 6):551–556.<br />

34 Grill V, Ho P, Body JJ, et al. Parathyroid hormone-related protein: elevated<br />

levels in both humoral <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong> <strong>and</strong> <strong>hypercalcemia</strong><br />

complicating metastatic breast cancer. J Clin Endocrinol Metab 1991;<br />

73:1309–1315.<br />

35 Fraser WD, Robinson J, Lawton R, et al. Clinical <strong>and</strong> laboratory studies <strong>of</strong> a<br />

new immunoradiometric assay <strong>of</strong> parathyroid hormone-related protein.<br />

Clin Chem 1993; 39:414–419.<br />

36 Pecherstorfer M, Schilling T, Blind E, et al. Parathyroid hormone-related<br />

protein <strong>and</strong> life expectancy in hypercalcemic cancer patients. J Clin Endocrinol<br />

Metab 1994; 78:1268–1270.<br />

37 Bundred NJ, Walls J, Ratcliffe WA. Parathyroid hormone-related protein,<br />

bone metastases <strong>and</strong> hypercalcaemia <strong>of</strong> <strong>malignancy</strong>. Ann R Coll Surg Engl<br />

1996; 78:354–358.<br />

38 Rizzoli R, Thiebaud D, Bundred N, et al. Serum parathyroid hormone-related<br />

protein levels <strong>and</strong> response to bisphosphonate <strong>treatment</strong> in <strong>hypercalcemia</strong> <strong>of</strong><br />

<strong>malignancy</strong>. J Clin Endocrinol Metab 1999; 84:3545–3550.<br />

39 Ikeda K, Ohno H, Hane M, et al. Development <strong>of</strong> a sensitive two-site immunoradiometric<br />

assay for parathyroid hormone-related peptide: evidence for elevated<br />

levels in plasma from patients with adult T-cell leukemia/lymphoma <strong>and</strong><br />

B-cell lymphoma. J Clin Endocrinol Metab 1994; 79:1322–1327.<br />

40 Kremer R, Shustik C, Tabak T, et al. Parathyroid-hormone-related peptide in<br />

hematologic malignancies. Am J Med 1996; 100:406–411.<br />

41 Ansari K, Clerk A, Patel MH, et al. Hypercalcemia induced by parathyroid<br />

hormone-related peptide after <strong>treatment</strong> <strong>of</strong> squamous cell carcinoma <strong>of</strong> oral<br />

cavity. J Assoc Physicians India 2003; 51:1023–1024.<br />

42 Gover A, Kumar PD, Brown LA, Ravakhah K. Hypercalcemia induced<br />

by parathyroid hormone-related peptide after <strong>treatment</strong> <strong>of</strong> carcinoma.<br />

South Med J 2002; 95:258–260.<br />

43 Papworth K, Grankvist K, Ljungberg B, Rasmuson T. Parathyroid hormonerelated<br />

protein <strong>and</strong> serum calcium in patients with renal cell carcinoma.<br />

Tumour Biol 2005; 26:201–206.<br />

44 Pepper K, Jaowattana U, Starsiak MD, et al. Renal cell carcinoma presenting<br />

with paraneoplastic hypercalcemic coma: a case report <strong>and</strong> review <strong>of</strong> the<br />

literature. J Gen Intern Med 2007; 22:1042–1046.<br />

45 Yoshida T, Suzumiya J, Katakami H, et al. Hypercalcemia caused by PTH-rP<br />

associated with lung metastasis from urinary bladder carcinoma: an autopsied<br />

case. Intern Med 1994; 33:673–676.<br />

46 Cavestro GM, Mantovani N, Coruzzi P, et al. Hypercalcemia due to ectopic<br />

secretion <strong>of</strong> parathyroid related protein from pancreatic carcinoma: a case<br />

report. Acta Biomed 2002; 73:37–40.<br />

47 Pun KK, Tam SM. Humoral <strong>hypercalcemia</strong> <strong>of</strong> hepatocellular carcinoma<br />

associated with elevated levels <strong>of</strong> parathyroid-hormone-related-peptide.<br />

