02.01.2015 Views

High Power Diode Lasers - Center for Biomedical Optics and New ...

High Power Diode Lasers - Center for Biomedical Optics and New ...

High Power Diode Lasers - Center for Biomedical Optics and New ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bio-Photonics ’03 Summer School<br />

<strong>High</strong> <strong>Power</strong> <strong>Diode</strong> <strong>Lasers</strong><br />

Fabrication<br />

Characterization<br />

Results in the near IR (732-980 nm)<br />

Applications<br />

Michel Krakowski<br />

Sophie-Charlotte Auzanneau<br />

Thales Research <strong>and</strong> Technology France


Fabrication<br />

•Materials<br />

• Epitaxy<br />

• Process<br />

Characterization<br />

Laser diodes<br />

• power <strong>and</strong> spectrum measurement<br />

• far-field <strong>and</strong> near-field measurement<br />

• The M² factor : definition, measurement<br />

• Saturation of the power : cause <strong>and</strong> solution = the large optical cavity<br />

Main epitaxial structures : at 808 nm, 940 nm, 980 nm <strong>and</strong> 732 nm<br />

Examples of lasers diodes<br />

• Ridge <strong>and</strong> broad-area lasers at 980 nm<br />

• high brigthness lasers near at 980 nm<br />

• state of the art<br />

• external approach : four-wave mixing<br />

• internal approach : the tapered laser diode<br />

• Tapered lasers bars at 980 nm coupled into an optical fiber<br />

• Laser diodes at 732 nm : broad-area laser results <strong>and</strong> aging test<br />

• Application to photodynamic therapy of laser diodes at 732 nm<br />

• Application to surgery <strong>and</strong> dentistry of laser diodes at 980 nm


How is a laser diode<br />

Max. size : 3 mm long<br />

<strong>and</strong> 100-200 µm large<br />

On Indium<br />

18 Au wires<br />

Laser<br />

6 mm<br />

Output<br />

facet<br />

Laser<br />

Alumina<br />

3 mm<br />

Copper holder


Schematic of a laser diode = stack of semiconductor materials<br />

layers<br />

Anti-reflection<br />

coating (AR 3%)<br />

100-200 µm<br />

<strong>High</strong><br />

reflection<br />

coating<br />

(HR 95%)<br />

2- 3mm<br />

Electrodes<br />

Confinement<br />

layers<br />

Separated<br />

confinement layers<br />

Cleaved facets<br />

Current injection<br />

Photon guiding<br />

Optical losses are<br />

reduced<br />

Mirrors<br />

Active region<br />

Lateral passivation<br />

Photon generating<br />

Electrical isolation


Which material system <strong>for</strong> which wavelength<br />

II-VI compounds<br />

<strong>Diode</strong> lasers<br />

GaN/AlInGaN<br />

GaAs/GaInAs/GaAlAs<br />

GaAs/GaInAsP<br />

InP/GaInAsP<br />

0<br />

0 0.5 1.0 1.5<br />

2.0<br />

Wavelength ( µm)<br />

GaSb/<br />

AlGaInSbAs<br />

Quantum Cascade lasers<br />

GaAs/AlGaAs<br />

GaInAs/AlInAs/InP<br />

THz <strong>and</strong><br />

mm wave<br />

0<br />

0 5 10 15 20<br />

Wavelength (<br />

µm)


