02.01.2015 Views

t Hooft mechanism of confinement or dual Meissner effect

t Hooft mechanism of confinement or dual Meissner effect

t Hooft mechanism of confinement or dual Meissner effect

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Mandelstam – Polyakov – ’t <strong>Ho<strong>of</strong>t</strong> <strong>mechanism</strong><br />

<strong>of</strong> <strong>confinement</strong> <strong>or</strong> <strong>dual</strong> <strong>Meissner</strong> <strong>effect</strong><br />

The usual <strong>Meissner</strong> <strong>effect</strong>: magnetic field cannot penetrate into the superconduct<strong>or</strong> (except<br />

by burning out a narrow tube where superconductivity is destroyed = Abrikosov v<strong>or</strong>tex).<br />

Two infinitely thin and long solenoids are, at their endpoints, sources <strong>of</strong> the Coulomb-like<br />

magnetic field.<br />

Superconduct<strong>or</strong><br />

solenoid<br />

N<br />

Flux tube<br />

S<br />

solenoid<br />

Energy <strong>of</strong> the magnetic ‘monopole-antimonopole’ pair = E ⊥ · L =⇒ linear potential<br />

energy between monopoles.<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Dual <strong>Meissner</strong> <strong>effect</strong>:<br />

• condensation <strong>of</strong> magnetic monopoles<br />

• quarks are sources <strong>of</strong> (col<strong>or</strong>ed) electric field<br />

• Along the tube connecting quarks the magnetic condensate is destroyed<br />

• electric field squeezed inside the tube<br />

= Abrikosov–Nielsen–Olesen v<strong>or</strong>tex<br />

Estimate <strong>of</strong> the string tension<br />

Landau–Ginsburg <strong>effect</strong>ive the<strong>or</strong>y <strong>of</strong> supersonductivity:<br />

E =<br />

∫<br />

d 3 r<br />

[<br />

B<br />

2<br />

2 + |(∂ i − ieA i )φ| 2 + λ 2 (φ 2 − v 2 ) 2 ]<br />

m W = ev, m H = λv, B = curl A.<br />

Dimensionless quantities: φ ′ = φ v , A′ i = A i<br />

m W<br />

,<br />

,<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


x = rm W , κ = λ e .<br />

E<br />

= Lv 2 ∫<br />

d 2 x<br />

[<br />

B<br />

′2<br />

2 + ∣ ∣(∂ i − ieA ′ i )φ′∣ ∣ 2 + κ 2 (φ ′ 2 − 1) 2 ]<br />

,<br />

v<strong>or</strong>tex transverse size ρ 0 ∼ 1 √ κ<br />

.<br />

String tension = σ = energy / length <strong>of</strong> the tube = v 2 [ O(1) + O<br />

(<br />

mH<br />

m W<br />

)].<br />

Londons’ limit: m H → ∞ =⇒ infinite-energy v<strong>or</strong>tex<br />

Bogomolny–Prasad–Sommerfeld limit: m H → 0.<br />

type-I superconduct<strong>or</strong>: (m H > m W ): no v<strong>or</strong>tices<br />

type-II superconduct<strong>or</strong>: (m H < m W ): yes<br />

One needs an analog <strong>of</strong> type II superconduct<strong>or</strong> with magnetic monopoles condensed.<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Polyakov’s realization <strong>of</strong> <strong>confinement</strong><br />

d = 2 + 1 Ge<strong>or</strong>gi–Glashow model: Yang–Mills SU(2) fields interacting with the Higgs<br />

field in the triplet representation:<br />

⎧(<br />

) 2<br />

⎫<br />

∫ ⎪⎨ F a (<br />

S = d 3 ij<br />

x + 1<br />

⎪⎩ 4g 2 2<br />

D ab<br />

i φb) 2 [ 2 + λ (φ a ) 2 − v 2] 2<br />

⎪⎬<br />

⎪⎭ .<br />

’t <strong>Ho<strong>of</strong>t</strong>–Polyakov monopole is a local minimum <strong>of</strong> this action:<br />