Endocr Pract 1995; 1:166–169.<br />

48 Mantzoros CS, Suva LJ, Moses AC, Spark R. Intractable hypercalcaemia due<br />

to parathyroid hormone-related peptide secretion by a carcinoid tumour.<br />

Clin Endocrinol (Oxf) 1997; 46:373–375.<br />

49 Matsui T, Kageshita T, Ishihara T, et al. Hypercalcemia in a patient with<br />

malignant melanoma arising in congenital giant pigmented nevus. A case <strong>of</strong><br />

increased serum level <strong>of</strong> parathyroid hormone-related protein. Dermatology<br />

1998; 197:65–68.<br />

50 Yoshimoto K, Yamasaki R, Sakai H, et al. Ectopic production <strong>of</strong> parathyroid<br />

hormone by small cell lung cancer in a patient with <strong>hypercalcemia</strong>. J Clin<br />

Endocrinol Metab 1989; 68:976–981.<br />

51 Nielsen PK, Rasmussen AK, Feldt-Rasmussen U, et al. Ectopic production <strong>of</strong><br />

intact parathyroid hormone by a squamous cell lung carcinoma in vivo <strong>and</strong> in<br />

vitro. J Clin Endocrinol Metab 1996; 81:3793–3796.<br />

52 Nussbaum SR, Gaz RD, Arnold A. Hypercalcemia <strong>and</strong> ectopic secretion <strong>of</strong><br />

parathyroid hormone by an ovarian carcinoma with rearrangement <strong>of</strong> the<br />

gene for parathyroid hormone. N Engl J Med 1990; 323:1324–1328.<br />

53 Strewler GJ, Budayr AA, Clark OH, Nissenson RA. Production <strong>of</strong> parathyroid<br />

hormone by a malignant nonparathyroid tumor in a hypercalcemic patient.<br />

J Clin Endocrinol Metab 1993; 76:1373–1375.<br />

54 Iguchi H, Miyagi C, Tomita K, et al. Hypercalcemia caused by ectopic<br />

production <strong>of</strong> parathyroid hormone in a patient with papillary adenocarcinoma<br />

<strong>of</strong> the thyroid gl<strong>and</strong>. J Clin Endocrinol Metab 1998; 83:2653–2657.<br />

55 Rizzoli R, Pache JC, Didierjean L, et al. A thymoma as a cause <strong>of</strong> true ectopic<br />

hyperparathyroidism. J Clin Endocrinol Metab 1994; 79:912–915.<br />

56 Wong K, Tsuda S, Mukai R, et al. Parathyroid hormone expression in a patient<br />

with metastatic nasopharyngeal rhabdomyosarcoma <strong>and</strong> <strong>hypercalcemia</strong>.<br />

Endocrine 2005; 27:83–86.<br />

57 VanHouten JN, Yu N, Rimm D, et al. Hypercalcemia <strong>of</strong> <strong>malignancy</strong> due to<br />

ectopic transactivation <strong>of</strong> the parathyroid hormone gene. J Clin Endocrinol<br />

Metab 2006; 91:580–583.<br />

58 Fetchick DA, Bertolini DR, Sarin PS, et al. Production <strong>of</strong> 1,25-dihydroxyvitamin<br />

D3 by human T cell lymphotrophic virus-I-transformed lymphocytes.<br />

J Clin Invest 1986; 78:592–596.<br />

59 Zehnder D, Bl<strong>and</strong> R, Williams MC, et al. Extrarenal expression <strong>of</strong> 25-<br />

hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 2001;<br />

86:888–894.<br />

60 Hewison M, Kantorovich V, Liker HR, et al. Vitamin D-mediated <strong>hypercalcemia</strong><br />

in lymphoma: evidence for hormone production by tumor-adjacent<br />

macrophages. J Bone Miner Res 2003; 18:579–582.<br />

61 Seymour JF, Gagel RF. Calcitriol: the major humoral mediator <strong>of</strong> <strong>hypercalcemia</strong><br />

in Hodgkin’s disease <strong>and</strong> non-Hodgkin’s lymphomas. Blood 1993;<br />