Steps of the fabrication of a laser diode<br />

1- SUBSTRAT (wafer) 2- EPITAXY : growth of layers 3- LASER PROCESSING<br />

4- FACETS CLEAVING 5-chip cleaving<br />

6- MOUNTING, BONDING<br />

A 2’’ wafer ≈ 1000-2000 chips


substrate<br />

Schematic of the growth of semiconductor layers<br />

Dissociated<br />

molecules<br />

Dissociated<br />

molecules


Layers growth : 2 kinds of epitaxy<br />

MBE : Molecular Beam Epitaxy<br />

MOCVD : Metallo-Organic<br />

Chemical Vapor Deposition<br />

Molecules fluxes, with ≠ rates<br />

Gas fluxes, with ≠ rates<br />

Wafer en<br />

rotation<br />

400-500°<br />

Dissociated<br />

molecules<br />

Unused<br />

gas<br />

Rotating wafer ∼<br />

650°<br />

Liquid or solid sources<br />

Gas sources


Layers growth : 2 kinds of epitaxy<br />

MBE : Molecular Beam Epitaxy<br />

MOCVD : Metallo-Organic<br />

Chemical Vapor Deposition<br />

slow growth : good controle of the<br />

interfaces quality atomic layers.<br />

ultravacuum (10 -10 Torr)<br />

Controle in-situ of the thicknesses of the<br />

layers (diffraction X)<br />

A usual laser diode = 6h<br />

Quantum cascade laser diode = 40h<br />

Machines : Riber, Varian (en salle<br />

blanche)….<br />

No phosphide.<br />

faster growth : layers thicker 50-70 nm<br />

(no quantum cascade laser).<br />

under weak pressure or ambiant pressure.<br />

A usual laser diode = 5-6h<br />

Machines : Aixtron (white room)….<br />

phosphore allowed.<br />

organo-métallic = gas giving elements III<br />

( Triméthyl In, Ga, Al…)<br />

Arsine (As), phosphine (P), Silane (Si) :<br />

toxiques<br />

1 epitaxy machine = a small truck


Si 3 N 4 , SiO 2<br />

Process : why <br />

To define a surface where the current is injected<br />

Typical threshold current density of a laser diode J th<br />

~ 100 A/cm 2 to 1 kA/cm²<br />

To minimize it, we reduce the injection surface!<br />

Active region<br />

contact<br />

~<br />

Substrate<br />

~<br />

process<br />

~<br />

Substrate<br />

~<br />

EPITAXY<br />

size = 1 - 100<br />

mm<br />

Laser surface = 1 cm 2 I th = 100A to 1000 A !<br />

Laser surface = 100 µm x 1 mm = 10 -3 cm 2<br />

I th = 100 mA to 1 A


Process<br />

Three steps of the planar process<br />

Photolithography<br />

Masquage et<br />

Insolation UV<br />

Développement<br />

et ouverture<br />

Etching<br />

Ionic etching (dry etching)<br />

Chemical etching<br />

Coating<br />

(metallic <strong>and</strong> dielectric)


Then mounting on copper holder …<br />

p-down<br />

p-up<br />

N side<br />

xxxxxxxxx<br />

xxxxxxxxx<br />

P side<br />

xxxxxxxxx<br />

soldering<br />

xxxxxxxxx<br />

P side<br />

soldering<br />

N side<br />

current<br />

Thermal regulation (Peltier)<br />

current<br />

Thermal regulation (Peltier)<br />

The heat is well dissipated because<br />

the active region is near the<br />

thermal regulation<br />

For specific technologies<br />

high power laser diodes


And electrical wires soldering …<br />

Scale : the micron !!<br />

Now we can characterize the laser diode ... ha ha ha ...


Fabrication<br />

•Materials<br />

• Epitaxy<br />

• Process<br />

Characterization<br />

Laser diodes<br />

• power <strong>and</strong> spectrum measurement<br />

• far-field <strong>and</strong> near-field measurement<br />

• The M² factor : definition, measurement<br />

• Saturation of the power : cause <strong>and</strong> solution = the large optical cavity<br />

Main epitaxial structures : at 808 nm, 940 nm, 980 nm <strong>and</strong> 732 nm<br />

Examples of lasers diodes<br />

• Ridge <strong>and</strong> broad-area lasers at 980 nm<br />

• high brigthness lasers near at 980 nm<br />

• state of the art<br />

• external approach : four-wave mixing<br />

• internal approach : the tapered laser diode<br />

• Tapered lasers bars at 980 nm coupled into an optical fiber<br />

• Laser diodes at 732 nm : broad-area laser results <strong>and</strong> aging test<br />

