27.12.2014 Views

micro, cdd - Power-One

micro, cdd - Power-One

micro, cdd - Power-One

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MICRO and<br />

Concentrator Data Device<br />

AURORA® ACADEMY<br />

1 Hour<br />

1


Training Objectives<br />

Micro<br />

250 W<br />

300 W<br />

Specifications<br />

• Key Specs<br />

• Advantages<br />

Installation<br />

• Flexibility in Design<br />

• Cabling Solutions<br />

Communications<br />

• CDD Specifications<br />

• Configurations<br />

• Monitoring Solutions<br />

RELIABILITY DATA


Micro Introduction


Micro Introduction


MICRO Key Specifications<br />

Product name MICRO-0.25-I MICRO-0.3-I<br />

Rated <strong>Power</strong> (P ac,r ) 250W 300W<br />

Rated <strong>Power</strong> (P dc,r ) 265 W 320 W<br />

Operating Input Range 12-60V<br />

Full power MPPT range<br />

(V mppmax,r -V mppmin,r )<br />

25-60V 30-60V<br />

Max. Input Voltage V max,abs<br />

65V<br />

Adjustable Frequency<br />

Range<br />

57-60.5Hz<br />

Rated Output Voltage<br />

208 / 240 Vac<br />

Max. Eff. (η max ) 96.5%<br />

CEC Eff. (η CEC ) 96%<br />

Ambient Temperature<br />

Range<br />

-40°C to 65 °C / -<br />

40...+149°F<br />

-40°C to 65 °C / -<br />

40...+149°F<br />

Environmental Protection<br />

Rating<br />

NEMA 4X<br />

Cooling<br />

Natural<br />

Dimension (H x W x D)<br />

262mm x 244mm x 35mm /<br />

10.3’’ x 9.6’’ x 1.37’’<br />

Weight<br />

3.5 lb


Key Advantages of Micro<br />

High Performance<br />

• High CEC Efficiency – 96.5%<br />

• Fast and Precise MPP Tracking Algorithm<br />

High Reliability<br />

• High Reliability Capacitors (Electrolytic free)<br />

• NEMA 4X Enclosure Rating<br />

Fast Installation<br />

• Simple AC trunk cable solution<br />

• Field Selectable AC Voltage and Frequency<br />

Easy to Monitor<br />

• Wireless monitoring solution<br />

• Panel level monitoring<br />

6


Micro – Non Uniform Shadowing<br />

Module without shadow<br />

PPV<br />

+ -<br />

Pmax<br />

1 2 3 4<br />

VPV<br />

No Diodes in Bypass<br />

P max<br />

V OC<br />

VOC


Micro – Non Uniform Shadowing<br />

Module with corner shadow<br />

PPV<br />

+ -<br />

⅔ Pmax<br />

1 2 3 4<br />

VPV<br />

⅔ VOC<br />

VOC<br />

<strong>One</strong> Diode in Bypass<br />

⅔ P max<br />

⅔ V OC


Micro – Non Uniform Shadowing<br />

Module with strong shadow<br />

⅓ Pmax<br />

PPV<br />

+ -<br />

1 2 3 4<br />

⅓ VOC<br />

VOC<br />

VPV<br />

Two Diodes in Bypass<br />

⅓ P max<br />

⅓ V OC


Non Uniform Shading Effects<br />

Inverter Operating<br />

Voltage Range<br />

⅓ V MPP<br />

⅓<br />

P n<br />

⅓V OC<br />

⅔ V MPP<br />

⅔<br />

P n<br />

⅔V OC<br />

V MPP<br />

P n<br />

V OC<br />

Typical 245W Module Spec<br />

P n = 245W V MPP = 30.5V V OC = 37.5V<br />

Competitor 1<br />

Competitor 2<br />

MPP falls Out of uINV<br />

VDC range with<br />

1 diode in Bypass<br />

Competitor 3<br />

MPP can fall Out of<br />

uINV VDC range with<br />

1 diode in Bypass<br />

Competitor 4<br />

Competitor 5<br />

MPP falls Out of uINV<br />

VDC range only<br />

when two diodes are<br />

in Bypass<br />

<strong>Power</strong>-<strong>One</strong><br />

DC input<br />

Voltage<br />

10 20 30 40 50 60<br />

10


System Components<br />

MICRO-0.25-I<br />

MICRO-0.3-I<br />

AURORA CDD<br />

Data logger<br />

AC TRUNK<br />

PLUG CAP<br />

To seal unused<br />

junctions<br />

AC TRUNK CABLE<br />

To connect inverter to the grid<br />

Supports 60, 72 and 96 cell modules<br />

AC TRUNK<br />

END CAP<br />

