24.12.2014 Views

Lecture 5 - Mechanical Engineering

Lecture 5 - Mechanical Engineering

Lecture 5 - Mechanical Engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Energy from Biomass<br />

4S610<br />

<strong>Lecture</strong> 5<br />

Rob Bastiaans


Contents this lecture: Particles<br />

• Different modes of conversion<br />

• Time scale of particle conversion<br />

• Dependence on physics<br />

• Drying<br />

• Gasification<br />

• Combustion<br />

• Based on equations of lecture 4<br />

• Simplifications<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 1


Energy from biomass<br />

Course outline<br />

1.Biomass macro systems<br />

2.Biomass micro systems<br />

3.Practical work<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 2


Summary previous lecture<br />

Basic equations<br />

• Conservation<br />

• Peculiarities of species conversion<br />

• Simplifications<br />

• Steady<br />

• One-dimensional<br />

• Model flow reactors PSR, PFR<br />

• Important: no model gives you exact answers!<br />

• Still much research<br />

• You always have to think<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 3


Particle conversion: what happens<br />

• Heating up and drying by convection/radiation<br />

• Evaporation and pyrolysis<br />

• Volatile products: water vapour, hydrocarbons,<br />

carbon oxides, H, S and N compounds, residual<br />

char<br />

• Mixing/diffusion of ambient oxidizer with<br />

combustibles<br />

• Ignition, needs high temperature<br />

• Combustion of volatiles (homogeneous reaction)<br />

• Combustion of residual char (heterogeneous<br />

reaction)<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 PAGE 4


Time scales and temperatures for<br />

pulverized fuel<br />

• Input fuel particles of 10-100 m<br />

• Preheating: 200 – 300 o C, < 1 ms<br />

• Pyrolysis: 300 – 1000 o C, 1-10 ms<br />

• Combustion of volatile matter: 1200 – 1500 o C, 5 -<br />

50 ms<br />

• Char burnout: 1500 – 2000 o C, 50 - 5000 ms<br />

• Particles fall apart<br />

• Resulting fly ash, 0.1 – 50 m, coagulation,<br />

sintering<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 5


Particle heating in different reactors<br />

• Pulverized fuel (entrained flow reactor): mixing of<br />

hot flue gas in near burner zone<br />

• Fluidized bed: heat transferred by particles (sand)<br />

• Grate furnaces: radiation important heat transfer<br />

• Fixed bed: convection, conduction and internal<br />

radiation<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 6


Partial processes of coal combustion in<br />

firing systems<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 7


Pulverized fuel combustion<br />

8 / <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012


Particle conversion: mechanical integrity<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 9


Modeling conversion of spherical<br />

particles<br />

a. Liquid particles<br />

b. Solid particles<br />

• Quiescent medium (for validation of<br />

models g is used)<br />

• Laminar flow<br />

• Turbulent flow<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 10


Modes of particle combustion<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 11


Modes of particle conversion<br />

• Shrinking sphere: particle surface combustion,<br />

products leave particle as they are produced<br />

• Shrinking core: combustion on a reaction core,<br />

with build up of an ash/char layer<br />

• Shrinking density: uniform combustion inside the<br />

particle, conserved particle size, decrease of<br />

density<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 12


Conversion rate<br />

(log –scale)<br />

Process regimes: Arrhenius plot<br />

Boundary<br />

Layer<br />

Diffusion<br />

Pore diffusion<br />

Chemical reaction<br />

High T<br />

High<br />

reaction<br />

rate<br />

Low T, limits<br />

Conversion rate<br />

III II I<br />

1/T<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 13


I Shrinking density particle combustion<br />

• Determine dimensionless numbers<br />

• Find correct regimes of combustion<br />

• Mass transfer to particle versus diffusion in the<br />

particle (Biot number)<br />

• Chars give Bi < 4 → high external resistance to<br />

oxidizer diffusion into the particle<br />

• Reaction controlled by internal diffusion or<br />

reaction rate (Thiele number)<br />

• Low Thiele numbers -> low reaction rates -><br />

reaction controlled -> shrinking density valid<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 14


Porous particle:<br />

• Diffusion coefficient<br />

‣ Outside particle:<br />

‣ Inside particle:<br />

Deff D Ox<br />

D<br />

eff<br />

<br />

<br />

2<br />

D<br />

Ox<br />

• Steady state<br />

• One step conversion of carbon to carbon<br />

dioxide: equimolar, no gas flow<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 15


Particle conversion<br />

Looking at oxygen concentration:<br />

1 <br />

t r r<br />

2<br />

( YOx<br />

) ( r uY<br />

)<br />

2<br />

Ox<br />

<br />

1<br />

<br />

Y<br />

r D S<br />

2<br />

Ox<br />

( )<br />

2<br />

eff<br />

r r r<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 16


Particle conversion<br />

What would be the equation for the carbon<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 17