• Application to photodynamic therapy of laser diodes at 732 nm<br />

• Application to surgery <strong>and</strong> dentistry of laser diodes at 980 nm


The laser diode : assymetric device elliptic<br />

beam<br />

Perpendicular (fast) axis<br />

Near-field (µm)<br />

∼ 1 µm<br />

<strong>Diode</strong> laser<br />

θ y<br />

cavité optique<br />

θ x<br />

HR<br />

AR<br />

Parallel (slow) axis<br />

Far-field<br />

(rad)<br />

We characterize<br />

according to each axis (no<br />

correlation)<br />

In the ⊥ direction, monomode<br />

beam. In the // direction, it’s<br />

different …


Polarization of a laser diode<br />

Point <strong>for</strong> electrical<br />

contact<br />

With a p-down laser<br />

diode :<br />

Pol. -<br />

Pol. +<br />

Thermal regulation


• power measurement : high divergence of the beam<br />

⇒ we use a sphere.<br />

z<br />

Laser diode<br />

Photodiode :<br />

power<br />

calculation<br />

Thermal<br />

regulation<br />

+<br />

spectrometer<br />

<strong>for</strong> λ


• Near-field measurement<br />

Microscope objective<br />

Laser diode<br />

CCD camera<br />

z<br />

Beam analyser<br />

Camera linked<br />

to a PC (beam<br />

analyser)


• far-field measurement<br />

Laser diode<br />

Diverging beam<br />

Rotating<br />

photodiode<br />

0.0<br />

-20<br />

power<br />

0.2 0.4 0.6 0.8 1.0<br />

θ<br />

z<br />

a<br />

n<br />

g<br />

l<br />

e<br />

-10<br />

0<br />

10<br />

θ 1/e²<br />

θ 1/2<br />

20<br />

θ


Brightness 3D (W.cm<br />

- 2<br />

.sr<br />

-1<br />

) =<br />

Luminance (brightness)<br />

emissive<br />

Optical<strong>Power</strong> (W)<br />

area (cm²) * solid<br />

angle<br />

(sr)<br />

Brightness<br />

1D<br />

-1 -1<br />

(W.cm .rad )<br />

=<br />

Perpendicular<br />

(fast) axis<br />

Optical<strong>Power</strong> (W)<br />

W (cm)* θ (rad)<br />

Near-<br />

field<br />

∝<br />

Optical<strong>Power</strong> (W)<br />

M<br />

²<br />

1D<br />

Laser diode<br />

θ y<br />

W x<br />

Optical cavity<br />

θ x<br />

Parallel (slow) axis<br />

Luminance ⇒ spatial beam quality ⇒ M² ⇒ near-field size <strong>and</strong> far-field<br />

angle of the beam.<br />

Far-<br />

field


W(z) =<br />

W<br />

W(z)<br />

0<br />

⎛<br />

1+<br />

⎜<br />

⎜<br />

⎝<br />

The Gaussian beam<br />

2<br />

⎞<br />

M2λ(z<br />

− z0)<br />

⎟<br />

2 ⎛ π ⎞<br />

M = ⎜ ⎟θ<br />

W > 1<br />

2 ⎟<br />

1/e² 01/e²<br />

πW0<br />

⎝ λ ⎠<br />

⎠<br />

0<br />

1<br />

Waist : 2 w 0<br />

z<br />

2θ<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-20 -10 0 1<br />

Taille u.a. 0<br />

W 0 1/e²<br />

2<br />

0<br />

Near-field at the waist -20 -10 0 10 20<br />

Ref. : A.E.Siegman, « <strong>New</strong> developments in laser resonators », SPIE Vol. 1224, 1990<br />

