26.12.2014 Views

Application of Climate Predictions and Simulation Models for the ...

Application of Climate Predictions and Simulation Models for the ...

Application of Climate Predictions and Simulation Models for the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Application</strong> <strong>of</strong> <strong>Climate</strong><br />

<strong>Predictions</strong> <strong>and</strong> <strong>Simulation</strong><br />

<strong>Models</strong> <strong>for</strong> <strong>the</strong> Benefit <strong>of</strong><br />

Agriculture in Romania<br />

Adriana MARICA, Aristita BUSUIOC, Roxana<br />

BOJARIU, Constanta BORONEANT<br />

WMO/CAgM Expert Team Meeting on Impact <strong>of</strong> <strong>Climate</strong><br />

Change/Variability <strong>and</strong> Medium-to Long-Range <strong>Predictions</strong> <strong>for</strong><br />

Agriculture, Brisbane, Australia, 15-18 February 2005


Summary <strong>of</strong> <strong>the</strong> presentation<br />

Introduction: Impacts <strong>of</strong> climate variability/change<br />

on agriculture in Romania;<br />

Using medium <strong>and</strong> long-range climate <strong>for</strong>ecasting to<br />

reduce impacts <strong>of</strong> climate variability;<br />

State <strong>of</strong> <strong>the</strong> art <strong>of</strong> climate predictions achieved within<br />

<strong>the</strong> National Meteorological Administration in Romania;<br />

Some examples <strong>of</strong> application seasonal <strong>for</strong>ecasts to<br />

soil moisture deficit <strong>and</strong> maize yield, using <strong>the</strong><br />

CROPWAT model;<br />

Conclusions <strong>and</strong> recommendations.


Introduction: Impacts <strong>of</strong> climate<br />

variability/change on agriculture in Romania<br />

√ Like in many o<strong>the</strong>rs countries in <strong>the</strong> south-eastern Europe, in<br />

Romania climate variability, including extreme events result in<br />

high variability in crop yield levels with negative consequences<br />

on food supply <strong>and</strong> economy;<br />

√ Some research studies have shown that during history drought<br />

events have caused yield losses up to 40-60%, especially in <strong>the</strong><br />

sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Romanian Plain (Tuinea et al., 2000);<br />

√ Also, in <strong>the</strong> extremely dry years, such as 2000, <strong>the</strong> largest water<br />

shortage <strong>and</strong> rainfall variability associated with high maximum<br />

temperature during <strong>the</strong> critical phases <strong>of</strong> maize crop (silking-grain<br />

filling) resulted in significant yield reduction up to 90% (Marica<br />

2003);


Introduction: Impacts <strong>of</strong> climate<br />

variability/change on agriculture in Romania<br />

√ Both climate variability <strong>and</strong> climate extremes may increase as a<br />

result <strong>of</strong> global warming;<br />

√ It is becoming more <strong>and</strong> more evident that food supply in our<br />

country will be affected by future climate change, particularly in<br />

regions with high present-day vulnerability <strong>and</strong> little potential <strong>for</strong><br />

adaptation, such as <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> Romania (Simota &<br />

Marica, 1997; Cuculeanu et. al., 1999);<br />

√ Recent studies show that changes in climate predicted by global<br />

climate model HadCM3, SRES scenario A2, may have significant<br />

negative effects on water balance elements <strong>and</strong> maize yield<br />

(Marica & Busuioc, 2004);


Using medium <strong>and</strong> long-range climate<br />

<strong>for</strong>ecasting to reduce impacts <strong>of</strong> climate<br />

variability (1)<br />

‣ Better knowledge <strong>of</strong> climatic variability toge<strong>the</strong>r with <strong>the</strong><br />

availability <strong>of</strong> climate <strong>for</strong>ecasts <strong>and</strong> agrometeorological models are<br />

key components <strong>for</strong> improving agricultural decision making at <strong>the</strong><br />

farm or policy level;<br />

‣ Medium range <strong>for</strong>ecasts are <strong>of</strong> great usefulness <strong>for</strong> farmers in<br />

short-term decisions:<br />

• whe<strong>the</strong>r to carry out or not specific agricultural practices<br />

• to schedule farm work (to decide if to sow or not, to<br />

spray or not, to irrigate or not)<br />

• if <strong>the</strong> decision is made to irrigate what should be <strong>the</strong><br />

amount <strong>of</strong> irrigation.


