18.01.2015 Views

Quantum Dynamics of a Superconducting Flux-Qubit

Quantum Dynamics of a Superconducting Flux-Qubit

Quantum Dynamics of a Superconducting Flux-Qubit

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Quantum</strong> coherent oscillations in a<br />

superconducting flux-qubit<br />

Irinel Chiorescu<br />

K. Harmans<br />

J.E. Mooij<br />

Yasunobu Nakamura<br />

(NEC & TU Delft)<br />

Delft University <strong>of</strong> Technology


<strong>Quantum</strong> Transport group<br />

Pr<strong>of</strong>. J.E. Mooij<br />

Kees Harmans<br />

<strong>Flux</strong>-qubit team<br />

visitors<br />

Yasunobu Nakamura (NEC Japan, 2001-2002)<br />

Kouichi Semba (NTT Japan, 2002-2003)<br />

PhD students<br />

Alexander ter Haar<br />

Adrian Lupacu<br />

Jelle Plantenberg<br />

postdocs<br />

Patrice Bertet<br />

Irinel Chiorescu<br />

students<br />

technical staff<br />

collaborations<br />

MIT, TU Delft (theory), U Munich, CEA-Saclay<br />

acknowledgements<br />

FOM (NL) , IST (EU) , ARO (US)


Outline<br />

introduction<br />

initialization, operation, readout<br />

sample<br />

results<br />

conclusion<br />

future plans


3 Josephson-junctions <strong>Quantum</strong> Bit<br />

J.E. Mooij et al, Science, 285, 1036 (1999)<br />

superconducting loop, with 3<br />

Josephson junctions<br />

2 are identical and the 3rd is<br />

smaller (α=0.6 − 0.8)<br />

Josephson Potential:<br />

U=ΣE J<br />

I<br />

u = U/E J<br />

u = 2 + α - cosγ 1 - cosγ 2 - αcos(γ 2 - γ 1 + 2πf)<br />

φ 1 = (γ 1 - γ 2 )/2 , φ 2 = (γ 1 + γ 2 )/2<br />

u = 2(1 - cosφ 1 cosφ 2 ) + 2αsin 2 (φ 1 - πf)


Josephson potential - phase space<br />

2 wells separated by a barrier<br />

for f=0.5, symmetric barrier<br />

α=0.8, f=0.5<br />

T in<br />

T out<br />

T out


Josephson potential - spin space<br />

u = 2 + α - cosγ 1 - cosγ 2 - αcos(γ 2 - γ 1 + 2πf)<br />

u = 2(1 - cosφ 1 cosφ 2 ) + 2αsin 2 (φ 1 - πf)<br />

s x = cosφ 1 cosφ 2 , s y = cosφ 1 sinφ 2 , s z = sin φ 1<br />

u = 2(1 ± s x ) + 2α(1 - s z2 ) +<br />

2α[(1 - 2s z2 )cos 2 πf ± s z √1-s z2 sin(2πf)]


<strong>Flux</strong> <strong>Qubit</strong> – two level system<br />

C. van der Wal et al, Science, 290, 773 (2000)<br />

Exact diagonalisation: two<br />

levels at the bottom <strong>of</strong> the<br />

spectra<br />

Two wells separated by a<br />

barrier<br />

0.5<br />

Persistent currents <strong>of</strong><br />

opposite direction |↑ and |↓<br />

SQUID critical current qubit<br />

→ persistent current<br />

Microwave induced<br />

excitation → level structure<br />

see also, J. Friedman et al, Nature, 406, 43 (2000)


