24.12.2014 Views

Shell Coal Gasification Technology

Shell Coal Gasification Technology

Shell Coal Gasification Technology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Shell</strong> Global Solutions<br />

<strong>Shell</strong> <strong>Coal</strong> <strong>Gasification</strong> <strong>Technology</strong><br />

Ing. J.D. de Graaf<br />

23 September 2008


Disclaimer statement<br />

<strong>Shell</strong> Global Solutions is a network of independent technology companies in the <strong>Shell</strong><br />

Group. In this document, the expressions “<strong>Shell</strong>” or “<strong>Shell</strong> Global Solutions” are<br />

sometimes used for convenience where reference is made to these companies in<br />

general, or where no useful purpose is served by identifying a particular company.<br />

The information contained in this material is intended to be general in nature and must<br />

not be relied on as specific advice in connection with any decisions you may make.<br />

<strong>Shell</strong> and <strong>Shell</strong> Global Solutions are not liable for any action you may take as a result<br />

of you relying on such material or for any loss or damage suffered by you as a result of<br />

you taking this action. Furthermore, these materials do not in any way constitute an<br />

offer to provide specific services.<br />

Some services may not be available in certain countries or political subdivisions<br />

thereof.<br />

Copyright © 2008 <strong>Shell</strong> Global Solutions International BV. All rights reserved. ed No part<br />

of this publication may be reproduced or transmitted in any form or by any means,<br />

electronic or mechanical including by photocopy, recording or information storage and<br />

retrieval system, without permission in writing from <strong>Shell</strong> Global Solutions International<br />

BV.<br />

<strong>Shell</strong> Global Solutions 2


<strong>Shell</strong> gasification processes – operating<br />

conditions<br />

Natural gas<br />

Refinery gas<br />

SGP @ ~1,400 400°C, 35–60 bar<br />

Vacuum residue<br />

Vacuum flashed cracked residue<br />

Asphalts<br />

Orimulsion<br />

SGP @ ~1,320°C, 35–65 bar<br />

(Non-slagging condition)<br />

Coke<br />

SCGP @ ~1,600°C, 25–45 bar<br />

Bituminous coal<br />

SCGP @ ~1,500°C, 25–45 bar<br />

Lignite<br />

SCGP @ ~1,500°C, 25–45 5bar<br />

Anthracite<br />

SCGP @ ~1,600°C, 25–45 bar<br />

(Slagging condition)<br />

<strong>Shell</strong> Global Solutions 3


<strong>Shell</strong> gasification processes – operating<br />

conditions<br />

Coke<br />

Bituminous coal<br />

Lignite<br />

Anthracite<br />

SCGP @ ~1,600°C, 25–45 bar<br />

SCGP @ ~1,500°C, 25–45 bar<br />

SCGP @ ~1,500°C, 25–45 bar<br />

SCGP @ ~1,600°C, 25–45 bar<br />

(Slagging condition)<br />

Addition of various amounts of solid hydrocarbons is possible, including:<br />

• Biomass<br />

• Demolition wood<br />

• Sewage sludge<br />

• Coffee/rice/milk powder<br />

• Paper pulp<br />

• Chicken litter<br />

<strong>Shell</strong> Global Solutions 4


<strong>Shell</strong> gasification processes – feedstock<br />

flexibility<br />

<strong>Gasification</strong> feedstock flexibility<br />

Heating value (LHV)<br />

Ash content<br />

Sulphur content<br />

Chlorine content<br />

16–40 MJ/kg<br />

(< 1) –40 % wt<br />

0.5–7 % wt<br />

100–2,000 ppm wt<br />

Gasifier Form C/ H ratio<br />

wt<br />

Sulphur<br />

%wt<br />

<strong>Coal</strong> SCGP Solid 16.2 2.69<br />

Petroleum coke SCGP Solid 27.7 7.0<br />

Brown coal SCGP Solid 12.2 0.71<br />

Visbreaker residue SGP Liquid 9.7 5.0<br />

Liquid coke (DTC® ) SGP Liquid 11.9 8.0<br />

Asphalt SGP Liquid 9.5 6.0<br />

SCGP module<br />

<strong>Gasification</strong><br />

building<br />

SCGP – <strong>Shell</strong> <strong>Coal</strong> <strong>Gasification</strong> Process<br />

