02.01.2015 Views

t Hooft mechanism of confinement or dual Meissner effect

t Hooft mechanism of confinement or dual Meissner effect

t Hooft mechanism of confinement or dual Meissner effect

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mandelstam – Polyakov – ’t <strong>Ho<strong>of</strong>t</strong> <strong>mechanism</strong><br />

<strong>of</strong> <strong>confinement</strong> <strong>or</strong> <strong>dual</strong> <strong>Meissner</strong> <strong>effect</strong><br />

The usual <strong>Meissner</strong> <strong>effect</strong>: magnetic field cannot penetrate into the superconduct<strong>or</strong> (except<br />

by burning out a narrow tube where superconductivity is destroyed = Abrikosov v<strong>or</strong>tex).<br />

Two infinitely thin and long solenoids are, at their endpoints, sources <strong>of</strong> the Coulomb-like<br />

magnetic field.<br />

Superconduct<strong>or</strong><br />

solenoid<br />

N<br />

Flux tube<br />

S<br />

solenoid<br />

Energy <strong>of</strong> the magnetic ‘monopole-antimonopole’ pair = E ⊥ · L =⇒ linear potential<br />

energy between monopoles.<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Dual <strong>Meissner</strong> <strong>effect</strong>:<br />

• condensation <strong>of</strong> magnetic monopoles<br />

• quarks are sources <strong>of</strong> (col<strong>or</strong>ed) electric field<br />

• Along the tube connecting quarks the magnetic condensate is destroyed<br />

• electric field squeezed inside the tube<br />

= Abrikosov–Nielsen–Olesen v<strong>or</strong>tex<br />

Estimate <strong>of</strong> the string tension<br />

Landau–Ginsburg <strong>effect</strong>ive the<strong>or</strong>y <strong>of</strong> supersonductivity:<br />

E =<br />

∫<br />

d 3 r<br />

[<br />

B<br />

2<br />

2 + |(∂ i − ieA i )φ| 2 + λ 2 (φ 2 − v 2 ) 2 ]<br />

m W = ev, m H = λv, B = curl A.<br />

Dimensionless quantities: φ ′ = φ v , A′ i = A i<br />

m W<br />

,<br />

,<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


x = rm W , κ = λ e .<br />

E<br />

= Lv 2 ∫<br />

d 2 x<br />

[<br />

B<br />

′2<br />

2 + ∣ ∣(∂ i − ieA ′ i )φ′∣ ∣ 2 + κ 2 (φ ′ 2 − 1) 2 ]<br />

,<br />

v<strong>or</strong>tex transverse size ρ 0 ∼ 1 √ κ<br />

.<br />

String tension = σ = energy / length <strong>of</strong> the tube = v 2 [ O(1) + O<br />

(<br />

mH<br />

m W<br />

)].<br />

Londons’ limit: m H → ∞ =⇒ infinite-energy v<strong>or</strong>tex<br />

Bogomolny–Prasad–Sommerfeld limit: m H → 0.<br />

type-I superconduct<strong>or</strong>: (m H > m W ): no v<strong>or</strong>tices<br />

type-II superconduct<strong>or</strong>: (m H < m W ): yes<br />

One needs an analog <strong>of</strong> type II superconduct<strong>or</strong> with magnetic monopoles condensed.<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Polyakov’s realization <strong>of</strong> <strong>confinement</strong><br />

d = 2 + 1 Ge<strong>or</strong>gi–Glashow model: Yang–Mills SU(2) fields interacting with the Higgs<br />

field in the triplet representation:<br />

⎧(<br />

) 2<br />

⎫<br />

∫ ⎪⎨ F a (<br />

S = d 3 ij<br />

x + 1<br />

⎪⎩ 4g 2 2<br />

D ab<br />

i φb) 2 [ 2 + λ (φ a ) 2 − v 2] 2<br />

⎪⎬<br />

⎪⎭ .<br />

’t <strong>Ho<strong>of</strong>t</strong>–Polyakov monopole is a local minimum <strong>of</strong> this action:<br />