To seal ends of<br />

trunk cable<br />

AC TRUNK<br />

UNLOCK TOOL<br />

To disconnect<br />

inverter from<br />

trunk cable<br />

11


AC Cabling Solution<br />

Drop Cable<br />

Ground<br />

Screw<br />

Trunk Cable<br />

4 wires, AWG10<br />

12<br />

Cable Pitch


High Design Flexibility: Portrait or Landscape<br />

13


MICRO AC cabling Solution<br />

Cable Length - Portrait Orientation<br />

1.05 m<br />

(60,72 or 96 cells module)<br />

14


MICRO AC cabling Solution<br />

Cable Length - Landscape Orientation<br />

1.70 m (60, 96 cells module)<br />

2.05 m (72 cells module)<br />

15


MICRO AC cabling Solution<br />

Accessories<br />

Waterproof Cap:<br />

IP67 cap used when one of the bus plug is not connected to a<br />

MICRO.<br />

To unlock waterproof caps unlocking tool is required.<br />

End Cap:<br />

Used to protect and seal exposed cable wires in case where installers need to<br />

cut trunk cable during the installation to adjust the length or number of the<br />

<strong>micro</strong>inverters used.<br />

End cap is IP67 rated and can be assembled only once, locking mechanism<br />

does not allow cap to be opened. Once used cap needed to be dispose a new<br />

cap is to apply.<br />

Start bus adapter cable glands & counterpart:<br />

Used to connect the installer cabling at the beginning of the AC<br />

bus.<br />

The adapter and the counterpart is IP67 rated.<br />

Unlocking tool:<br />

Used to disassemble mated connectors on the trunk cable and drop<br />

cable or bulkhead connector assembled to <strong>micro</strong>inverter.<br />

Tool is also used to unlock waterproof caps.


Plant Installation - Overview<br />

PV Module<br />

Mounting Rail<br />

Wiring Box<br />

End Waterproof Cap<br />

Drop Waterproof Cap<br />

Unlocking Tool<br />

MICRO Drop Cable<br />

DC Wires<br />

Micro Inverter<br />

AC Trunk Cable<br />

Temporary Cap<br />

Trunk Waterproof Cap<br />

17


Plant Installation steps<br />

1<br />

2 3<br />

Fix MICRO’s on the racking system, roll out the cable on the roof along the mounting rail and<br />

position the T-junctions opposite to the MICRO that are going to be connected to the Trunk<br />

cable.<br />

Be careful to respect the distances between<br />

MICRO’s and choose the right trunk cable pitch<br />

based on the size and orientation of the PV<br />

modules<br />

18


Plant Installation steps<br />

1 2 3<br />

2<br />

Secure T-junction with cable ties using<br />

the cavities of the overmold.<br />

Fix the end bus waterproof cap where<br />

needed.<br />

Cable<br />

ties<br />

19


Plant Installation steps<br />

1 2 3<br />

Align the mating connectors and<br />

join mating parts together.<br />

Roll out the ground cable connecting<br />

all the inverters<br />

20


Installation of System Grounding of Micro Inverters<br />

21


Installation of System Grounding of Micro Inverters<br />

22


Plant Installation steps<br />

Build a map of the plant, use the MAC<br />

address labels from each inverter, in bag<br />

and positioning them on the appropriate<br />

format<br />

ATTENTION: Do it before<br />

installing PV Modules!!<br />

Then, using the map, configure the plant<br />

country standard via AURORA CDD<br />

integrated Web server.<br />

23


MICRO AC cabling Solution<br />

Mounting Example<br />

Consider –<br />

UF Splice Kit<br />

End cap<br />

Cap cover<br />

Junction Boxes and<br />

Other BoS not<br />

provided<br />

24


Consider using UF splice kit and heat shrink sleeve to make connections<br />

sleek and clean.