{<br />

φ a = ∓n a vΦ(r), n a = xa 0, r → 0<br />

r , Φ(r) → 1, r → ∞<br />

A a i<br />

1 − R(r)<br />

= ǫ aij n j , R(r) →<br />

r<br />

{ 1, r → 0<br />

0, r → ∞<br />

Magnetic field strength, B i<br />

r→∞<br />

∼<br />

n i<br />

r2 , is that <strong>of</strong> the magnetic monopole !<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Action = v g w (<br />

mH<br />

m W<br />

)<br />

≫ 1,<br />

w(0) = 4π (in the BPS limit)<br />

To add up hedgehogs, one has first to comb their hair!<br />

‘Stringy’ <strong>or</strong> singular gauge<br />

The the<strong>or</strong>y is invariant under gauge transf<strong>or</strong>mations:<br />

φ = φ a τ a<br />

2<br />

A i = A a τ a<br />

i<br />

2<br />

→<br />

S(x)φS † (x),<br />

→ S(x)A i S † (x) + iS∂ i S † .<br />

Choose the unitary gauge-transf<strong>or</strong>mation matrix S(x) such that<br />

S(n · τ)S † = τ 3 =⇒ S(θ, φ) = e −iφ 2 τ 3<br />

e iθ 2 τ 2<br />

e iφ 2 τ 3<br />

.<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


φ ′ = S φ S † = τ 3<br />

2 v Φ(r) → τ 3<br />

2 v,<br />

A ′ i<br />

=<br />

⎧<br />

⎨<br />

⎩<br />

A ′ r<br />

= 0<br />

A ′ θ<br />

= only inside c<strong>or</strong>e<br />

A ′ φ<br />

= inside c<strong>or</strong>e ∓ τ 3 1−cos θ<br />

2r sin θ .<br />

Magnetic field strength outside the monopole c<strong>or</strong>e at r ≫ 1/m W :<br />

B ′ r = ( curl A ′) r = 1<br />

r sin θ<br />

∂<br />

∂θ<br />

( )<br />

sin θ A ′ φ<br />

= ± τ 3<br />

2r 2.<br />

string singularity<br />

(gauge artifact)<br />

magnetic field<br />

<strong>of</strong> a monopole<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Monopole interactions<br />

One can add up (anti)monopoles only in the singular (‘stringy’) gauge where the Higgs<br />

field φ a r→∞<br />

−→ δ a3 v.<br />

The interaction <strong>of</strong> two (anti)monopoles is Coulomb-like at large separations:<br />

U int = 4π 1 (<br />

)<br />

±1 − e −r 12 m H .<br />

g 2 r 12<br />

Two gluons (out <strong>of</strong> three) W ± = A1 √±iA 2<br />

2<br />

have large masses m W = gv and decouple.<br />

The third gluon (the ‘photon’) is massless, but there are monopoles around.<br />

Monopole ensemble<br />

Monopole ‘weight’ <strong>or</strong> ‘fugacity’<br />

ζ = (pre−exponent) · exp(−Action) = controllably small.<br />

At small momenta, the the<strong>or</strong>y becomes the the<strong>or</strong>y <strong>of</strong> plasma <strong>of</strong> magnetic charges <strong>of</strong><br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


opposite sign. The grand canonical partition function is<br />

Z = ∑<br />

ζ N + ζ N −<br />

N<br />

N + ,N + ! N − !<br />

−<br />

∏<br />

∫<br />

m<br />

d 3 z m exp<br />

(<br />

− 4π<br />

g 2 ∑<br />

m


= exp − 1 2<br />

4π<br />

g 2 ∫ ∫<br />

= exp − 4π<br />

g 2 ∑<br />

m


Hence<br />

∫ { ∫<br />

Z = Dw exp −<br />

d 3 x<br />

[<br />

( )]}<br />

1<br />

4π<br />

2 (∂ iw) 2 − 2ζ cos<br />

g w .<br />

( ) 4π<br />

−2ζ cos<br />

g w<br />

≃ −2ζ + 1 2 µ2 w 2 ,<br />

µ 2 = 2ζ<br />

( 4π<br />

g<br />

) 2<br />

Debye mass!<br />

The plasma partition function is mathematically equivalent to the ‘Sine-G<strong>or</strong>don’ field<br />