82:1383–1394.<br />

62 Burt ME, Brennan MF. Incidence <strong>of</strong> <strong>hypercalcemia</strong> <strong>and</strong> malignant neoplasm.<br />

Arch Surg 1980; 115:704–707.<br />

63 Laffan MA, Talavera JG, Catovsky D. Hypercalcaemia in T cell acute lymphoblastic<br />

leukaemia: report <strong>of</strong> two cases. J Clin Pathol 1986; 39:1143–1146.<br />

64 Evans KN, Taylor H, Zehnder D, et al. Increased expression <strong>of</strong> 25-hydroxyvitamin<br />

D-1alpha-hydroxylase in dysgerminomas: a novel form <strong>of</strong> humoral<br />

<strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>. Am J Pathol 2004; 165:807–813.<br />

65 Clines GA, Guise TA. Molecular mechanisms <strong>and</strong> <strong>treatment</strong> <strong>of</strong> bone metastasis.<br />

Expert Rev Mol Med 2008; 10:e7.<br />

66 Paget S. The distribution <strong>of</strong> secondary growths in cancer <strong>of</strong> the breast.<br />

Lancet 1889; 133:565–614.<br />

67 Coleman RE. Skeletal complications <strong>of</strong> <strong>malignancy</strong>. Cancer 1997;<br />

80:1588–1594.<br />

68 des Grottes JM, Dumon JC, Body JJ. Hypercalcaemia <strong>of</strong> melanoma: incidence,<br />

pathogenesis <strong>and</strong> therapy with bisphosphonates. Melanoma Res<br />

2001; 11:477–482.<br />

69 Sultan I, Kraveka JM, Lazarchick J. CD19 negative precursor B acute<br />

lymphoblastic leukemia presenting with <strong>hypercalcemia</strong>. Pediatr Blood Cancer<br />

2004; 43:66–69.<br />

70 Shimonodan H, Nagayama J, Nagatoshi Y, et al. Acute lymphocytic leukemia in<br />

adolescence with multiple osteolytic lesions <strong>and</strong> <strong>hypercalcemia</strong> mediated by<br />

lymphoblast-producing parathyroid hormone-related peptide: a case report<br />

<strong>and</strong> review <strong>of</strong> the literature. Pediatr Blood Cancer 2005; 45:333–339.<br />

71 Ganesan P, Thulkar S, Gupta R, Bakhshi S. Childhood aleukemic leukemia<br />

with <strong>hypercalcemia</strong> <strong>and</strong> bone lesions mimicking metabolic bone disease.<br />

J Pediatr Endocrinol Metab 2009; 22:463–467.<br />

72 Takasaki H, Kanamori H, Takabayashi M, et al. Non-Hodgkin’s lymphoma<br />

presenting as multiple bone lesions <strong>and</strong> <strong>hypercalcemia</strong>. Am J Hematol 2006;<br />

81:439–442.<br />

73 Matsuhashi Y, Tasaka T, Uehara E, et al. Diffuse large B-cell lymphoma<br />

presenting with <strong>hypercalcemia</strong> <strong>and</strong> multiple osteolysis. Leuk Lymphoma<br />

2004; 45:397–400.<br />

74 Guise TA, Taylor SD, Yoneda T, et al. PTHrP expression by breast cancer<br />

cells enhance osteolytic bone metastases in vivo. J Bone Miner Res 1994;<br />

9:S128.<br />

75 Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role <strong>of</strong> parathyroid<br />

hormone-related protein in the pathogenesis <strong>of</strong> human breast cancermediated<br />

osteolysis. J Clin Invest 1996; 98:1544–1549.<br />

76 Gilmore JL, Gonterman RM, Menon K, et al. Reconstitution <strong>of</strong> amphiregulinepidermal<br />

growth factor receptor signaling in lung squamous cell carcinomas<br />

activates PTHrP gene expression <strong>and</strong> contributes to cancer-mediated diseases<br />