SGP – <strong>Shell</strong> <strong>Gasification</strong> Process<br />

<strong>Shell</strong> Global Solutions 5


<strong>Shell</strong> gasification processes – dedicated to<br />

feedstock<br />

Liquid refinery residues<br />

SGP<br />

<strong>Coal</strong> and coke<br />

SCGP<br />

Differences<br />

SGP: Non-slagging condition<br />

SGP: Refractory lined gasifier<br />

SGP: Liquid feed system<br />

SGP: Fire tube boiler<br />

SGP: Soot water handling<br />

SCGP: Slagging condition<br />

SCGP: Membrane wall gasifier<br />

SCGP: Dry feed system<br />

SCGP: Water tube boiler<br />

SCGP: Solid slag handling<br />

<strong>Shell</strong> Global Solutions 6


SCGP – membrane wall, protected by the slag layer<br />

Solid slag layer on refractory lining<br />

(Protection for the water tubes)<br />

Water–steam mixture out<br />

(To steam drum)<br />

> 1,500°C<br />

Refractory lining fixed on tubes<br />

(Thickness: – 14 mm [½ in.])<br />

Molten slag flow on solid slag layer<br />

(Downward flow by gravity)<br />

Annular space<br />

240°C (depending on boiler<br />

water temperature)<br />

Water tube<br />

Boiler water in<br />

(Saturated, operating<br />

range 40–70 bar)<br />

<strong>Shell</strong> Global Solutions 7


<strong>Shell</strong> SCGP process line-up<br />

<strong>Coal</strong>/petcoke<br />

Fly ash<br />

recirc.<br />

Quench gas<br />

Milling/drying<br />

Gasifier<br />

900°C<br />

HP steam<br />

MP steam<br />

<strong>Coal</strong> feeding<br />

1,600°C<br />

Dry solids<br />

Removal<br />

Wet<br />

scrubbing<br />

Raw<br />

syngas<br />

Slag<br />

Fly ash<br />

system<br />

Water<br />

treatment<br />

Fly ash to<br />

milling and drying<br />

(if required)<br />

Salts<br />

<strong>Shell</strong> Global Solutions 8


SCGP – advantages<br />

• High availability and low maintenance cost owing to the robustness of the<br />

membrane wall gasifier and the long life time of coal burners<br />

• High throughput through multiple burners<br />

• Efficient use of coal (low operating expenditure) and low CO 2 emissions<br />

resulting from complete conversion of any coal/coke (carbon conversion<br />

>99%)<br />

• High cold gas efficiency resulting in the production of more syngas from the<br />

same amount of coal/coke owing to the optimised operating temperature<br />

• High flexibility to feedstocks (most coal types and petroleum coke)<br />

• High operating flexibility with respect to short-term coal quality changes<br />

