29.12.2014 Views

Infinite randomness and the superconductor-metal transition - PiTP

Infinite randomness and the superconductor-metal transition - PiTP

Infinite randomness and the superconductor-metal transition - PiTP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Infinite</strong> <strong>r<strong>and</strong>omness</strong> at <strong>the</strong><br />

<strong>superconductor</strong>-<strong>metal</strong> quantum<br />

phase <strong>transition</strong><br />

Phys. Rev. Lett. (2008)<br />

Adrian Del Maestro


Collaborators<br />

Subir Sachdev<br />

Harvard<br />

Bernd Rosenow<br />

MPI Stuttgart<br />

Markus Mueller<br />

University of Geneva<br />

Nayana Shah<br />

UIUC


Diminutive superconductivity<br />

A macroscopic quantum wave function can<br />

be drastically altered by finite size effects<br />

R<br />

Interesting <strong>and</strong> nontrivial<br />

new behavior<br />

when<br />

R ∼ ξ<br />

ξ<br />

k −1<br />

F


Disorder in quantum systems<br />

Disorder has long<br />

range correlations in<br />

<strong>the</strong> imaginary time<br />

direction<br />

ln τ ∼ ξ ψ


What role does disorder play<br />

near <strong>the</strong> <strong>superconductor</strong>-<strong>metal</strong><br />

<strong>transition</strong> in one dimension


Ultra-Narrow Wires


Fabrication of ultra-narrow wires<br />

Novel fabrication techniques have allowed<br />

for <strong>the</strong> study of wires with d < 10 nm<br />

www.nanogallery.info<br />

A. Bezryadin et al., Nature (2000)


Transport in ultra-narrow wires<br />

Can tune a phase<br />

<strong>transition</strong> between a <strong>metal</strong><br />

<strong>and</strong> <strong>superconductor</strong> via<br />

wire diameter<br />

thin<br />

www.nanogallery.info<br />

thick<br />

A. Bezryadin, et al., PRL (2003)


Pair-breaking in nanowires<br />

V>0<br />

V


Pair-breaking in nanowires<br />

V>0<br />

V


Pair-breaking in nanowires<br />

V>0<br />

V 0<br />

(<br />

Tc<br />

T c0<br />

)<br />

= ψ<br />

( 1<br />

2)<br />

− ψ<br />

( 1<br />

2 + α<br />

2πk B T c<br />

)<br />

A. Abrikosov <strong>and</strong> G. Gor’kov, JETP (1961)<br />

T/Tc0<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4<br />

¯hα/k B T c0


Ramazashvili <strong>and</strong> Coleman; Herbut; Dalidovich <strong>and</strong> Phillips; Spivak, etc.<br />

Dissipative Cooperon <strong>the</strong>ory<br />

Diffusive electrons with<br />

Ohmic dissipation coming<br />

from decay of repulsive<br />

Cooper pairs into gapless<br />

fermions<br />

S α =<br />

∫ L<br />

0<br />

dx<br />

+ 1<br />

β<br />

∫ β<br />

0<br />

∑<br />

ω n<br />

z =2<br />

[<br />

dτ ˜D|∂x Ψ(x, τ)| 2 + α|Ψ(x, τ)| 2 + u |Ψ(x, τ)|4]<br />

2<br />

dx γ|ω n ||Ψ(x, ω n )| 2<br />

∫ L<br />

0


Ramazashvili <strong>and</strong> Coleman; Herbut; Dalidovich <strong>and</strong> Phillips; Spivak, etc.<br />