Using medium <strong>and</strong> long-range climate<br />

<strong>for</strong>ecasting to reduce impacts <strong>of</strong> climate<br />

variability (2)<br />

‣ Prediction <strong>of</strong> seasonal climate fluctuations play an important<br />

role in long-term agricultural planning <strong>and</strong> can have many benefits<br />

<strong>for</strong> agriculture:<br />

• can be used to reduce some <strong>of</strong> <strong>the</strong> losses associated with<br />

climate variability;<br />

• can help agricultural managers maintain <strong>the</strong>ir agricultural<br />

productivity in spite <strong>of</strong> extreme climatic events;<br />

• can help water resources managers ensure reliable water<br />

deliveries;<br />

• can <strong>of</strong>fer <strong>the</strong> potential <strong>for</strong> agricultural producers to plan<br />

ahead <strong>and</strong> modify decisions to decrease unwanted impacts or<br />

take advantage <strong>of</strong> expected favorable conditions.


11 11 TMS TMS <strong>and</strong> <strong>and</strong> 41 41 CMS CMS<br />

connections connections<br />

BAC<br />

State <strong>of</strong> <strong>the</strong> art <strong>of</strong> climate predictions<br />

achieved within <strong>the</strong> NMA<br />

Forecasting network in Romania<br />

TRN<br />

MOL<br />

National<br />

Forecasting Centr<br />

- Bucharest - ROU<br />

TRS<br />

Regional<br />

Forecasting Centre<br />

OLT<br />

MUN<br />

Bucharest<br />

DOB<br />

- Bucharest - MUN<br />

-Constanta-DOB<br />

- Bacau - MOL<br />

- Cluj - TRN<br />

- Sibiu - TRS<br />

- Arad - BAC<br />

- Craiova - OLT<br />

Territorial Meteorological Station (TMS) • County Meteorological Station (CMS)


State <strong>of</strong> <strong>the</strong> art <strong>of</strong> climate predictions<br />

achieved within <strong>the</strong> NMA<br />

Medium-range <strong>for</strong>ecasts (up to 7 days in advance)<br />

-based on numerical wea<strong>the</strong>r prediction models <strong>and</strong><br />

statistical methods<br />

Long-range <strong>for</strong>ecasts:<br />

• Monthly <strong>for</strong>ecasts - using statistical methods: analogies,<br />

self-regressive models<br />

• Seasonal <strong>for</strong>ecasts<br />

Seasonal <strong>for</strong>ecasts<br />

- based on <strong>the</strong> integration <strong>of</strong> statistical methods<br />

(conditional probabilities, autoregressive model <strong>and</strong><br />

multi-field analog prediction)<br />

- lead time: 3 months <strong>and</strong> 1-3 seasons


Long-range climate <strong>for</strong>ecasting<br />

Monthly / Seasonal Forecasts<br />

DECEMBER 2004<br />

Temperature<br />

JANUARY 2005<br />

Temperature<br />

FEBRUARY 2005<br />

Temperature<br />

Rainfall<br />

Rainfall<br />

Rainfall


Long-range climate <strong>for</strong>ecasting<br />

Seasonal Forecasts<br />

TEMPERATURE<br />

inter 2004/2005–Autumn 2005<br />

RAINFALL<br />

Winter 2004/2005–Autumn 2005


Exemple <strong>of</strong> application medium-range<br />

wea<strong>the</strong>r <strong>for</strong>ecasts<br />

Soil moisture <strong>for</strong>ecasting <strong>for</strong> 31 July 2003 / maize crop / 0-100cm soil depth<br />