Particle conversion<br />

Equimolar conditions, no flow<br />

What about density<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 18


Particle conversion<br />

Result:<br />

1 Y<br />

r D S<br />

r r r<br />

2<br />

Ox<br />

0 ( )<br />

2<br />

eff<br />

Inside particle:<br />

S k Y<br />

Ox<br />

Ox<br />

Dimensionless coordinate<br />

and fraction:<br />

r/ Rp<br />

Y<br />

Ox<br />

/ Y<br />

Ox,<br />

<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 19


Particle conversion<br />

• Results in the equation:<br />

• With the Thiele modulus:<br />

1 <br />

0 ( ) Th<br />

<br />

2 2<br />

2<br />

<br />

Th Rp kOx / Deff<br />

• Th>>1 conversion controlled by diffusion<br />

• Th


Boundary conditions<br />

• Boundary condition at centre<br />

• At the surface:<br />

<br />

<br />

<br />

0<br />

YOx<br />

Deff ( YOx YOx<br />

, )<br />

r<br />

• With beta a mass transfer coefficient<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 21


Solution<br />

• This yields:<br />

• With A, B:<br />

1<br />

Aexp( Th ) Bexp( Th<br />

)<br />

<br />

<br />

A<br />

B<br />

<br />

Bim<br />

( Bi Th 1)exp( Th) ( Th 1 Bi )exp( Th)<br />

m<br />

m<br />

• And Biot number<br />

Bi R / D<br />

m p eff<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 22


Solution: Bi<br />

Bi R / D<br />

m p eff<br />

Bi>>1 pore diffusion limited<br />

Bi=1 limited boundary layer transport<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 23


Solution: Th<br />

Th R k /<br />

p<br />

Ox<br />

D<br />

eff<br />

Th>>1 diffusion controlled (front)<br />

Th


Evaluation<br />

• Porosity not constant<br />

• Function of t<br />

• Therefore also function of r<br />

• Change in gas-density<br />

• Temporal effects<br />

• When is the stationary solution relevant<br />

• Temporal simulations can be done (validate latter)<br />

• Valid for shrinking sphere as well<br />

• Change position of boundary condition as function of<br />

depletion of the boundary<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 25


Summary<br />

• Typical time scales and particle sizes<br />

• Arrhenius plot<br />

• Typical conversion modes<br />

• Shrinking core<br />

• Shrinking sphere<br />

• Shrinking density<br />

• Understanding present model and assumptions<br />

• Meaning of dimensionless numbers and what<br />

happens for a certain combination<br />

• Thiele<br />

• Biot<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 26


Break<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 27


II Shrinking sphere model for liquid<br />

particle combustion<br />

flamefront<br />

T<br />

Y Ox<br />

droplet<br />

Y F<br />

r d<br />

r f<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 28


<strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 29


Combustion of liquid particles:<br />

Spalding model (1953)<br />

• Spherical symmetry<br />

• Isolated droplet in infinite medium<br />

• Isobaric process<br />

• Infinitely fast chemical reaction (vs. diffusion)<br />

• Constant gas phase transport properties and c p<br />

• Gas phase quasi-steadiness<br />

• Constant, uniform droplet temperature (no droplet<br />

heating)<br />

• No radiation, Soret, Dufour effects<br />

• Unity Lewis numbers for all gaseous species<br />

• No buoyancy<br />

vD<br />

/ c p<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 30


General form for different processes<br />

• Evaporation of liquid droplets<br />

• Burning of liquid droplets<br />

• One film model for burning of solid particles<br />

• Two film model for burning of solid particles<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 31