Dissipative Cooperon <strong>the</strong>ory<br />

Diffusive electrons with<br />

Ohmic dissipation coming<br />

from decay of repulsive<br />

Cooper pairs into gapless<br />

fermions<br />

S α =<br />

∫ L<br />

0<br />

dx<br />

+ 1<br />

β<br />

∫ β<br />

0<br />

∑<br />

ω n<br />

z =2<br />

[<br />

dτ ˜D|∂x Ψ(x, τ)| 2 + α|Ψ(x, τ)| 2 + u |Ψ(x, τ)|4]<br />

2<br />

dx γ|ω n ||Ψ(x, ω n )| 2<br />

∫ L<br />

0<br />

particle-hole continua


Superconductor-<strong>metal</strong> <strong>transition</strong><br />

T<br />

Phys. Rev. B, (2008)<br />

Annals of Physics (2008)<br />

quantum<br />

critical<br />

LAMH<br />

<strong>superconductor</strong><br />

<strong>metal</strong><br />

α<br />

c<br />

α


Superconductor-<strong>metal</strong> <strong>transition</strong><br />

T<br />

Phys. Rev. B, (2008)<br />

Annals of Physics (2008)<br />

quantum<br />

critical<br />

LAMH<br />

T dis<br />

<strong>superconductor</strong><br />

<strong>metal</strong><br />

α<br />

c<br />

α


<strong>Infinite</strong> R<strong>and</strong>omness


Spatially dependent r<strong>and</strong>om couplings<br />

S =<br />

∫<br />

+<br />

dx<br />

∫<br />

∫ dω<br />

2π<br />

dτ<br />

[<br />

D(x)|∂ x Ψ(x, τ)| 2 + α(x)|Ψ(x, τ)| 2 + u(x)<br />

2 |Ψ(x, τ)|4 ]<br />

γ(x)|ω||Ψ(x, ω)|2<br />

T = 0<br />

Hoyos, Kotabage <strong>and</strong> Vojta, PRL 2007<br />

Real space RG predicts <strong>the</strong><br />

T<br />

flow to a strong <strong>r<strong>and</strong>omness</strong><br />

QC<br />

fixed point for z = 2<br />

SC<br />

IRFP<br />

N<br />

α<br />

!


Spatially dependent r<strong>and</strong>om couplings<br />

S =<br />

∫<br />

+<br />

dx<br />

∫<br />

∫ dω<br />

2π<br />

dτ<br />

[<br />

D(x)|∂ x Ψ(x, τ)| 2 + α(x)|Ψ(x, τ)| 2 + u(x)<br />

2 |Ψ(x, τ)|4 ]<br />

γ(x)|ω||Ψ(x, ω)|2<br />

T = 0<br />

Hoyos, Kotabage <strong>and</strong> Vojta, PRL 2007<br />

Real space RG predicts <strong>the</strong><br />

flow to a strong <strong>r<strong>and</strong>omness</strong><br />

fixed point for z = 2<br />

T<br />

Fisher’s<br />

QC<br />

RTFIM<br />

SC<br />

N<br />

IRFP<br />

α<br />

!


Manifestations of strong disorder<br />

Under renormalization, probability distributions<br />

for observables become extremely broad<br />

Dynamics are highly anisotropic in space <strong>and</strong><br />

time: activated scaling<br />

ln ξ τ ∼ ξ ψ<br />

Averages become dominated by rare events<br />

(spurious disorder configurations)


