26.12.2014 Views

Slowing and stopping light using an optomechanical crystal array

Slowing and stopping light using an optomechanical crystal array

Slowing and stopping light using an optomechanical crystal array

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

26<br />

[37] Meystre P <strong><strong>an</strong>d</strong> Sargent M III 1999 Elements of Qu<strong>an</strong>tum Optics 3rd edn (New York: Springer)<br />

[38] Johnson S G et al 2002 Perturbation theory for Maxwell’s equations with shifting material boundaries Phys.<br />

Rev. E 65 066611<br />

[39] Eichenfield M, Ch<strong>an</strong> J, Safavi-Naeini A H, Vahala K J <strong><strong>an</strong>d</strong> Painter O 2009 Modeling dispersive coupling <strong><strong>an</strong>d</strong><br />

losses of localized optical <strong><strong>an</strong>d</strong> mech<strong>an</strong>ical modes in optomech<strong>an</strong>ical <strong>crystal</strong>s Opt. Express 17 20078–98<br />

[40] Chutin<strong>an</strong> A <strong><strong>an</strong>d</strong> Noda S 2000 Waveguides <strong><strong>an</strong>d</strong> waveguide bends in two-dimensional photonic <strong>crystal</strong> slabs<br />

Phys. Rev. B 82 4488–92<br />

[41] Johnson S G, Villeneuve P R, F<strong>an</strong> S <strong><strong>an</strong>d</strong> Jo<strong>an</strong>nopoulos J D 2000 Linear waveguides in photonic-<strong>crystal</strong> slabs<br />

Phys. Rev. B 62 8212–22<br />

[42] 2009 COMSOL Multphysics 3.5<br />

[43] Johnson S G <strong><strong>an</strong>d</strong> Jo<strong>an</strong>nopoulos J D 2001 Block-iterative frequency-domain methods for Maxwell’s equations<br />

in a pl<strong>an</strong>ewave basis Opt. Express 8 173–90<br />

[44] Lifshitz R <strong><strong>an</strong>d</strong> Rouke M L 2000 Thermoelastic damping in micro- <strong><strong>an</strong>d</strong> n<strong>an</strong>omech<strong>an</strong>ical systems Phys. Rev. B<br />

61 5600–9<br />

[45] Zener C 1938 Internal friction in solids. II General theory of thermoelastic internal friction Phys. Rev. 53 90–9<br />

[46] Duwel A, C<strong><strong>an</strong>d</strong>ler R, Kenny T <strong><strong>an</strong>d</strong> Varghese M 2006 Engineering MEMS resonators with low thermoelastic<br />

damping J. Microelectromech. Syst. 15 1437–45<br />

[47] Barclay P E, Srinivas<strong>an</strong> K <strong><strong>an</strong>d</strong> Painter O 2005 Nonlinear response of silicon photonic <strong>crystal</strong> microcavities<br />

excited via <strong>an</strong> integrated waveguide <strong><strong>an</strong>d</strong> fiber taper Opt. Express 13 801–20<br />

[48] Haret L-D, T<strong>an</strong>abe T, Kuramochi E <strong><strong>an</strong>d</strong> Notomi M 2009 Extremely low power optical bistability in silicon<br />

demonstrated <strong>using</strong> 1D photonic <strong>crystal</strong> n<strong>an</strong>ocavity Opt. Express 17 21108–17<br />

New Journal of Physics 13 (2011) 023003 (http://www.njp.org/)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!