<strong>Shell</strong> Global Solutions 9


SCGP – typical energy balance<br />

<strong>Coal</strong> in 100%<br />

2.0% Steam from reactor wall (reused)<br />

12.8% Steam from Syngas cooler (reused)<br />

0.5% Unconverted carbon (fly ash/slag)<br />

2.7% Low-level heat (cooling of slag)<br />

82%<br />

18.0% Total<br />

Raw synthesis gas<br />

<strong>Shell</strong> Global Solutions 10


Nuon IGCC, Buggenum, the Netherlands<br />

• Integrated coal gasification combined-cycle cycle power plant<br />

• Commissioned in 1994 as a demonstration plant<br />

• Commercial operation since 1998<br />

• 2,000 tonne/day coal producing 4.0 × 106 Nm 3 syngas<br />

Energy balance:<br />

<strong>Coal</strong> intake<br />

585 MWe<br />

Gas turbine output 156 MWe<br />

Steam turbine output 128 MWe<br />

Total output<br />

284 MWe<br />

Own consumption 31 MWe<br />

Courtesy<br />

Nuon<br />

Net output<br />

253 Mwe<br />

Net efficiency (LHV) 43 %<br />

<strong>Shell</strong> Global Solutions 11


Buggenum block diagram<br />

Stack<br />

<strong>Coal</strong><br />

Steam<br />

Steam<br />

Waste heat<br />

boiler<br />

Steam<br />

<strong>Coal</strong><br />

treatment<br />

and supply<br />

<strong>Coal</strong><br />

gasification<br />

Gas cooling<br />

and<br />

purification<br />

Gas turbine<br />

Generator<br />

Steam<br />

turbine<br />

Nitrogen<br />

Oxygen<br />

Electricity<br />

Sulphur<br />

Water<br />

<strong>Gasification</strong>/gas treating<br />

production purification<br />

Air separation<br />

Air<br />

separation<br />

Air<br />

Combined cycle<br />

Waste water treating<br />

Slag<br />

Sulphur<br />

Salts<br />

<strong>Shell</strong> Global Solutions 12


SCGP – <strong>Coal</strong> properties operated at Nuon<br />

Composition, wt%<br />

Moisture (AR) 4.7–12.1<br />

Ash (MF) 4.5–16.2<br />

Oxygen (MF) 52 5.2–14.0<br />

Sulphur (MF) 0.6–1.1<br />

Chlorine (MF) 0.01–0.15<br />

Ash composition wt% ash<br />

SiO 2 , wt% 45.1–59.8<br />

Fe 2 O 3 , wt% 3.3–12.4<br />

Al 2 O 3 ,wt% 19.1–32.8<br />

CaO, wt% 0.7– 6.9<br />

K 2 O, wt% 0.6–2.3<br />

Na 2 O, wt% 03 0.3–1.4 14<br />

HHV, kJ/kg, MF 27,200–32,900<br />

Legend<br />

AR – as received<br />

MAF – moisture and ash free<br />

MF – moisture free<br />

Flux<br />

If required, a flux (such as limestone)<br />

can be added to optimise the gasification<br />

temperature and oxygen consumption!<br />

<strong>Shell</strong> Global Solutions 13


Buggenum – SCGP operation capabilities<br />

Capability of load following<br />

• <strong>Gasification</strong> island: > 5% load per minute<br />

• Total IGCC with SCGP: > 3% load per minute<br />

• Limitation: Air separation unit<br />

Capability of turndown<br />

• Gasifier turndown: Down to 50%<br />

<strong>Shell</strong> Global Solutions 14


Nuon IGCC plant, clean coal technology<br />

aspects<br />

• Extremely low NOx, typically below 10 ppm<br />

• Sulphur removal efficiency over 99%<br />

• Total acidification components NOx + SO 2 : coal<br />

gas operation better than natural gas<br />

• Virtually zero emission of fly ash, chlorides and<br />

volatile heavy metals<br />

• Zero discharge: waste water reused in plant<br />

Courtesy of Nuon<br />

<strong>Shell</strong> Global Solutions 15


NOx emissions – Buggenum IGCC<br />

<strong>Coal</strong> gas better than natural gas operation<br />

Buggenum operating data<br />

<strong>Shell</strong> Global Solutions 16


Buggenum – availability of SCGP and power<br />

plant<br />

Availability gasification unit and on stream time of complete ICGCC period: May 1997 to May 2004<br />

Perc cent [%]<br />

100.0<br />

90.0<br />

80.0<br />

70.0<br />

60.0<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

00 0.0<br />

1997 1998 1999 2000 2001 2002 2003 2004 2005<br />

Time [Year]<br />

Availability gasification unit<br />

On-stream ICGCC<br />

Reasons of trips:<br />

Year Cause Solution<br />

2000 - Plugging slag bath system Crusher and operations<br />

- Leakage SGC Modified construction<br />

- Heat skirt Water cooled heat skirt<br />

2002 - Extend of shutdown appr 4 weeks. Reviewing and Updating maintenance procedures<br />

- Leakage in slagbath system Change of material from carbon steel to duplex steel<br />