{<br />

φ a = ∓n a vΦ(r), n a = xa 0, r → 0<br />

r , Φ(r) → 1, r → ∞<br />

A a i<br />

1 − R(r)<br />

= ǫ aij n j , R(r) →<br />

r<br />

{ 1, r → 0<br />

0, r → ∞<br />

Magnetic field strength, B i<br />

r→∞<br />

∼<br />

n i<br />

r2 , is that <strong>of</strong> the magnetic monopole !<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Action = v g w (<br />

mH<br />

m W<br />

)<br />

≫ 1,<br />

w(0) = 4π (in the BPS limit)<br />

To add up hedgehogs, one has first to comb their hair!<br />

‘Stringy’ <strong>or</strong> singular gauge<br />

The the<strong>or</strong>y is invariant under gauge transf<strong>or</strong>mations:<br />

φ = φ a τ a<br />

2<br />

A i = A a τ a<br />

i<br />

2<br />

→<br />

S(x)φS † (x),<br />

→ S(x)A i S † (x) + iS∂ i S † .<br />

Choose the unitary gauge-transf<strong>or</strong>mation matrix S(x) such that<br />

S(n · τ)S † = τ 3 =⇒ S(θ, φ) = e −iφ 2 τ 3<br />

e iθ 2 τ 2<br />

e iφ 2 τ 3<br />

.<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


φ ′ = S φ S † = τ 3<br />

2 v Φ(r) → τ 3<br />

2 v,<br />

A ′ i<br />

=<br />

⎧<br />

⎨<br />

⎩<br />

A ′ r<br />

= 0<br />

A ′ θ<br />

= only inside c<strong>or</strong>e<br />

A ′ φ<br />

= inside c<strong>or</strong>e ∓ τ 3 1−cos θ<br />

2r sin θ .<br />

Magnetic field strength outside the monopole c<strong>or</strong>e at r ≫ 1/m W :<br />

B ′ r = ( curl A ′) r = 1<br />

r sin θ<br />

∂<br />

∂θ<br />

( )<br />

sin θ A ′ φ<br />

= ± τ 3<br />

2r 2.<br />

string singularity<br />

(gauge artifact)<br />

magnetic field<br />

<strong>of</strong> a monopole<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Monopole interactions<br />

One can add up (anti)monopoles only in the singular (‘stringy’) gauge where the Higgs<br />

field φ a r→∞<br />

−→ δ a3 v.<br />

The interaction <strong>of</strong> two (anti)monopoles is Coulomb-like at large separations:<br />

U int = 4π 1 (<br />

)<br />

±1 − e −r 12 m H .<br />

g 2 r 12<br />

Two gluons (out <strong>of</strong> three) W ± = A1 √±iA 2<br />

2<br />

have large masses m W = gv and decouple.<br />

The third gluon (the ‘photon’) is massless, but there are monopoles around.<br />

Monopole ensemble<br />

Monopole ‘weight’ <strong>or</strong> ‘fugacity’<br />

ζ = (pre−exponent) · exp(−Action) = controllably small.<br />

At small momenta, the the<strong>or</strong>y becomes the the<strong>or</strong>y <strong>of</strong> plasma <strong>of</strong> magnetic charges <strong>of</strong><br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


opposite sign. The grand canonical partition function is<br />

Z = ∑<br />

ζ N + ζ N −<br />

N<br />

N + ,N + ! N − !<br />

−<br />

∏<br />

∫<br />

m<br />

d 3 z m exp<br />

(<br />

− 4π<br />

g 2 ∑<br />

m


= exp − 1 2<br />

4π<br />

g 2 ∫ ∫<br />

= exp − 4π<br />

g 2 ∑<br />

m


Hence<br />

∫ { ∫<br />

Z = Dw exp −<br />

d 3 x<br />

[<br />

( )]}<br />

1<br />

4π<br />

2 (∂ iw) 2 − 2ζ cos<br />

g w .<br />

( ) 4π<br />

−2ζ cos<br />

g w<br />

≃ −2ζ + 1 2 µ2 w 2 ,<br />

µ 2 = 2ζ<br />

( 4π<br />

g<br />

) 2<br />

Debye mass!<br />

The plasma partition function is mathematically equivalent to the ‘Sine-G<strong>or</strong>don’ field<br />