Exact predictions from <strong>the</strong> RTFIM<br />

D. Fisher, PRL (1992);<br />

PRB (1995)<br />

For a finite size system<br />

ln(1/Ω) ∼ L ψ µ ∼ ln(1/Ω) φ<br />

In <strong>the</strong> disordered phase<br />

ξ ∼ |δ| −ν<br />

C(x) ∼ exp [ −(x/ξ) − (27π 2 /4) 1/3 (x/ξ) 1/3]<br />

(x/ξ) 5/6 H = − ∑ i<br />

J i σ z i σ z i+1 − ∑ i<br />

h i σ x i


Exact predictions from <strong>the</strong> RTFIM<br />

D. Fisher, PRL (1992);<br />

PRB (1995)<br />

For a finite size system<br />

ln(1/Ω) ∼ L ψ µ ∼ ln(1/Ω) φ<br />

In <strong>the</strong> disordered phase<br />

ξ ∼ |δ| −ν<br />

C(x) ∼ exp [ −(x/ξ) − (27π 2 /4) 1/3 (x/ξ) 1/3]<br />

(x/ξ) 5/6 H = − ∑ i<br />

J i σi z σi+1 z − ∑ h i σi<br />

x<br />

i<br />

critical exponents<br />

ψ =1/2<br />

ν =2<br />

φ = (1 + √ 5)/2


Discretize to a lattice of L sites<br />

S =<br />

∫<br />

dτ<br />

{ L−1 ∑<br />

j=1<br />

D j |Ψ j (τ) − Ψ j+1 (τ)| 2 +<br />

+ c l |Ψ 1 (τ)| 2 + c r |Ψ L (τ)| 2 }<br />

+<br />

L∑<br />

j=1<br />

[<br />

α j |Ψ j (τ)| 2 + u j<br />

2 |Ψ j(τ)| 4]<br />

∫ dω<br />

2π<br />

L∑<br />

j=1<br />

γ j |ω||Ψ j (ω)| 2<br />

P (D j ) P (α j )<br />

Measure all quantities with respect to<br />

γ 2<br />

<strong>and</strong><br />

set u j =1


Take <strong>the</strong> large-N limit<br />

Enforce a large-N constraint by solving <strong>the</strong> selfconsistent<br />

saddle point equations numerically<br />

S N =<br />

∫ dω<br />

2π<br />

L∑<br />

i,j=1<br />

Ψ ∗ i (ω)[|ω|δ ij + M ij ] Ψ j (ω)<br />

r j = α j + 〈|Ψ j (τ)| 2 〉 SN<br />

Y. Tu <strong>and</strong> P. Weichman, PRL (1994); J. Hartman <strong>and</strong> Weichman, PRL (1995)


Solve-Join-Patch method<br />

L = 64


Solve-Join-Patch method<br />

L = 64<br />

solve solve solve solve


Solve-Join-Patch method<br />

L = 64<br />

solve solve solve solve<br />

join<br />

join


Solve-Join-Patch method<br />

L = 64<br />

solve solve solve solve<br />

join<br />

join<br />

patch<br />

patch


Solve-Join-Patch method<br />

L = 64<br />

solve solve solve solve<br />

join<br />

join<br />

patch<br />

patch<br />

solve<br />

solve


Numerical investigation of observables<br />

Measure observables for L = 16, 32, 64, 128 averaged<br />

over 3000 realizations of disorder<br />

Tune <strong>the</strong> <strong>transition</strong> by shifting <strong>the</strong> mean of <strong>the</strong><br />