- Leakage in SGC. Modified construction<br />

<strong>Shell</strong> Global Solutions 17


Buggenum – availability of SCGP and power<br />

plant<br />

<strong>Gasification</strong> from May 1997 to May 2004<br />

Nuon gasification availability average in 8 years<br />

87%<br />

Unplanned outage average in 8 years<br />

13%<br />

Unplanned outage 13%<br />

Technical items modified d design 4%<br />

Due to frequent coal switches (every 5 days) 5%<br />

Residual unplanned due to mixed items 4%<br />

Planned outage average in 8 years 13%<br />

Conclusion<br />

Planned outage<br />

Nuon as part of power grid (backup available) 13%<br />

<strong>Shell</strong> expected gasification outage 6%<br />

A well-designed, maintained and operated plant should be able to achieve:<br />

Unplanned 4%<br />

Planned 6%<br />

Total outage 10%<br />

<strong>Shell</strong> Global Solutions 18


SCGP – membrane wall gasifier<br />

manufacturing<br />

Membrane wall being manufactured in the workshop (Yingcheng)<br />

Courtesy of Babcock Borsig Espana, Bilbao, Spain<br />

<strong>Shell</strong> Global Solutions 19


Research and development in the 1970s and 1980s<br />

Clean coal<br />

development<br />

SCGP pilot plant<br />

Amsterdam<br />

SCGP demonstration<br />

plant Harburg<br />

SCGP demonstration<br />

plant Houston<br />

Oil/residue gasification<br />

and gas to liquids (GTL)<br />

development<br />

GTL laboratory<br />

Amsterdam<br />

GTL pilot plant<br />

Amsterdam<br />

20–30 years of operating experience<br />

<strong>Shell</strong> Global Solutions 20


SCGP-1 in Deer Park (USA)<br />

Capacity 250–400 tpd<br />

Campaign 1987–1991<br />

<strong>Shell</strong> Global Solutions 21


SCGP – gasification performance at<br />

SCGP-1 Carbon<br />

CGE<br />

(%HHV)<br />

conversion<br />

Illinois #5 99.7 81.6<br />

Maple Creek 98.7 76.0<br />

Drayton 99.6 79.3<br />

Buckskin 99.7 78.0<br />

Blacksville #2 99.7 80.5<br />

Pyro #9 99.9 78.3<br />

Sufco 99.9 81.0<br />

Texas Lignite it 99.4 80.3<br />

Pike County (washed) 99.9 80.9<br />

Pike County (ROM) 99.9 83.0<br />

Dotiki 99.9 80.1<br />

Newlands 99.7 80.3<br />

El Cerrejon 99.6 83.4<br />

Skyline 99.9 82.4<br />

Robinson Creek 99.7 82.22<br />

R&F 99.5 79.6<br />

Pocahontas #3 99.3 82.4<br />

Petroleum coke 99.5 78.9<br />

CGE =<br />

HHV of sweet gas<br />

HHV of coal feed<br />

<strong>Shell</strong> Global Solutions 22


SCGP – coal properties tested at SCGP-1<br />

Proximate analysis, wt%<br />

Moisture (AR) 3.7–34.0<br />

Ash (MAF) 0.5–35.0<br />

VM (MF) 10.6–45.6<br />

Fixed C (MF) 39.1–88.5<br />

Ultimate analysis<br />

Carbon, wt%, MF 56.4–88.7<br />

Hydrogen, wt%, MF 3.6– 5.3<br />

Nitrogen, wt%, MF 11 1.1–1.7 17<br />

Sulphur, wt%, MF 0.3–5.2<br />

Chlorine , wt%, MF 0.01–0.41<br />

Oxygen, wt%, MF 01 0.1–16.416 (by difference)<br />

HHV, kJ/kg, MF 22,980–33,200<br />

Legend<br />

AR – as received<br />

MAF – moisture and ash free<br />

MF – moisture free<br />

<strong>Shell</strong> Global Solutions 23


SCGP – ash properties tested at SCGP-1<br />

Ash minerals<br />

P 2 O 5 , wt% 01 0.1–1.5 15<br />

SiO 2 , wt% 24.4–56.6<br />

Fe 2 O 3 , wt% 5.5–27.8<br />

Al 2 O 3 , wt% 9.5–33.3<br />

TiO 2 , wt% 0.6–2.1<br />

CaO, wt% 1.4–24.5<br />

MgO, wt% 0.3–3.7<br />

SO 3 , wt% 0.9–33.1<br />

K 2 O, wt% 0.1–3.9<br />

Na 2 O, wt% 0.1–3.1<br />

Flux<br />

If required a flux(such as limestone) is<br />

added to optimise the gasification<br />

temperature and oxygen consumption!<br />

Ash melting temperatures at reducing<br />

atmosphere<br />

Fluid point, °C 1,190– >1,500<br />

<strong>Shell</strong> Global Solutions 24


Partial water quench – process flow<br />

Water<br />

quench<br />

Dry solids<br />

removal<br />

Process<br />

condensate<br />

Wet scrubber<br />

Raw syngas to<br />

shift<br />

Fly<br />

ash<br />

N 2 /CO 2<br />

Oxygen<br />

coal<br />

Bleed<br />

Slag<br />

<strong>Shell</strong> Global Solutions 25


Syngas cooler – water quench<br />

Syngas cooler<br />

design<br />

Water quench<br />

design<br />