Available soil moisture at 31July 2003 / maize crop / 0-100cm soil depth<br />

Medium range<br />

wea<strong>the</strong>r <strong>for</strong>ecast<br />

<strong>of</strong> weekly<br />

precipitation <strong>and</strong><br />

temperature used<br />

in combination<br />

with a simple soil<br />

water balance<br />

model (SWB) <strong>for</strong><br />

estimating soil<br />

moisture content


Examples <strong>of</strong> application seasonal<br />

<strong>for</strong>ecasts to soil moisture deficit <strong>and</strong><br />

maize yield<br />

describe <strong>the</strong> 2003 results <strong>and</strong> 2005 preliminary<br />

investigations as an example <strong>of</strong> application <strong>of</strong> seasonal<br />

climate <strong>for</strong>ecasting in <strong>the</strong> agriculture sector;<br />

seek to demonstrate how seasonal climate <strong>for</strong>ecast<br />

combined with <strong>the</strong> CROPWAT model can estimate <strong>the</strong><br />

soil water deficits <strong>and</strong> maize yield reduction due to<br />

crop stress under rainfed conditions or deficit<br />

irrigation.


CROPWAT model<br />

DATA<br />

Climatic<br />

Crop<br />

Soil<br />

Irrigation<br />

INPUT<br />

• Monthly means <strong>of</strong><br />

min. <strong>and</strong> max.<br />

temperature, relative<br />

humidity, sunshine<br />

duration, wind speed<br />

•rainfall data Monthly<br />

• Kc, , crop<br />

description, max.<br />

rooting depth, % area<br />

covered by plant<br />

• initial soil moisture<br />

condition <strong>and</strong><br />

available soil moisture<br />

• irrigation scheduling<br />

criteria<br />

OUTPUT<br />

⇒ reference<br />

evapotranspiration<br />

⇒ crop water requirement<br />

⇒ irrigation requirement<br />

⇒ actual crop<br />

evapotranspiration<br />

⇒ soil moisture deficit<br />

⇒ estimated yield<br />

reduction due to crop<br />

stress<br />

⇒ irrigation scheduling


Input data used<br />

Monthly means climatic data:<br />

•measured during April-May 2003 (min.& max. temp.<br />

humidity, sunshine duration, wind speed <strong>and</strong> rainfall)<br />

•estimated <strong>for</strong> 2003 summer season & 2005 spring <strong>and</strong><br />

summer season (temperature <strong>and</strong> rainfall)<br />

Crop data:<br />

• sowing date: 20 April / 5 May 2003 /20 April 2005<br />

• st<strong>and</strong>ard crop coefficient (Kc(<br />

Kc), crop yield data (Ky(<br />

Ky)<br />

<strong>and</strong> depletion fraction (P)<br />

Soil data:<br />

• total available moisture: 227/191 /227 mm<br />

• initial available soil moisture: 170/163/185 mm<br />

• maximum root infiltration rate: 40 mm/day<br />

• maximum rooting depth: 1m


Model application:<br />

• For <strong>the</strong> case studies in 2003, at Calarasi <strong>and</strong> Tg.<br />

Jiu sites, <strong>the</strong> CROPWAT model was run with rainfed<br />

<strong>and</strong> irrigated maize in <strong>the</strong> <strong>for</strong>ecasted <strong>and</strong> real<br />

wea<strong>the</strong>r conditions;<br />

• For <strong>the</strong> case study in 2005, only in Calarasi site,<br />

<strong>the</strong> model was run only with rainfed maize in <strong>the</strong><br />

<strong>for</strong>ecasted <strong>and</strong> “normal” wea<strong>the</strong>r conditions.