the<strong>or</strong>y. The field w has the meaning <strong>of</strong> the <strong>dual</strong> potential: it gets a nonzero mass owing<br />

to the Debye screening in the monopole plasma.<br />

Z = exp<br />

⎧<br />

⎪⎨<br />

⎪⎩ 2ζV + 1<br />

12π<br />

[<br />

2ζ<br />

( 4π<br />

g<br />

⎫<br />

)<br />

]3<br />

2 2 ⎪⎬<br />

V + . . .<br />

⎪⎭<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Average monopole density:<br />

¯N<br />

V = 1 V<br />

∂ ln Z<br />

∂ ln ζ<br />

= 2ζ + Coulomb c<strong>or</strong>rections<br />

In the weak-coupling regime g ≪ v monopoles are heavy, their density is small, everything<br />

is under control, this the<strong>or</strong>y becomes exact!<br />

Other ways to present plasma<br />

Z = ∑ N ±<br />

ζ N + +N −<br />

N + !N − !<br />

×<br />

∫<br />

Dρ(x) δ<br />

∏<br />

∫<br />

m<br />

d 3 z m e −4π ∑<br />

g 2<br />

qmqn<br />

|zm−zn|<br />

(<br />

ρ − ∑ )<br />

q m δ(x − z m )<br />

δ(...) =<br />

∫<br />

Dµ(x) exp<br />

[ ∫<br />

i<br />

d 3 x µρ − i ∑ ]<br />

q m µ(z m )<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


∫<br />

∫ [<br />

( ) ]<br />

= DρDµDw exp − d 3 1 4π<br />

x<br />

2 (∂ iw) 2 −2ζ cos<br />

g w − µ −iµρ .<br />

New variables: 4π g w − µ = ψ;<br />

4π<br />

g<br />

w + µ = φ ←−integrate over<br />

Z =<br />

∫ ∫<br />

DρDψ exp<br />

d 3 x<br />

[<br />

1<br />

2<br />

( 4π<br />

g<br />

) 2<br />

ρ 1 △ ρ−iψρ+2ζ cos ψ ]<br />

=<br />

∫<br />

∫<br />

Dρ exp<br />

d 3 x<br />

[<br />

1<br />

2<br />

( 4π<br />

g<br />

) 2<br />

ρ 1 △ ρ − V (ρ) ]<br />

V (ρ) = ρ ln<br />

(<br />

ρ<br />

2ζ + √<br />

1 + ρ2<br />

4ζ 2 )<br />

+ 2ζ<br />

√<br />

1 + ρ2<br />

4ζ 2<br />

ρ≪ζ<br />

−→<br />

−2ζ + ρ2<br />

4ζ<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Unusual: div B 3 = −4πρ, curl B 3 = 0 (!)<br />

The ‘kinetic energy’ <strong>of</strong> monopole density is nothing but the magnetic energy:<br />

Hence<br />

∫<br />

− d 3 x 1 2<br />

( 4π<br />

g<br />

) 2<br />

ρ 1 △ ρ = 1 ∫<br />

∫<br />

d 3 1<br />

xB<br />

2g 2 i ∂ i<br />

△ ∂ jB j = d 3 x B iB i<br />

2g . 2<br />

∫<br />

∫<br />

Z = DB i δ(curlB) Dψ exp d 3 x<br />

[<br />

]<br />

− B2<br />

2g + idivB 2 4π ψ + 2ζ cos ψ .<br />

Confinement (= Area law f<strong>or</strong> large Wilson loops<br />

Wilson loop<br />

∮<br />

W = Tr P exp i<br />

dx i A a i<br />

τ a<br />

2 .<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


At large distances from monopoles only colour A 3 i<br />

Stokes the<strong>or</strong>em:<br />

∫<br />

W = Tr exp i d 2 S i B 3 i<br />

component survives =⇒ can use the<br />

τ 3<br />

2 = e i 2 Φ + e − i 2 Φ ,<br />

where Φ = ∫ d 2 S i B 3 i<br />

is the flux <strong>of</strong> the magnetic field created by monopoles and<br />