Spray water<br />

Syngas cooler<br />

Quench<br />

chamber<br />

Gasifier<br />

Gasifier<br />

<strong>Shell</strong> Global Solutions 26


SCGP water quench – a change for the<br />

better…<br />

• Enables gasification of coals that cannot be processed with a<br />

syngas cooler owing to fouling<br />

- High sodium/chlorine content<br />

• Reduces capital expenditure<br />

- No syngas cooler<br />

- No candle filter<br />

- Simpler shift line-up<br />

• Improves integration with a downstream shift for chemical<br />

applications<br />

- Water is added directly to the syngas, not via a saturator<br />

cycle in the shift section<br />

<strong>Shell</strong> Global Solutions 27


…but stick to the key advantages of SCGP<br />

• Membrane wall, heat protection of the gasifier through water<br />

cooling and steam production<br />

• Separate gas and slag outlets t for processing high-ash h h coals<br />

• Multiple burners offer large capacities and efficient slag<br />

removal with only a small amount of fines<br />

• Proven scale-up rules for gasifier<br />

• Dry fly ash removal (as much as possible) limits the amount<br />

of black/grey wastewater/slurry<br />

<strong>Shell</strong> Global Solutions 28


General IGCC SGC compared with water quench<br />

Disadvantages of water quench (WQ) for IGCC applications<br />

• IGCC efficiency 2–4%-points less with WQ SCGP and no carbon<br />

capture system<br />

• More low-temperature syngas cooling (multiple KT-reboilers)<br />

• More water handling (with absence dry fly ash removal)<br />

Main advantage<br />

• Handling of fouling coals for which syngas cooler is not feasible<br />

<strong>Shell</strong> Global Solutions 29


Discussion and questions<br />

Thank you<br />

<strong>Shell</strong> Global Solutions 30


Back-up slides<br />

Back-up slides<br />

<strong>Shell</strong> <strong>Coal</strong> <strong>Gasification</strong> Process<br />

<strong>Shell</strong> Global Solutions 31


SCGP – dry versus slurry feed:<br />

consequences<br />

320<br />

Consump ption of O 2 2 in kg g/Mwe<br />

H 2 )<br />

kg/kmole (CO +<br />

O 2<br />

300<br />

280<br />

260<br />

240<br />

220<br />

200<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

50 55 60 65 70 75<br />

Slurry, % wt<br />

50 55 60 65 70 75<br />

Slurry, % wt<br />

Stability of water/coal mixture<br />

Additives required<br />

Higher operating expenditure<br />

Ash content of the coal and<br />

coal quality<br />

Limited it (plugging, mixture stability)<br />

Higher operating expenditure<br />

Higher oxygen consumption<br />

Evaporation of water<br />

Higher capital and operating<br />

expenditure for air separation unit<br />

(Large internal power consumption)<br />

<strong>Shell</strong> Global Solutions 32


SCGP – dry versus slurry feed:<br />

consequences<br />

85<br />

Cold gas efficiency, % LH HV<br />

80<br />

75<br />

70<br />

65<br />

46<br />

50 55 60 65 70 75<br />

Slurry, % wt<br />

Lower syngas quality<br />

Higher amount of CO 2<br />

Lower amount of H 2 + CO<br />

Higher feedstock consumption<br />

Higher operating costs<br />

Net efficiency, %HHV<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

50 55 60 65 70 75<br />

Slurry, % wt<br />

Larger gasifier<br />

Higher capital and operating costs<br />

(<strong>Gasification</strong> and gas cleaning)<br />

<strong>Shell</strong> Global Solutions 33


Biomass co-feed<br />

• Subsidies for renewables<br />

• Carbon dioxide emissions trade<br />

• 40% (wt) co-gasification tested (pure and mix) already<br />

• Up to 30% (wt) co-gasification in operation<br />

Planned co-feed composition<br />

+ <strong>Coal</strong> 400,000 t/y<br />

+ Biomass<br />

Demolition wood<br />

Sewage sludge<br />

Coffee/rice/milk powder<br />

Paper pulp<br />

Chicken litter<br />

130,000 t/y<br />

50,000 t/y<br />

10,000 t/y<br />

10,000 t/y<br />

Only as back-up<br />

Courtesy Nuon<br />

Carbon dioxide emissions reduction by 200,000 t/y<br />

<strong>Shell</strong> Global Solutions 34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!