distribution,<br />

δ ∼ α − α c<br />

α j<br />

Equal time correlators are easily determined from <strong>the</strong><br />

self-consistency condition<br />

C(x) =〈Ψ ∗ x(τ)Ψ 0 (τ)〉 SN


Equal time correlation functions<br />

Fisher’s asymptotic<br />

scaling form<br />

C(x) ∼ exp [ −(x/ξ) − (27π 2 /4) 1/3 (x/ξ) 1/3]<br />

(x/ξ) 5/6<br />

10 2<br />

10 1<br />

10 0<br />

10 −1<br />

L = 64<br />

α c = −0.93(3)<br />

ν =1.9(2)<br />

ln ξ<br />

3<br />

2<br />

1<br />

ξ ∼ δ −ν<br />

C(x)<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −5<br />

10 −6<br />

10 −7<br />

10 −8<br />

α<br />

0.00<br />

-0.25<br />

-0.50<br />

-0.65<br />

-0.75<br />

0<br />

−2.0 −1.5 −1.0 −0.5 0.0<br />

ln δ<br />

5 10 15 20 25 30<br />

x


Equal time correlation functions<br />

Fisher’s asymptotic<br />

scaling form<br />

C(x) ∼ exp [ −(x/ξ) − (27π 2 /4) 1/3 (x/ξ) 1/3]<br />

(x/ξ) 5/6<br />

10 2<br />

10 1<br />

10 0<br />

10 −1<br />

L = 64<br />

α c = −0.93(3)<br />

ν =1.9(2)<br />

ln ξ<br />

3<br />

2<br />

1<br />

ξ ∼ δ −ν<br />

C(x)<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −5<br />

10 −6<br />

10 −7<br />

10 −8<br />

α<br />

0.00<br />

-0.25<br />

-0.50<br />

-0.65<br />

-0.75<br />

0<br />

−2.0 −1.5 −1.0 −0.5 0.0<br />

ln δ<br />

5 10 15 20 25 30<br />

x<br />

α c ≃−0.93<br />

ν =1.9(2)


Energy gap statistics<br />

δ ∼ α − α c<br />

10 −1<br />

L<br />

128<br />

64<br />

32<br />

16<br />

P (ln Ω)<br />

10 −2<br />

10 −3<br />

10 −4<br />

δ =0.18<br />

−25 −20 −15 −10 −5 0<br />

ln Ω<br />

δ =0.93<br />

−8 −6 −4 −2 0<br />

ln Ω<br />

P. Young <strong>and</strong> H. Rieger, PRB (1996)


Energy gap statistics<br />

δ ∼ α − α c<br />

10 −1<br />

L<br />

128<br />

64<br />

32<br />

16<br />

P (ln Ω)<br />

10 −2<br />

10 −3<br />

10 −4<br />

δ =0.18<br />

−25 −20 −15 −10 −5 0<br />

ln Ω<br />

δ =0.93<br />

−8 −6 −4 −2 0<br />

ln Ω<br />

distribution broadens with increasing<br />

system size near criticality<br />

P. Young <strong>and</strong> H. Rieger, PRB (1996)


Extreme value distribution<br />

The minimum<br />

excitation energy<br />

10 −1<br />

L = 128<br />

is due to a rare<br />

event, an extremal<br />

value<br />

P (ln Ω)<br />

10 −2<br />

»<br />

P (x) = 1 β e ( x−µ<br />

β )−e ( x−µ ) –<br />

β<br />

10 −3<br />

δ =0.18<br />

Gumbel<br />

−20 −15 −10 −5<br />

ln Ω<br />

Juhász, Lin <strong>and</strong> Iglói (2006)


Activated scaling<br />

|ln Ω|<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

ψ =0.53(6)<br />

ln |ln Ω|<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

−2.0 −1.5 −1.0 −0.5 0.0<br />

ln δ<br />

0.5 1.0 1.5 2.0 2.5<br />

δ<br />

| ln Ω| ∼ L ψ ∼ δ −νψ


Activated scaling<br />

|ln Ω|<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

ψ =0.53(6)<br />

ln |ln Ω|<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

−2.0 −1.5 −1.0 −0.5 0.0<br />

ln δ<br />

0.5 1.0 1.5 2.0 2.5<br />

δ<br />

| ln Ω| ∼ L ψ ∼ δ −νψ<br />

ψ =0.53(6)