<strong>of</strong> the bone. Mol Cancer Res 2009; 7:1714–1728.<br />

77 Miki T, Yano S, Hanibuchi M, et al. Parathyroid hormone-related protein<br />

(PTHrP) is responsible for production <strong>of</strong> bone metastasis, but not visceral<br />

metastasis, by human small cell lung cancer SBC-5 cells in natural killer celldepleted<br />

SCID mice. Int J Cancer 2004; 108:511–515.<br />

78 Bundred NJ, Walker RA, Ratcliffe WA, et al. Parathyroid hormone related<br />

protein <strong>and</strong> skeletal morbidity in breast cancer. Eur J Cancer 1992; 28:690–<br />

692.<br />

79 Choi SJ, Cruz JC, Craig F, et al. Macrophage inflammatory protein 1-alpha is a<br />

potential osteoclast stimulatory factor in multiple myeloma. Blood 2000;<br />

96:671–675.<br />

80 Pearse RN, Sordillo EM, Yaccoby S, et al. Multiple myeloma disrupts the<br />

TRANCE/osteoprotegerin cytokine axis to trigger bone destruction <strong>and</strong> promote<br />

tumor progression. Proc Natl Acad Sci U S A 2001; 98:11581–11586.<br />

81 Lee JW, Chung HY, Ehrlich LA, et al. IL-3 expression by myeloma cells<br />

increases both osteoclast formation <strong>and</strong> growth <strong>of</strong> myeloma cells. Blood<br />

2004; 103:2308–2315.<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.


346 Parathyroids, bone <strong>and</strong> mineral metabolism<br />

82 Cheung WC, Van Ness B. Distinct IL-6 signal transduction leads to growth<br />

arrest <strong>and</strong> death in B cells or growth promotion <strong>and</strong> cell survival in myeloma<br />

cells. Leukemia 2002; 16:1182–1188.<br />

83 Strodel WE, Thompson NW, Eckhauser FE, Knol JA. Malignancy <strong>and</strong><br />

concomitant primary hyperparathyroidism. J Surg Oncol 1988; 37:10–12.<br />

84 Hutchesson AC, Bundred NJ, Ratcliffe WA. Survival in hypercalcaemic<br />

patients with cancer <strong>and</strong> co-existing primary hyperparathyroidism. Postgrad<br />

Med J 1995; 71:28–31.<br />

85 Hosking DJ, Cowley A, Bucknall CA. Rehydration in the <strong>treatment</strong> <strong>of</strong> severe<br />

hypercalcaemia. Q J Med 1981; 50:473–481.<br />

86 LeGr<strong>and</strong> SB, Leskuski D, Zama I. Furosemide for <strong>hypercalcemia</strong>: an unproven<br />

yet common practice [narrative review]. Ann Intern Med 2008;<br />

149:259–263.<br />

87 Binstock ML, Mundy GR. Effect <strong>of</strong> calcitonin <strong>and</strong> glucocorticoids in combination<br />

on the <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>. Ann Inter Med 1980; 93:269–<br />

272.<br />

88 Dumon JC, Magritte A, Body JJ. Nasal human calcitonin for tumor-induced<br />

<strong>hypercalcemia</strong>. Calcif Tissue Int 1992; 51:18–19.<br />

89 Adachi I, Kimura S, Yamaguchi K, et al. Synthetic salmon calcitonin as an<br />

antihypercalcemic agent for <strong>hypercalcemia</strong> in <strong>malignancy</strong>. Gan To Kagaku<br />

Ryoho 1986; 13:2637–2644.<br />

90 Dunford JE. Molecular targets <strong>of</strong> the nitrogen containing bisphosphonates:<br />

the molecular pharmacology <strong>of</strong> prenyl synthase inhibition. Curr Pharm Des<br />

2010; 16:2961–2969.<br />

This review is a latest update on the mechanisms <strong>of</strong> bisphosphonate action.<br />

91 Gucalp R, Ritch P, Wiernik PH, et al. Comparative study <strong>of</strong> pamidronate<br />

disodium <strong>and</strong> etidronate disodium in the <strong>treatment</strong> <strong>of</strong> cancer-related <strong>hypercalcemia</strong>.<br />