MICRO - FAQ<br />

We use Amphenol Connectors but industry uses MC4.<br />

How do we counter this problem<br />

• Competition also uses Amphenol<br />

• We have 3 rd party test reports (TUV) for intermateability of<br />

MC4 and Amphenol<br />

Why don’t we offer Tyco connectors<br />

• Tyco connectors are not UL compliant for chassis mount<br />

solution yet<br />

26


MICRO - FAQ<br />

How many inverters can we connect on a Trunk Cable<br />

Model 208VAC 240VAC<br />

Max current<br />

measured<br />

Number of<br />

inverters on<br />

20A breaker<br />

(16A max)<br />

Max current<br />

measured<br />

Number of<br />

inverters on<br />

20A breaker<br />

(16A max)<br />

MICRO-0.25-I 1.20A 13 1.04A 15<br />

MICRO-0.3-I 1.44A 11 1.25A 12<br />

27


Micro Communication System Overview<br />

28


CDD (Concentrator Data Device) Overview<br />

29


CDD (Concentrator Data Device) Overview<br />

PARAMETER<br />

Inverter Communication<br />

CDD<br />

Standard Radio IEEE 802.15.4<br />

(2.4GHz)<br />

Sample Rate<br />

Max distance (free space)<br />

furthest Micro<br />

4 sec ...60 sec<br />

50m (can be extended 15m<br />

with external antenna )<br />

Maximum number of devices 30<br />

Communication to Modem/PC<br />

Wireless IEEE 802.11 (2.4GHz) /<br />

10Mbps<br />

Wired<br />

Inverter connection<br />

Data visualization<br />

<strong>Power</strong> Supply<br />

Other<br />

Ethernet / 10...100Mbps<br />

1 x RS485<br />

Aurora Web Server<br />

Ext Plug-in Adapter 5Vdc<br />

Enclosure NEMA 1<br />

Dimensions (WxHxD)<br />

Display<br />

180x155x25 mm<br />

16 characters x 2 lines OLED


Aurora CDD: Mesh Network Topology<br />

Automatic and Dynamic Reassignement Coverage<br />

Alarm!<br />

Up to 50m


CDD Layout<br />

32


CDD Layout<br />

33


Connect CDD to WIFI<br />

During the Registration of the CDD on Aurora Vision the “Radio Communication<br />

MAC Address” must be used.<br />

34


CDD Display Overview<br />

During normal Operation the<br />

CDD scrolls through five screens<br />

and displays general information<br />

35


By pressing any button<br />

during normal operation,<br />

you gain access to set up,<br />

basic informative screens<br />

related to the CDD<br />

36


CDD Display “STATISTICS” Overview<br />

To access the advanced menu, simultaneously<br />

press and hold the UP and DOWN buttons for 3<br />

seconds and then enter the password 0010<br />

37


CDD Display “VIEW INFORMATION” Overview<br />

38


CDD Display “CHANGE SETTINGS” Overview<br />

39


Connect CDD to WiFi<br />

1 2 3<br />

Attach the power supply to the CDD. The CDD will prompt you to enable WiFi. Once<br />

the WiFi is enabled, the CDD will automatically start scanning for available WiFi<br />

networks.<br />

40


Connect CDD to WiFi<br />

1 2 3<br />

Select the appropriate WiFi network. Enter the Network Security key if needed.<br />

This indicates the network signal strength<br />

41


Connect CDD to WiFi<br />

1 2 3<br />

The CDD gives you a Web Server IP. Record this information for future reference.<br />