Coherent oscillations<br />

Magnetic resonance with a single, macroscopic quasi-spin<br />

Bloch sphere<br />

|Ψ>=α|↑>+β|↓><br />

Rabi oscillations<br />

microwave excitation with<br />

frequency ω and amplitude A<br />

coherent rotations with Ω Rabi ∝ A<br />

A<br />

MW pulse<br />

ω = ∆E<br />

Ω Rabi ∝ A<br />

|e><br />

|g>


<strong>Qubit</strong> operated at the magic point<br />

|↑<br />

Hamiltonian and eigenstates<br />

|1<br />

H = -ε/2 σ z – ∆/2 σ x<br />

tan2θ = ∆/ ε<br />

|0 = cosθ |↑ + sinθ |↓<br />

|0<br />

|1 = -sinθ |↑ + cosθ |↓ |↓<br />

shift<br />

|↓<br />

|↑<br />

Initialization, ε = 0<br />

|Q = |0 = (|↑ +|↓)/√2<br />

Operation , ε = 0<br />

|Q = α|0 + β|1<br />

Readout , ε > 0<br />

|Q = α|0 + β|1<br />

|Q<br />

|1<br />

|0<br />

MW pulse ON<br />

(rotating frame)<br />

= |α| 2 - |β| 2<br />

|Q<br />

MW pulse OFF<br />

(lab frame)


Switching event measurements<br />

Device<br />

qubit merged with the SQUID<br />

strong coupling L<br />

I pulse<br />

~30ns rise/fall time<br />

shift<br />

t<br />

Readout<br />

bias current to switch the SQUID<br />

ramping generates the shift<br />

(preserving the qubit information)<br />

switching current depends on<br />

qubit state (spin up or down)<br />

pulse height: I sw0 < I b < I sw1<br />

see also the quantronium: Science, 296, 886 (2002)


Automatic shift <strong>of</strong> γ Q and switching<br />

qubit merged with the SQUID<br />

big junctions<br />

strong coupling L<br />

large circulating<br />

currents<br />

bias current generates<br />

a shift in γ qubit<br />

switching occurs far<br />

from degeneracy


Sample<br />

E J<br />

/E C<br />

= 34.65<br />

E C<br />

= 7.36 GHz<br />

α = 0.8<br />

∆ = 3.4 GHz<br />

I p<br />

= 330 nA<br />

large junctions<br />

I c<br />

= 2 µA<br />

strong coupling<br />

L=10 pH<br />

shunt capacitance<br />

C = 10 pF<br />

bias line<br />

R b<br />

= 150 Ω<br />

voltage line<br />

R v<br />

= 1 kΩ


Cavity, wiring


<strong>Qubit</strong> spectroscopy<br />

Energy (GHz)<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

0.46 0.48 0.50 0.52 0.54<br />

total flux (Φ 0 )<br />

(I sw - I bg ) / I ctr (%)<br />

F (GHz)<br />

2<br />

1<br />

0<br />

15<br />

10<br />

5<br />

0<br />

16 GHz<br />

16 GHz<br />

0.008 π<br />

∆ = 3.4 GHz<br />

-0.005 0.000 0.005<br />

∆Φ ext / Φ 0


artificial + automatic shift<br />

MW line: DC pulse added to the MW pulse (16GHz)<br />

<br />

<br />

DC pulse<br />

<br />

<br />

<br />

<br />

<br />

DC pulse<br />

<br />

0.0316 V<br />

0.585 V<br />

1.202 V<br />

3.8 V<br />

- 0.224 V<br />

- 4.7 V<br />

0.004 π<br />

0.0045 π


Spectroscopy around the ∆ gap<br />

DC shift<br />

16<br />

14<br />

12<br />

F (GHz)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-0.005 0.000 0.005<br />

∆Φ ext / Φ 0


Rabi: pulse scheme<br />

RF line: one microwave pulse with varying length<br />

bias line: Ib pulse<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

voltage line: detection <strong>of</strong> the switching pulse


Rabi coherent oscillations<br />

decay time ≈ 150 ns<br />

80<br />

0.6<br />

switching probability (%)<br />

60<br />

40<br />

80<br />

60<br />

40<br />

80<br />

A = 0 dBm<br />

A = -6 dBm<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Rabi frequency (GHz)<br />