the<strong>or</strong>y. The field w has the meaning <strong>of</strong> the <strong>dual</strong> potential: it gets a nonzero mass owing<br />

to the Debye screening in the monopole plasma.<br />

Z = exp<br />

⎧<br />

⎪⎨<br />

⎪⎩ 2ζV + 1<br />

12π<br />

[<br />

2ζ<br />

( 4π<br />

g<br />

⎫<br />

)<br />

]3<br />

2 2 ⎪⎬<br />

V + . . .<br />

⎪⎭<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Average monopole density:<br />

¯N<br />

V = 1 V<br />

∂ ln Z<br />

∂ ln ζ<br />

= 2ζ + Coulomb c<strong>or</strong>rections<br />

In the weak-coupling regime g ≪ v monopoles are heavy, their density is small, everything<br />

is under control, this the<strong>or</strong>y becomes exact!<br />

Other ways to present plasma<br />

Z = ∑ N ±<br />

ζ N + +N −<br />

N + !N − !<br />

×<br />

∫<br />

Dρ(x) δ<br />

∏<br />

∫<br />

m<br />

d 3 z m e −4π ∑<br />

g 2<br />

qmqn<br />

|zm−zn|<br />

(<br />

ρ − ∑ )<br />

q m δ(x − z m )<br />

δ(...) =<br />

∫<br />

Dµ(x) exp<br />

[ ∫<br />

i<br />

d 3 x µρ − i ∑ ]<br />

q m µ(z m )<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


∫<br />

∫ [<br />

( ) ]<br />

= DρDµDw exp − d 3 1 4π<br />

x<br />

2 (∂ iw) 2 −2ζ cos<br />

g w − µ −iµρ .<br />

New variables: 4π g w − µ = ψ;<br />

4π<br />

g<br />

w + µ = φ ←−integrate over<br />

Z =<br />

∫ ∫<br />

DρDψ exp<br />

d 3 x<br />

[<br />

1<br />

2<br />

( 4π<br />

g<br />

) 2<br />

ρ 1 △ ρ−iψρ+2ζ cos ψ ]<br />

=<br />

∫<br />

∫<br />

Dρ exp<br />

d 3 x<br />

[<br />

1<br />

2<br />

( 4π<br />

g<br />

) 2<br />

ρ 1 △ ρ − V (ρ) ]<br />

V (ρ) = ρ ln<br />

(<br />

ρ<br />

2ζ + √<br />

1 + ρ2<br />

4ζ 2 )<br />

+ 2ζ<br />

√<br />

1 + ρ2<br />

4ζ 2<br />

ρ≪ζ<br />

−→<br />

−2ζ + ρ2<br />

4ζ<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Unusual: div B 3 = −4πρ, curl B 3 = 0 (!)<br />

The ‘kinetic energy’ <strong>of</strong> monopole density is nothing but the magnetic energy:<br />