NOTE: This will be different for every site.<br />

This is used to access the LOCAL User Interface (UI).<br />

NOTE: To access the UI Wirelessly, your PC has to<br />

be connected to the same network as the CDD.<br />

Be sure to confirm that the WiFi AutoConnect<br />

is on. If the network goes down, the CDD will<br />

have to be manually connected again.<br />

42


CDD Integrated Web server<br />

Enter the Web<br />

Server IP into the<br />

URL bar of any<br />

Browser<br />

Click Config and<br />

run the Aquasition<br />

Wizard<br />

43


CDD Integrated Web server<br />

Enter username/password<br />

(Default is admin/admin)<br />

44


CDD Integrated Web server<br />

CDD scanning for<br />

MICROs<br />

(20 mins + -)<br />

45


CDD Integrated Web server<br />

CDD shows the<br />

identified<br />

MICRO MAC<br />

address<br />

46


CDD Integrated Web server<br />

Stop Acquisition<br />

once all of the<br />

MICRO Inverters<br />

have been found<br />

47


CDD Integrated Web server<br />

Choose Country<br />

standard on<br />

MICRO Inverters<br />

48


CDD Integrated Web server<br />

USA 240 SplitPhase<br />

USA 208<br />

HAWAII 240 SplitPhase<br />

HAWAII 208<br />

CEI-021<br />

VDE-AR-N 4105<br />

VDE0126<br />

AUSTRALIA<br />

UK_G83-2<br />

Spanish_Cstd<br />

Benelux_GridStd<br />

HAWAII_HELCO 240V Split<br />

Phase<br />

HAWAII_HELCO 208V<br />

HAWAII_MECO 240V Split<br />

Phase<br />

HAWAII_MECO 208V<br />

HAWAII_KIUC 240V Split<br />

Phase<br />

HAWAII_KIUC 208V<br />

GreeceMainland<br />

Greece Islands<br />

Czech Republic<br />

49


CDD Integrated Web server<br />

Customer Self-<br />

Registration<br />

This allows the<br />

homeowner to track<br />

their system with<br />

Aurora Vision<br />

50


AURORA VISION Self Registration – Step 1<br />

Link to AURORA<br />

VISION Self-<br />

Registration<br />

Process<br />

Step 1:<br />

Instructions and<br />

personal<br />

information<br />

51


User Validation Email<br />

Activation email sent<br />

contains<br />

Link to ‘Register Plant’ page<br />

When user clicks on link then:<br />

• Create a user account<br />

• Log user in and place them in the<br />

‘Register Plant’ page.<br />

If User does not click on link after<br />

5 days then:<br />

• Send email to user that their<br />

registration timed out. Text: “Your<br />

registration request has timed out.<br />

Please restart the registration<br />

process if you wish to register your<br />

home solar power system at:<br />

http://URLGoesHere …<br />

52


AURORA VISION Self Registration – Step 2<br />

Step 2: Provide Site<br />

information<br />

53


AURORA VISION Self Registration – Step 3<br />

Step 3: Register CDD<br />

with Aurora Vision.<br />

All inverters associated<br />

with the CDD will<br />

automatically be<br />

populated.<br />

54


Registration Complete Email<br />

Confirmation sent email<br />

contains<br />

You have successfully registered your <strong>Power</strong>-<strong>One</strong> solar power<br />

equipment and can now monitory your system!<br />

Please bookmark the link below to view/monitory the energy<br />

created by your solar power system.<br />

http://acct.auroravision.net/act/pub/newUserSignup.svttoken=9bdc<br />

fcaf949a4e996fb1ff4900234a1b99ca2d9d<br />

Your installer’s name and contact info is: Name: xxx Phone: Email:<br />

Below is a list of the devices that have been registered to your<br />

home:<br />

Information about devices<br />

registered and link back to login<br />

page with suggestion on<br />

bookmarking the page.<br />

Link brings you to Aurora Easy<br />

View<br />

Name Serial# Dev Type Model<br />

CDD Default 1 1213421 Logger PVI_CDD_MOD1<br />

EDD Default 1 213423 Module PVI_EDD_MOD1<br />

EDD Default 2 3434534 Module PVI_EDD_MOD1<br />

EDD Default 3 6785677 Module PVI_EDD_MOD1<br />

55


Monitor MICROs with AURORA Easy View<br />

Plant summary and<br />

weather information<br />

Graphical display of<br />

power generation for<br />

day/week/month/year<br />

Module level monitoring<br />

performed here<br />

56


Check the CDD-to-MICRO Signal Strength<br />

Access the User<br />

Interface and<br />

select “View” then<br />

“RF Signal”