60<br />

0.1<br />

F Larmor<br />

= 6.6 GHz<br />

40<br />

A = -12 dBm<br />

0.0<br />

0 10 20 30 40 50 60 70 80 90 100 0.0 0.5 1.0 1.5 2.0<br />

pulse length (ns)<br />

MW amplitude<br />

10^(A/20) (a.u.)<br />

I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science, 299, 1869 (2003)


Fast oscillations<br />

100<br />

90<br />

Psw (%)<br />

90<br />

60<br />

Switching probability (%)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Psw (%)<br />

30<br />

62<br />

60<br />

58<br />

0 10 20 30<br />

RF pulse length (ns)<br />

RF pulse length (ns)<br />

20<br />

500 510 520 530<br />

0 50 100 150 200 250 300 350 400 450 500<br />

RF pulse length (ns)


Towards single-shot resolution<br />

100<br />

80<br />

F=6.512 GHz<br />

A=-3 dBm<br />

switching probability (%)<br />

60<br />

40<br />

20<br />

0<br />

N- number <strong>of</strong> averaged events<br />

N=1<br />

N=10<br />

N=10000<br />

0 10 20 30 40 50 60 70 80<br />

RF pulse length (ns)


Ramsey interference<br />

Ramsey: two π/2 pulses with varying time in between<br />

<br />

π<br />

<br />

<br />

π


Ramsey fringes<br />

0 MHz<br />

F L<br />

= 5.61 GHz<br />

detuning<br />

P SW<br />

(%)<br />

90<br />

60<br />

30<br />

0 5 10 15 20 25 30<br />

time between two π/2 pulses (ns)<br />

310 MHz


Ramsey interference<br />

Ramsey: decoherence time T 2* ≈ 20 ns<br />

80<br />

P SW (%)<br />

70<br />

60<br />

50<br />

π/2 π/2<br />

0 5 10 15 20 25 30<br />

π/2<br />

distance between two π/2 pulses (ns)<br />

F L<br />

= 5.7 GHz, dF= 220 MHz, TRamsey: 4.5 ns


Spin-echo experiments<br />

spin-echo: two π/2 pulses and one π pulse in between<br />

with varying position<br />

<br />

π<br />

π<br />

π<br />

<br />

<br />

<br />

<br />

switching probability (%)<br />

70<br />

60<br />

50<br />

π/2<br />

π π/2<br />

-25 -20 -15 -10 -5 0 5 10 15 20 25<br />

position <strong>of</strong> π pulse (ns)<br />

F L = 5.7 GHz, dF= 220 MHz, TRamsey: 4.5 ns, Tspin-echo: 2.3 ns


Signal decay in spin-echo<br />

switching probability (%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Detuning<br />

F res<br />

= 5.64 GHz<br />

50MHz<br />

100MHz<br />

200MHz<br />

F Rabi<br />

= 297.6 MHz<br />

0 20 40 60 80 100<br />

distance between two π/2 pulses (ns)<br />

spin-echo: max signal decay time T 2 ≈ 30 ns


Relaxation measurements<br />

one π pulse and read-out pulse delayed<br />

<br />

π<br />

<br />

<br />

<br />

<br />

<br />

100<br />

switching probability (%)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

0 1 2 3 4 5 6 7 8 9 10<br />

delay time (µs)<br />

8.3 ns, A=-12dBm<br />

6 ns, A=-9dBm<br />

4.5 ns, A=-6dBm<br />

3.2 ns, A=-3dBm<br />

2.445 ns, A=0 dBm<br />

exp fit <strong>of</strong> A=-12dBm<br />

T 1<br />

= 870 ns


Conclusion<br />

we demonstrate coherent quantum<br />

oscillations in a superconducting flux-qubit<br />

spectroscopy<br />

relaxation time ≈ 1 µs<br />

Rabi oscillations with decay time ≈ 150 ns<br />

Ramsey interference: decoherence time ≈ 20 ns<br />

spin-echo experiment: decay time ≈ 30 ns

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!