antimonopoles in the plasma, through the surface spanned over the Wilson loop.<br />

Wilson ( loop averaged over the ensemble <strong>of</strong> monopoles: have to plunge the source term<br />

∫ )<br />

i<br />

exp<br />

2 d<br />

2−→ S·−→ B into the partition function, and integrate over all possible magnetic<br />

fields.<br />

F<strong>or</strong> large loops (say, lying in the z =0 plane), one can use the saddle-point method and<br />

find the ‘best’ fields −→ B, ψ minimizing the energy together with the surface source:<br />

B i (x, y, z) = δ iz B(z), ψ = ψ(z),<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


1<br />

g 2B(z) + i<br />

4π<br />

i dB<br />

dz<br />

f<strong>or</strong> x, y inside the contour. The solution:<br />

dψ<br />

dz = i 2 δ(z),<br />

− 8πζ sin ψ = 0,<br />

e −µ|z|<br />

B = i g2 µ<br />

π 1 + e −2µ|z|,<br />

(<br />

ψ = 4 sign(z) atan e −µ|z|) .<br />

The solution c<strong>or</strong>responds to a purely imaginary double layer <strong>of</strong> monopoles around the<br />

surface.<br />

String tension<br />

< W > = exp (−σ Area) ,<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


σ = g2 µ<br />

= 2g √<br />

2ζ,<br />

2π 2 π<br />

prop<strong>or</strong>tional to the square root <strong>of</strong> the mean monopole density N/V = 2ζ.<br />

No massless states are left in the the<strong>or</strong>y. F<strong>or</strong> example, consider the c<strong>or</strong>relation function <strong>of</strong><br />

the magnetic field (in momentum space):<br />

< B 3 i (p)B3 j (−p) ><br />

(<br />

= g 2 δ ij − p )<br />

ip j<br />

+ (4π) 2 N p i p j<br />

p 2 V p − N<br />

4 (4π)2 V<br />

µ 2 p i p j<br />

p 2 + µ 2 p 4<br />

= g 2 (<br />

δ ij −<br />

p )<br />

(<br />

ip j<br />

4π<br />

, Debye mass : µ 2 = 2ζ<br />

p 2 + µ 2 g<br />

) 2<br />

.<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12


Best dreams fulfilled! [A. Polyakov, Nucl. Phys. B (1977)]. However,<br />

i) d = 2 + 1 and ii) the gauge group SU(2) is explicitly broken by the Higgs field down<br />

to U(1) where the <strong>dual</strong> photon gets the mass.<br />

M<strong>or</strong>e recent achievements:<br />

• N = 2, d = 3 + 1 supersymmetric the<strong>or</strong>y, s<strong>of</strong>tly broken to N = 1 supersymmetric<br />

the<strong>or</strong>y. It is also shown to possess <strong>confinement</strong> and mass gap – m<strong>or</strong>e <strong>or</strong> less due to<br />

the same <strong>mechanism</strong> (<strong>of</strong> monopole condensation) [Seiberg and Witten (1994), Douglas<br />

and Shenker (1995)]<br />

• pure Yang–Mills d = 3 + 1 non-supersymmetric the<strong>or</strong>y [D.D. and Petrov (2007)] is<br />

also shown to possess <strong>confinement</strong>, at least at the semiclassical level!<br />

Confinement in the 3d Ge<strong>or</strong>gi–Glashow model D. Diakonov, L-12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!