Check the CDD-to-MICRO Signal Strength<br />

58


Check the CDD-to-MICRO Signal Strength<br />

59


Check the CDD-to-MICRO Signal Strength<br />

Above 70% : No communication problems occur<br />

Between 40% and 70% : Communication runs; possible<br />

delay in data transfer and slower upgrade process<br />

Below 40% : low signal strength, the signal has to be boosted<br />

(ext.Ant or booster or move CDD)<br />

60


Check the CDD-to-MICRO Signal Strength<br />

61


Check the CDD-to-MICRO Signal Strength<br />

15m<br />

62


AURORA MICRO<br />

Design for Reliability


Micro – Design for Reliability Approach<br />

Design for<br />

Reliability<br />

• Components Selection: Film Capacitors increase Reliability<br />

• Conversion Topology: minimum number of components<br />

and soft-switching operation<br />

• Thermal Management: heat sinks, low losses components<br />

and distances, no fans or other moving parts<br />

MTBF and<br />

Testing<br />

• 1,233,700 hours (using Telcordia Issue 1)<br />

• Factory test on 100% of manufactured units: Burn-in ,<br />

Optical automatic Inspection, Insulation test, Functional<br />

Test.<br />

• Extensive factory and field reliability testing<br />

System<br />

Reliability<br />

• Panel level fault detection makes for easy<br />

troubleshooting<br />

• All system components covered under standard 10<br />

year warranty (MICRO, CDD, cables and accessories)<br />

65


AURORA MICRO Product Architecture<br />

Dual Stage Topology allows wide MPP<br />

Range and no DC input current ripple<br />

NEMA 4X<br />

Enclosure<br />

No fans or other<br />

moving parts<br />

Electrolyte-free power converter<br />

increases life expectancy and<br />

long term reliability


Reliability Tests: Life Test<br />

The life test is designed to demonstrate the MTBF evaluation. Every time the test<br />

is stopped to change parameter, components etc. you have to start from the<br />

beginning.<br />

• 55 inverters and 3 CDDs<br />

• Connected to 59.2Vdc (Vmp = 51.5Vdc), Imp = 6.2A<br />

• AC out put 230VAC, 50Hz grid<br />

• Constant 55°C ambient temperature<br />

• All inverters producing maximum continuous output power<br />

No failures recorded<br />

Date<br />

Number of DUT<br />

Hours worked<br />

(Each DUT)<br />

MTBF<br />

Demonstrated<br />

(hours)<br />

Total On/Off cycles Number of failure<br />

Life Test Status<br />

19/09/2012 - 19/10/2012 18 456:00:00 101267 456 0 20.50%<br />

22/10/2012 - 04/11/2012 55 278:16:49 289908 278 0 59.00%<br />

04/11/2012 - 15/11/2012 55 264:00:00 469050 542 0 95.00%<br />

15/11/2012 - 22/11/2012 55 175:27:05 587799 717 0 119.09%<br />

22/11/2012 - 28/11/2012 55 142:24:09 687548 860 0 138.75%


Reliability Tests: Strife/Overload Test<br />

The strife or overload test purpose is to define the power margins in all allowed<br />

functional condition in terms of: Output <strong>Power</strong>, Grid Voltage, Input voltage.<br />

• Environment temperature: 65°C<br />

• Working conditions:<br />

• DC Input: Five Vin steps (12V, 20V, 30V, 50V and 63V); Iin was gradually<br />

increased up to +20% of rated input current of condition under testing.<br />

• AC Output: Three output voltage steps (270V , 240V, 180V) , 60Hz<br />

simulated grid.<br />

• Requirements to switch to the next condition: Unit has to work for at least 4<br />

hours after reaching the thermal stabilization.<br />

No failures recorded


Reliability Tests: High Temperature Test<br />

In the High Temperature test, The Inverter will be considered meeting the STRIFE<br />

target, if it survives the testing with at least 10°C or +30% of rated operating<br />

