06.11.2012 Views

9.1 An ideal gas flows adiabatically through a duct. At section 1, p1 ...

9.1 An ideal gas flows adiabatically through a duct. At section 1, p1 ...

9.1 An ideal gas flows adiabatically through a duct. At section 1, p1 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>9.1</strong> <strong>An</strong> <strong>ideal</strong> <strong>gas</strong> <strong>flows</strong> <strong>adiabatically</strong><br />

<strong>through</strong> a <strong>duct</strong>. <strong>At</strong> <strong>section</strong> 1, <strong>p1</strong> = 140 kPa,<br />

T1 = 260°C, and V1 = 75 m/s. Farther<br />

downstream, p2 = 30 kPa and T2 = 207°C.<br />

Calculate V2 in m/s and s2 − s1 in J/(kg ⋅K)<br />

if<br />

the <strong>gas</strong> is (a) air, k = 1.4, and (b) argon,<br />

k = 1.67.<br />

Fig. P<strong>9.1</strong><br />

Solution: (a) For air, take k = 1.40, R = 287 J/kg ⋅ K, and cp = 1005 J/kg ⋅K. The adiabatic<br />

steady-flow energy equation (9.23) is used to compute the downstream velocity:<br />

1 2 1 2 1 2<br />

m<br />

cpT + V = constant = 1005(260) + (75) = 1005(207) + V2 or V2 ≈ 335 <strong>An</strong>s.<br />

2 2 2<br />

s<br />

⎛207 + 273⎞ ⎛ 30 ⎞<br />

Meanwhile, s2 − s1 = cpln(T 2/T 1) − R ln(p 2/p 1)<br />

= 1005ln ⎜ −287<br />

ln ,<br />

⎝<br />

⎟ ⎜<br />

260 + 273⎠ ⎝<br />

⎟<br />

140⎠<br />

or s2 − s1 = −105 + 442 ≈ 337 J/kg ⋅ K <strong>An</strong>s. (a)<br />

(b) For argon, take k = 1.67, R = 208 J/kg ⋅ K, and cp = 518 J/kg ⋅ K. Repeat part (a):<br />

1 2 1 2 1 2<br />

m<br />

cpT+ V = 518(260) + (75) = 518(207) + V 2,<br />

solve V2 = 246 <strong>An</strong>s.<br />

2 2 2<br />

s<br />

⎛207 + 273⎞ ⎛ 30 ⎞<br />

s2 − s1 = 518 ln ⎜ ⎟ − 208 ln ⎜ ⎟ = − 54 + 320 ≈ 266 J/kg ⋅ K<br />

<strong>An</strong>s.<br />

(b)<br />

⎝260 + 273⎠ ⎝140⎠


P9.7 Air <strong>flows</strong> <strong>through</strong> a variable-area <strong>duct</strong>. <strong>At</strong> <strong>section</strong> 1, A1 = 20 cm 2 , <strong>p1</strong> = 300 kPa, ρ1 =<br />

1.75 kg/m 3 , and V1 = 122.5 m/s. <strong>At</strong> <strong>section</strong> 2, the area is exactly the same, but the density is<br />

much lower: ρ2 = 0.266 kg/m 3 , and T2 = 281 K. There is no transfer of work or heat. Assume<br />

one-dimensional steady flow. (a) How can you reconcile these differences? (b) Find the mass<br />

flow at <strong>section</strong> 2. Calculate (c) V2, (d) p2, and (e) s2 – s1. Hint: This problem requires the<br />

continuity equation.<br />

Solution: Part (a) is too confusing, let’s try (b, c, d, e) first. (b) The mass flow must be<br />

constant:<br />

m�<br />

1<br />

Then<br />

= m�<br />

V<br />

2<br />

2<br />

= ρ A V<br />

=<br />

1<br />

2<br />

1<br />

m�<br />

ρ A<br />

1<br />

2<br />

kg<br />

2 m<br />

= ( 1.<br />

75 )( 0.<br />

0020m<br />

)( 122.<br />

5 )<br />

3<br />

m<br />

s<br />

=<br />

kg<br />

0.<br />

0429<br />

s<br />

=<br />

0.<br />

0429kg<br />

/ s<br />

3<br />

2<br />

( 0.<br />

266kg<br />

/ m )( 0.<br />

002m<br />

)<br />

=<br />

m<br />

806<br />

s<br />

<strong>An</strong>s.(<br />

c)<br />

1/2 1/2<br />

<strong>An</strong>s.(<br />

b)<br />

That’s pretty fast! Check a 2 = (kRT 2) = [1.4(287)(281)] = 336 m/s. Hence the Mach<br />

number at <strong>section</strong> 2 is Ma 2 = V2/a2 = 806/336 = 2.40. The flow at <strong>section</strong> 2 is supersonic!<br />

(d) The pressure at <strong>section</strong> 2 is easy, since the density and temperature are given:<br />

p<br />

2<br />

= ρ RT<br />

2<br />

Similarly,<br />

T<br />

2<br />

1<br />

= ( 0.<br />

266kg<br />

/ m )( 287 m / s − K)(<br />

281K<br />

) = 21,<br />

450 Pa<br />

=<br />

<strong>p1</strong><br />

Rρ<br />

=<br />

( 300000 Pa)<br />

2<br />

3<br />

( 287 m / s − K)(<br />

1.<br />

75kg<br />

/ m )<br />

= 597 K<br />

1<br />

3<br />

2<br />

2<br />

2<br />

<strong>An</strong>s(<br />

d)<br />

(e) Finally, with pressures and temperatures known, the entropy change follows from Eq. (9.8):<br />

T2<br />

p2<br />

281 21450<br />

J<br />

s2 − s1<br />

= c p ln( ) − R ln( ) = 1005ln(<br />

) − 287 ln( ) = − 757 + 757 ≈ 0<br />

T p<br />

597 300000<br />

kg − K<br />

1<br />

1<br />

Ahah! Now I get it. (a) The flow is isentropic. <strong>An</strong>s.(a) The stagnation properties, T = 605 K,<br />

o<br />

3<br />

p o = 319 kPa, and ρ o = 1.805 kg/m are constant in the flow from <strong>section</strong> 1 to <strong>section</strong> 2.<br />

<strong>An</strong>s.(<br />

e)


9.8 <strong>At</strong>mospheric air at 20°C enters and<br />

fills an insulated tank which is initially<br />

evacuated. Using a control-volume analysis<br />

from Eq. (3.63), compute the tank air<br />

temperature when it is full.<br />

Solution: The energy equation during filling of the adiabatic tank is<br />

dQ dWshaft dECV<br />

+ = 0 + 0 = −hatmm � entering,<br />

or, after filling,<br />

dt dt dt<br />

ECV,final − ECV,initial = hatmm entered, or: mcvTtank = mcpT<br />

atm<br />

Thus T = (c /c )T = (1.4)(20 + 273) ≈ 410 K = 137° C <strong>An</strong>s.<br />

tank<br />

p v atm

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!