J Clin Oncol 1992; 10:134–142.<br />

92 Nussbaum SR, Younger J, V<strong>and</strong>epol CJ, et al. Single-dose intravenous<br />

therapy with pamidronate for the <strong>treatment</strong> <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>:<br />

comparison <strong>of</strong> 30-, 60-, <strong>and</strong> 90-mg dosages. Am J Med 1993; 95:297–304.<br />

93 Purohit OP, Radstone CR, Anthony C, et al. A r<strong>and</strong>omised double-blind<br />

comparison <strong>of</strong> intravenous pamidronate <strong>and</strong> clodronate in the hypercalcaemia<br />

<strong>of</strong> <strong>malignancy</strong>. Br J Cancer 1995; 72:1289–1293.<br />

94 Thiebaud D, Jacquet AF, Burckhardt P. Fast <strong>and</strong> effective <strong>treatment</strong> <strong>of</strong><br />

malignant <strong>hypercalcemia</strong>. Combination <strong>of</strong> suppositories <strong>of</strong> calcitonin <strong>and</strong><br />

a single infusion <strong>of</strong> 3-amino 1-hydroxypropylidene-1-bisphosphonate. Arch<br />

Inter Med 1990; 150:2125–2128.<br />

95 Major P, Lortholary A, Hon J, et al. Zoledronic acid is superior to pamidronate<br />

in the <strong>treatment</strong> <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>: a pooled analysis<br />

<strong>of</strong> two r<strong>and</strong>omized, controlled clinical trials. J Clin Oncol 2001; 19:558–<br />

567.<br />

96 Pecherstorfer M, Steinhauer EU, Rizzoli R, et al. Efficacy <strong>and</strong> safety <strong>of</strong><br />

ib<strong>and</strong>ronate in the <strong>treatment</strong> <strong>of</strong> <strong>hypercalcemia</strong> <strong>of</strong> <strong>malignancy</strong>: a r<strong>and</strong>omized<br />

multicentric comparison to pamidronate. Support Care Cancer 2003;<br />

11:539–547.<br />

97 Otto S, Schreyer C, Hafner S, et al. Bisphosphonate-related osteonecrosis <strong>of</strong><br />

the jaws - Characteristics, risk factors, clinical features, localization <strong>and</strong><br />

impact on oncological <strong>treatment</strong>. J Craniomaxill<strong>of</strong>ac Surg 2011. [Epub ahead<br />

<strong>of</strong> print]<br />

This is an excellent review on osteonecrosis <strong>of</strong> the jaw from bisphosphonates.<br />

98 Mundy GR, Rick ME, Turcotte R, Kowalski MA. Pathogenesis <strong>of</strong> <strong>hypercalcemia</strong><br />

in lymphosarcoma cell leukemia. Role <strong>of</strong> an osteoclast activating<br />

factor-like substance <strong>and</strong> a mechanism <strong>of</strong> action for glucocorticoid therapy.<br />

Am J Med 1978; 65:600–606.<br />

99 Koo WS, Jeon DS, Ahn SJ, et al. Calcium-free hemodialysis for the management<br />

<strong>of</strong> <strong>hypercalcemia</strong>. Nephron 1996; 72:424–428.<br />

100 Wang CC, Chen YC, Shiang JC, et al. Hypercalcemic crisis successfully<br />

treated with prompt calcium-free hemodialysis. Am J Emerg Med 2009;<br />

27:1174e1–1174e3.<br />

101 Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention<br />

<strong>of</strong> fractures in postmenopausal women with osteoporosis. N Engl J Med<br />

2009; 361:756–765.<br />

102<br />

<br />

Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic<br />

acid for the <strong>treatment</strong> <strong>of</strong> bone metastases in patients with advanced breast<br />

cancer: a r<strong>and</strong>omized, double-blind study. J Clin Oncol 2010; 28:5132–<br />

5139.<br />

This report demonstrated that RANKL inhibition is an effective strategy to reduce<br />

skeletal-related events in bone metastasis.<br />

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction <strong>of</strong> this article is prohibited.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!