Dynamic susceptibilites<br />

We have direct access to real dynamical quantities<br />

Im χ(ω) = 1 L<br />

∑<br />

∣<br />

Im 〈Ψ ∗ ∣∣iω→ω+iɛ<br />

x(iω)Ψ 0 (iω)〉 SN<br />

x<br />

Im χ loc (ω) = Im 〈Ψ ∗ 0 (iω)Ψ 0(iω)〉 SN<br />

∣<br />

∣∣iω→ω+iɛ


Dynamic susceptibilites<br />

We have direct access to real dynamical quantities<br />

Im χ(ω) = 1 L<br />

∑<br />

∣<br />

Im 〈Ψ ∗ ∣∣iω→ω+iɛ<br />

x(iω)Ψ 0 (iω)〉 SN<br />

x<br />

Im χ loc (ω) = Im 〈Ψ ∗ 0 (iω)Ψ 0(iω)〉 SN<br />

∣<br />

∣∣iω→ω+iɛ<br />

real frequency


Dynamic susceptibilites<br />

We have direct access to real dynamical quantities<br />

Im χ(ω) = 1 L<br />

∑<br />

∣<br />

Im 〈Ψ ∗ ∣∣iω→ω+iɛ<br />

x(iω)Ψ 0 (iω)〉 SN<br />

x<br />

Im χ loc (ω) = Im 〈Ψ ∗ 0 (iω)Ψ 0(iω)〉 SN<br />

∣<br />

∣∣iω→ω+iɛ<br />

real frequency<br />

The ratio of <strong>the</strong> average to local susceptibility is<br />

related to <strong>the</strong> average cluster moment


Activated Dynamical Scaling<br />

Can derive a<br />

scaling form for <strong>the</strong><br />

R<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

ln ˜R<br />

−3<br />

dynamic confirmation<br />

−4<br />

of infinite <strong>r<strong>and</strong>omness</strong><br />

−5<br />

−6<br />

| ln ω|<br />

16.1<br />

14.5<br />

13.8<br />

12.2<br />

−2.0 −1.5 −1.0 −0.5<br />

ln δ<br />

cluster moment<br />

R(ω) =<br />

Imχ(ω)<br />

Imχ loc (ω)<br />

∼ δ νψ(1−φ) | ln ω|<br />

0.04<br />

0.02<br />

0.00<br />

φ =1.6(2)<br />

6 8 10 12 14<br />

| ln ω|<br />

δ<br />

0.43<br />

0.28<br />

0.18


Activated Dynamical Scaling<br />

Can derive a<br />

scaling form for <strong>the</strong><br />

0.14<br />

−3<br />

cluster moment<br />

R<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

ln ˜R<br />

−4<br />

−5<br />

−6<br />

| ln ω|<br />

16.1<br />

14.5<br />

13.8<br />

12.2<br />

−2.0 −1.5 −1.0 −0.5<br />

ln δ<br />

R(ω) =<br />

Imχ(ω)<br />

Imχ loc (ω)<br />

∼ δ νψ(1−φ) | ln ω|<br />

0.04<br />

0.02<br />

0.00<br />

φ =1.6(2)<br />

6 8 10 12 14<br />

| ln ω|<br />

δ<br />

0.43<br />

0.28<br />

0.18<br />

φ =1.6(2)


Putting it all toge<strong>the</strong>r<br />

ν ψ φ<br />

RTFIM 2 1/2 (1+√5)/2<br />

SMT 1.9(2) 0.53(6) 1.6(2)<br />

Numerical confirmation of <strong>the</strong> strong<br />

disorder RG calculations of Hoyos,<br />

Kotabage <strong>and</strong> Vojta!


Origin of correspondence<br />

The physics of infinite <strong>r<strong>and</strong>omness</strong> comes from<br />

<strong>the</strong> slow dynamics <strong>and</strong> large contribution of<br />

rare regions<br />

imaginary time<br />

space


Effective classical <strong>the</strong>ories<br />

RTFIM<br />

SMT<br />

1d<br />

O(N)<br />

1d<br />

Z2<br />

|ω| → 1/τ 2<br />

T. Vojta <strong>and</strong> J. Schmalian (2005); T. Vojta (2006)


Effective classical <strong>the</strong>ories<br />

RTFIM<br />

SMT<br />

1d<br />

O(N)<br />

1d<br />

Z2<br />

|ω| → 1/τ 2<br />

rare regions<br />

are marginal!<br />

T. Vojta <strong>and</strong> J. Schmalian (2005); T. Vojta (2006)


Conclusions<br />

First dynamical confirmation of activated scaling from<br />

numerical simulations<br />

SMT has an infinite <strong>r<strong>and</strong>omness</strong> fixed point in <strong>the</strong><br />

RTFIM universality class<br />

Scratching <strong>the</strong> surface of transport calculations near a<br />

strong disorder fixed point

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!