ambient temperature (without derating) over the maximum specified<br />

temperature.<br />

<br />

The device was set on rated output voltage (240Vac),60Hz simulated grid.<br />

MPPT enabled : Vdc = 40V Idc = 7.9A<br />

<br />

<br />

All Temperature protection was disabled<br />

The device was tested at:<br />

1. 75°C (Maximum working temperature)<br />

2. 82.5°C(Tmax +10%)<br />

3. 90°C(Tmax+20%)<br />

4. 97.5°C(Tmax+30%)<br />

After the thermal stabilization the device must remain in each condition at least for 4<br />

hours.<br />

<br />

No Failures<br />

Reported!!!<br />

Top and bottom enclosure temperature, Microinverter internal temperature and<br />

environmental temperature were continuously monitored.


Reliability Tests: Low Temperature Test<br />

In the Low Temperature test, the MICRO Inverter will be considered meeting the<br />

strife requirements if it can turn-on and exports the maximum output power at a<br />

temperature at least 10°C below the minimum specified temperature.<br />

• Software protections were disabled<br />

• Inverter startup was tested for -40°C, -44°C, -48°C, -52°C ambient


Reliability Tests: Humidity Freeze Test<br />

In the Low Temperature test, the MICRO Inverter will be considered meeting the<br />

Humidity Freeze requirements if it can turn-on and exports the maximum output<br />

power without any variations on performance.<br />

• 59.2VDC, 230VAC, 50Hz, CDD communication active<br />

• -40°C to +85°C, 85%RH (relative humidity)<br />

• 10 thermal cycles of 20 hours high, 4 hours low temperature<br />

• Inverters producing full rated output power<br />

• No faults detected


Reliability Tests: Thermal Shock<br />

In the Thermal Shock test, is used to evaluate the boards assembly quality<br />

(soldering joints, components, etc.) once they are submitted to fast thermal shocks<br />

between -25°C and +100°C for a total of 1000 cycles.<br />

• Bare board of MICRO-I-0.3(0.25) OUTD placed on thermal shock chamber lift.<br />

Not operating<br />

• Temperature shock: from -25°C to +100°C in 10sec. ; dwell time 10 min. High<br />

Temp./ 10 min. Low temp., 1000 cycles.<br />

• Board temperature<br />

monitored by data-logger.<br />

• No faults detected


Reliability Tests: Vibration and Corrosion Test<br />

• Vibration test<br />

This test is designed to find any weakness on the<br />

mechanical assembly, component defects, as well as<br />

workmanship or manufacturing process issues can be<br />

uncovered and corrected.<br />

– 3-axis random vibration<br />

– DUT passed functional tests after vibration test<br />

• Corrosion test<br />

– Reference standard: ISO 21207 method B, mix salt<br />

and industrial contaminants.<br />

– Test duration: 5 week, simulating 27 years exposure<br />

in industrial environment<br />

– Inverter casing proven to ensure long term<br />

reliability


Phoenix beta test site<br />

• Testing duration 6 months<br />

• August 2012 – February 2013<br />

• Continuous monitoring using<br />

Aurora Vision<br />

• Inverters, CDD and cables<br />

undergoing analysis for wear and<br />

tear<br />

• No failures reported from any<br />

worldwide beta site


Reliability that is unmatched!<br />

All tests were well outside the limits of real-world<br />

operational conditions<br />

0 failures detected<br />

Currently no inverter failures have been reported-<br />

No RMAs have been issued<br />

75


MICRO: Summary<br />

Micro<br />

250 W<br />

300 W<br />

High Performance<br />

• High CEC Efficiency<br />

• Fast & Precise MPP Tracking Algorithm<br />

High Reliability<br />

• Electrolytic-free Capacitors<br />

• NEMA 4X Enclosure Rating<br />

Fast Installation<br />

• Simple AC trunk cable solution<br />

Easy to Monitor<br />

• Wireless monitoring solution<br />

• Panel level monitoring<br />

76


Thank You!<br />

Technical Training<br />

<strong>Power</strong> 77 <strong>One</strong> of North America<br />

training@power-one.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!