Summer 2003 <strong>for</strong>ecast<br />

Temperature<br />

Rainfall


0<br />

CALARASI 2003<br />

The 2003 Results<br />

mm<br />

50<br />

100<br />

150<br />

200<br />

20-Apr<br />

27-Apr<br />

4-May<br />

11-May<br />

18-May<br />

250<br />

0<br />

50<br />

REAL<br />

25-May<br />

1-Jun<br />

8-Jun<br />

15-Jun<br />

22-Jun<br />

29-Jun<br />

6-Jul<br />

13-Jul<br />

20-Jul<br />

FORECAST<br />

27-Jul<br />

3-Aug<br />

10-Aug<br />

17-Aug<br />

TAM RAM SMD -F SMD - R<br />

TARGU-JIU 2003<br />

FORECAST<br />

24-Aug<br />

31-Aug<br />

Daily soil moisture<br />

deficit simulated with<br />

CROPWAT model<br />

during rainfed maize<br />

growing season, in <strong>the</strong><br />

wea<strong>the</strong>r <strong>for</strong>ecast<br />

conditions <strong>for</strong> summer<br />

2003, as compared<br />

with <strong>the</strong> real one<br />

mm<br />

100<br />

150<br />

200<br />

250<br />

5-May<br />

12-May<br />

19-May<br />

26-May<br />

2-Jun<br />

9-Jun<br />

16-Jun<br />

23-Jun<br />

30-Jun<br />

7-Jul<br />

14-Jul<br />

21-Jul<br />

28-Jul<br />

4-Aug<br />

11-Aug<br />

18-Aug<br />

25-Aug<br />

1-Sep<br />

8-Sep<br />

15-Sep<br />

REAL<br />

TAM RAM SMD-F SMD-R<br />

TAM: total available<br />

moisture,<br />

RAM: easily available<br />

moisture<br />

SMD: soil moisture<br />

deficit


The 2003 Results<br />

Changes in growing season rainfall <strong>and</strong> soil<br />

moisture deficit in <strong>the</strong> seasonal wea<strong>the</strong>r <strong>for</strong>ecast<br />

as compared with <strong>the</strong> real wea<strong>the</strong>r conditions<br />