Droplet evaporation (shrinking sphere)<br />

T<br />

<br />

<br />

T b<br />

T d<br />

Heat up time neglected!<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 32


Evaporation time<br />

• Determined by<br />

dm d<br />

dt<br />

m<br />

• With the initial droplet mass<br />

• Giving:<br />

md<br />

<br />

1 D 6<br />

3<br />

dD<br />

dt<br />

3<br />

<br />

<br />

6<br />

m<br />

<br />

dD<br />

dt<br />

<br />

2<br />

D<br />

2<br />

m<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 33


Evaporation time:D square law<br />

• Or<br />

dD<br />

dt<br />

2<br />

<br />

<br />

4<br />

D<br />

m<br />

K<br />

• With K the evaporation constant, integrating:<br />

• Giving:<br />

D<br />

<br />

<br />

D<br />

2<br />

2<br />

0<br />

dD<br />

2<br />

t<br />

0<br />

Kdt<br />

D<br />

2<br />

( t)<br />

D<br />

2 0<br />

<br />

Kt<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 34


Droplet evaporation<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 35


What is K, the mass conversion rate<br />

• Continuity (outside particle)<br />

m<br />

<br />

v4r<br />

2<br />

<br />

C<br />

• Energy:<br />

d dT d<br />

<br />

Lec dr dr dr<br />

p<br />

2 2<br />

r r vT<br />

<br />

<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 36


Solution strategy<br />

• Integrate the energy equation twice<br />

• Find integration constants with B.C.’s:<br />

• T(r=r s )=T boil<br />

• T(r->)=T <br />

• Now T(r) is known<br />

• Use a heat balance at the droplet surface:<br />

4r<br />

2<br />

s<br />

dT<br />

dr<br />

r<br />

s<br />

m h<br />

evap<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 37


What is K<br />

• After some math:<br />

4r<br />

8<br />

m ln( Bq<br />

1)<br />

K ln( Bq<br />

1)<br />

c<br />

cp<br />

p<br />

• With Spalding number for evaporation:<br />

B<br />

q<br />

<br />

c<br />

p<br />

<br />

T<br />

<br />

h<br />

T<br />

evap<br />

b<br />

<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 38


Droplet evaporation<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 39


Droplet evaporation: exercise<br />

• Consider a 500 m diameter droplet of n-hexane<br />

(C 6 H 14 ), evaporating in hot (850 K) nitrogen. The<br />

boiling point is 342 K.<br />

• What is the lifetime<br />

• Try this at home…<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 40


Droplet burning: Temperature profile<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 41


Droplet burning: species profiles<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 42


Spalding transfer number fot liquid<br />

droplet combustion<br />

• Relative energy excess scaled with heat of<br />

vaporization<br />

B<br />

0, q<br />

<br />

h<br />

comb<br />

/ <br />

h<br />

c<br />

p<br />

evap<br />

<br />

T<br />

<br />

T<br />

b<br />

<br />

• Typical for combustion of liquid fuels in air, B=1 - 10<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 43


Important results<br />

• Burn out time, d-square –law<br />

2<br />

t D /<br />

0<br />

K<br />

• Flame front distance<br />

• Flame temperature<br />

T<br />

f<br />

<br />

T<br />

b<br />

r<br />

r<br />

f<br />

s<br />

<br />

<br />

c<br />

h<br />

p<br />

<br />

<br />

<br />

<br />

ln 1<br />

B0,<br />

q<br />

ln 1 /<br />

<br />

evap<br />

B<br />

1<br />

0,<br />

q<br />

<br />

1<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 44


Droplet burning<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 45


Droplet burning experiments<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 46


Droplet combustion: exercise<br />

• Consider a 100 m diameter droplet of n-heptane<br />

(C 7 H 16 ), combusting at atmospheric pressure and<br />

at T=300 K<br />

• What is the mass burning rate<br />

• Flame temperature<br />

• Stand-off distance relative to the droplet radius<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 47


Evaluation<br />

• Constant burning rate, flame stand off distance<br />

and flame temperature<br />

• Single component droplets: good qualitative<br />

agreement<br />

• Quantitative agreement by tuning<br />

• Flame stand off ratio: over-predicted (difficult to<br />

tune)<br />

• Solid particles exhibit a d 2 -law as well<br />

• Conclusion: some errors, improvements over the<br />

years, but still frequently used<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 48


Spalding transfer number for solid<br />

particle combustion<br />

• Surface burning:<br />

B ....<br />

• Off-surface burning (two film)<br />

B ....<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 49


Modes of particle evaporation &<br />

combustion<br />

• Shrinking density: uniform combustion inside the<br />

particle, conserved particle size, decrease of<br />

density Thiele modulus (Th), Biot number (Bi m )<br />

• Shrinking sphere: particle surface combustion,<br />

ash leaves particle as it is produced Spalding<br />

transfer number (B)<br />

• Shrinking core: combustion on a reaction core,<br />

with build up of an ash layer Solid particles<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 50


Application in turbulent systems<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 51


Application in turbulent systems: factors<br />

• Particle density important<br />

• Ratio of inter-particle spacing/flame standoff<br />

distance<br />

• Single particle burning – group burning<br />

• Length scale ratio of turbulent eddies and single<br />

particles/groups<br />

• Standard CFD uses some correlations on basis of<br />

Spalding transfer number<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 52


Application in turbulent systems<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 53


Different modes<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 54


Turbulent vaporization systems<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 55


Turbulent (group) combustion<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 56


Next lecture: Marcel Cremers of Kema<br />

and emissions<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 57


Questions<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 58

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!