Hence<br />

∫<br />

− d 3 x 1 2<br />

( 4π<br />

g<br />

) 2<br />

ρ 1 △ ρ = 1 ∫<br />

∫<br />

d 3 1<br />

xB<br />

2g 2 i ∂ i<br />

△ ∂ jB j = d 3 x B iB i<br />

2g . 2<br />

∫<br />

∫<br />

Z = DB i δ(curlB) Dψ exp d 3 x<br />

[<br />

]<br />

− B2<br />

2g + idivB 2 4π ψ + 2ζ cos ψ .<br />

Confinement (= Area law f<strong>or</strong> large Wilson loops<br />

Wilson loop<br />

∮<br />

W = Tr P exp i<br />

dx i A a i<br />

τ a<br />

2 .<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


At large distances from monopoles only colour A 3 i<br />

Stokes the<strong>or</strong>em:<br />

∫<br />

W = Tr exp i d 2 S i B 3 i<br />

component survives =⇒ can use the<br />

τ 3<br />

2 = e i 2 Φ + e − i 2 Φ ,<br />

where Φ = ∫ d 2 S i B 3 i<br />

is the flux <strong>of</strong> the magnetic field created by monopoles and<br />

antimonopoles in the plasma, through the surface spanned over the Wilson loop.<br />

Wilson ( loop averaged over the ensemble <strong>of</strong> monopoles: have to plunge the source term<br />

∫ )<br />

i<br />

exp<br />

2 d<br />

2−→ S·−→ B into the partition function, and integrate over all possible magnetic<br />

fields.<br />

F<strong>or</strong> large loops (say, lying in the z =0 plane), one can use the saddle-point method and<br />

find the ‘best’ fields −→ B, ψ minimizing the energy together with the surface source:<br />

B i (x, y, z) = δ iz B(z), ψ = ψ(z),<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


1<br />

g 2B(z) + i<br />

4π<br />

i dB<br />

dz<br />

f<strong>or</strong> x, y inside the contour. The solution:<br />

dψ<br />

dz = i 2 δ(z),<br />

− 8πζ sin ψ = 0,<br />

e −µ|z|<br />

B = i g2 µ<br />

π 1 + e −2µ|z|,<br />

(<br />

ψ = 4 sign(z) atan e −µ|z|) .<br />

The solution c<strong>or</strong>responds to a purely imaginary double layer <strong>of</strong> monopoles around the<br />

surface.<br />

String tension<br />

< W > = exp (−σ Area) ,<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


σ = g2 µ<br />

= 2g √<br />

2ζ,<br />

2π 2 π<br />

prop<strong>or</strong>tional to the square root <strong>of</strong> the mean monopole density N/V = 2ζ.<br />

No massless states are left in the the<strong>or</strong>y. F<strong>or</strong> example, consider the c<strong>or</strong>relation function <strong>of</strong><br />

the magnetic field (in momentum space):<br />

< B 3 i (p)B3 j (−p) ><br />

(<br />

= g 2 δ ij − p )<br />

ip j<br />

+ (4π) 2 N p i p j<br />

p 2 V p − N<br />

4 (4π)2 V<br />

µ 2 p i p j<br />

p 2 + µ 2 p 4<br />

= g 2 (<br />

δ ij −<br />

p )<br />

(<br />

ip j<br />

4π<br />

, Debye mass : µ 2 = 2ζ<br />

p 2 + µ 2 g<br />

) 2<br />

.<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Best dreams fulfilled! [A. Polyakov, Nucl. Phys. B (1977)]. However,<br />

i) d = 2 + 1 and ii) the gauge group SU(2) is explicitly broken by the Higgs field down<br />

to U(1) where the <strong>dual</strong> photon gets the mass.<br />

M<strong>or</strong>e recent achievements:<br />

• N = 2, d = 3 + 1 supersymmetric the<strong>or</strong>y, s<strong>of</strong>tly broken to N = 1 supersymmetric<br />

the<strong>or</strong>y. It is also shown to possess <strong>confinement</strong> and mass gap – m<strong>or</strong>e <strong>or</strong> less due to<br />

the same <strong>mechanism</strong> (<strong>of</strong> monopole condensation) [Seiberg and Witten (1994), Douglas<br />

and Shenker (1995)]<br />

• pure Yang–Mills d = 3 + 1 non-supersymmetric the<strong>or</strong>y [D.D. and Petrov (2007)] is<br />

also shown to possess <strong>confinement</strong>, at least at the semiclassical level!<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!