TOTAL RAINFALL<br />

SOIL MOISTURE DEFICIT<br />

Rain (mm)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Forecast<br />

Real<br />

-35%<br />

-60%<br />

SMD (mm)<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

11%<br />

Forecast<br />

Real<br />

91%<br />

0<br />

CALARASI<br />

TARGU JIU<br />

0<br />

CALARASI<br />

TARGU JIU


The 2003 Results<br />

ESTIMATED MAIZE YIELD<br />

%<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

CALARASI<br />

Forecast<br />

Real<br />

TG.JIU<br />

Effects <strong>of</strong><br />

estimated <strong>and</strong> real<br />

wea<strong>the</strong>r conditions<br />

on rainfed maize<br />

yield reduction due<br />

to crop stress<br />

-70


The 2003 Results<br />

Effects <strong>of</strong> different irrigation schedules on maize<br />

yield simulated with CROPWAT at Calarasi site<br />

Options<br />

Rainfed<br />

Irr.fixed<br />

int&depth<br />

Irr. . 70% <strong>of</strong> TAM<br />

Irr. . 70% <strong>of</strong> RAM<br />

Irr. . 100% <strong>of</strong> RAM<br />

Net<br />

irrigation<br />

(mm)<br />

-<br />

240<br />

366<br />

405<br />

449<br />

Yield<br />

reduction<br />

(%)<br />

53%<br />

24%<br />

10%<br />

-<br />

-


Spring & summer 2005 <strong>for</strong>ecast<br />

Temperature<br />

Temperature<br />

Rainfall<br />

Rainfall


7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

The 2005 Preliminary Results<br />

The 2005 Preliminary Results<br />

ETo<br />

CWR<br />

Irr.Req.<br />

Calarasi 2005<br />

Calarasi 2005<br />

Daily soil moisture deficit<br />

during maize growing<br />

season, in <strong>the</strong> 2005<br />

wea<strong>the</strong>r <strong>for</strong>ecast<br />

conditions, as compared<br />

with <strong>the</strong> “normal”<br />

conditions<br />

11-May<br />

18-May<br />

25-May<br />

1-Jun<br />

8-Jun<br />

15-Jun<br />

22-Jun<br />

29-Jun<br />

6-Jul<br />

13-Jul<br />

20-Jul<br />

27-Jul<br />

3-Aug<br />

10-Aug<br />

17-Aug<br />

24-Aug<br />

31-Aug<br />

Daily reference<br />

evapotranspiration (ETo),<br />

maize water<br />

requirements (CWR),<br />

irrigation requirements<br />

(Irr.Req)<br />

1-May<br />

8-May<br />

5-May<br />

1-Jun<br />

8-Jun<br />

5-Jun<br />

2-Jun<br />

9-Jun<br />

6-Jul<br />

13-Jul<br />

20-Jul<br />

27-Jul<br />

3-Aug<br />

0-Aug<br />

7-Aug<br />

4-Aug<br />

1-Aug<br />

0-Apr<br />

7-Apr<br />

4-May<br />

0<br />

20<br />

40<br />

60<br />

80<br />

00<br />

20<br />

40<br />

60<br />

80<br />

00<br />

20<br />

40<br />

NORMAL<br />

FORECAST<br />

TAM RAM SMD-N SMD-F<br />

0-Apr<br />

27-Apr<br />

4-May


-40<br />

The 2005 Preliminary Results<br />

mm<br />

370<br />

360<br />

350<br />

340<br />

330<br />

320<br />

310<br />

300<br />

290<br />

280<br />

270<br />

SOIL MOISTURE DEFICIT<br />

-15.3%<br />

Changes in growing season<br />

soil moisture deficit under<br />

<strong>for</strong>ecast wea<strong>the</strong>r<br />

conditions <strong>of</strong> <strong>the</strong> 2005<br />

spring <strong>and</strong> summer, as<br />

compared with <strong>the</strong> normal<br />

Normal<br />

Forecast<br />

Yield reduction %<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

ESTIMATED MAIZE YIELD REDUCTION<br />

Normal Forecast<br />

Effects <strong>of</strong> <strong>the</strong> <strong>for</strong>ecasted<br />

wea<strong>the</strong>r conditions on<br />

rainfed maize yield<br />

reduction due to crop<br />

stress, as compared with<br />

<strong>the</strong> normal


CONCLUSIONS<br />

The application <strong>of</strong> seasonal wea<strong>the</strong>r <strong>for</strong>ecasts toge<strong>the</strong>r<br />

with CROPWAT model allows <strong>the</strong> estimation <strong>of</strong> soil water<br />

supply conditions with 3-6 months ahead <strong>and</strong> in case a<br />

skillful <strong>for</strong>ecast can help farmers <strong>and</strong> decision makers to<br />

minimize negative consequences <strong>of</strong> unfavorable wea<strong>the</strong>r<br />

conditions or take advantages <strong>of</strong> favorable conditions;<br />

Examples given in this paper have shown that <strong>the</strong><br />

combination <strong>of</strong> seasonal <strong>for</strong>ecast in<strong>for</strong>mation <strong>and</strong><br />

agrometeorological models give promising results <strong>for</strong><br />

estimating maize yield reduction due to crop stress;<br />

The use this technology <strong>of</strong> simulation models, as an<br />

essential component <strong>of</strong> agricultural applications <strong>of</strong><br />

seasonal climate prediction, provides useful in<strong>for</strong>mation<br />

to <strong>the</strong> benefit <strong>of</strong> agriculture.


Recommendations<br />

• Improve <strong>the</strong> skill level <strong>of</strong> seasonal wea<strong>the</strong>r <strong>for</strong>ecasts <strong>and</strong> develop<br />

methods <strong>for</strong> adapting such <strong>for</strong>ecasts in order to enhance <strong>the</strong><br />

planning activities in agriculture as well as to avoid crop yield<br />

looses;<br />

• Using <strong>the</strong> results <strong>of</strong> new climate research projects such<br />

as ENSEMBLES (Ensemble-based <strong>Predictions</strong> <strong>of</strong> <strong>Climate</strong><br />

Change <strong>and</strong> <strong>the</strong>ir impacts) <strong>and</strong> enhancing collaboration with<br />

ECMWF, UK-MetOffice <strong>and</strong> EUMETSAT in order to increase <strong>the</strong><br />

precision <strong>and</strong> accuracy <strong>of</strong> long-term climate predictions in<br />

Romania;<br />

• Ef<strong>for</strong>ts in <strong>the</strong> next future will be needed to focus on operational<br />

application <strong>of</strong> seasonal <strong>for</strong>ecasts toge<strong>the</strong>r with simulation<br />

capabilities <strong>of</strong> agrometeorological models to choose <strong>the</strong> best<br />

agricultural management options <strong>and</strong> assess <strong>the</strong> likelihood <strong>of</strong><br />

improving <strong>the</strong> crop yield level.


Thank You

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!