u.a.<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Divergence u.a.<br />

Far-field<br />

θ 1/e²


What is the limitation of the emitted power<br />

• <strong>Diode</strong> heating : power saturation , normally<br />

non-destructive (thermal roll-over)<br />

400<br />

350<br />

300<br />

250<br />

P (mW)<br />

200<br />

150<br />

100<br />

• Catastrophic optical mirror damage (COMD) :<br />

destructive<br />

50<br />

0<br />

0 200 400 600 800 1000<br />

I (mA)<br />

BC<br />

BV<br />

hν<br />

Recombinaison non-radiative<br />

électron-trou de surface<br />

Elévation de température<br />

Réabsorption optique<br />

COMD<br />

Face-miroir<br />

Filamentation


• Catastrophic optical mirror damage (COMD) : destructive<br />

Maximal emitted power:<br />

P<br />

MAX<br />

(mW /<br />

µm )<br />

= P ( λ)<br />

COMD<br />

1−R<br />

.<br />

1+<br />

R<br />

d<br />

Γ<br />

PCOMD: internal optical power density at threshold COMD<br />

R: mirror reflectivity<br />

d: active region thickness (reabsorbing)<br />

Γ: overlap of the transverse mode with the active region<br />

d : transverse spot size<br />

Γ<br />

Active-Region material P COMD (MW /cm 2 )<br />

InGaAs (0.92 - 0.98µm) 18-19<br />

InGaAsP (0.81µm) 18-19<br />

InAlGaAs (0.81µm) 13-14<br />

GaAs (0.81 - 0.87µm) 10-12<br />

Al 0.07 GaAs (0.81µm) 8-9<br />

Al 0.13 GaAs (0.78µm) 5<br />

(Botez, SPIE proceedings, vol. 3628, p5, 1999)<br />

To increase P max :<br />

>Structure design:<br />

- enlarged guides<br />

>Active region materials:<br />

-InAlGaAs<br />

- InGaAsP (Al-free)


Laser diode with an enlarged active region : advantages<br />

Wider transverse near-field (> 0.5 µm) : COMD level increased.<br />

Weak internal losses (< 1 cm -1 ):<br />

<strong>High</strong> external differential efficiency<br />

Longer cavity are possible (> 1 mm): thermal <strong>and</strong> electrical<br />

resistivities are decreased<br />

<strong>Power</strong> <strong>and</strong> efficiency record in CW<br />

Usual cavity<br />

(Thershold current minimized)<br />

1,0<br />

Enlarged cavity :<br />

Γclad => α<br />

Γqw => COMD<br />

Refractive index, Near field intensity<br />

p Cladding<br />

QW<br />

QW<br />

nid waveguide<br />

n Cladding<br />

Refractive index, Near field intensity<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

-0,2<br />

QW<br />

p Cladding<br />

nid Broad Waveguide<br />

n Cladding<br />

-4 -2 0 2 4<br />

Distance<br />

Distance


Fabrication<br />

•Materials<br />

• Epitaxy<br />

• Process<br />

Characterization<br />

Laser diodes<br />

• power <strong>and</strong> spectrum measurement<br />

• far-field <strong>and</strong> near-field measurement<br />

• The M² factor : definition, measurement<br />

• Saturation of the power : cause <strong>and</strong> solution = the large optical cavity<br />

Main epitaxial structures : at 808 nm, 940 nm, 980 nm <strong>and</strong> 732 nm<br />

Examples of lasers diodes<br />

• Ridge <strong>and</strong> broad-area lasers at 980 nm<br />

• high brigthness lasers near at 980 nm<br />

• state of the art<br />

• external approach : four-wave mixing<br />

• internal approach : the tapered laser diode<br />

• Tapered lasers bars at 980 nm coupled into an optical fiber<br />

• Laser diodes at 732 nm : broad-area laser results <strong>and</strong> aging test<br />

• Application to photodynamic therapy of laser diodes at 732 nm<br />

• Application to surgery <strong>and</strong> dentistry of laser diodes at 980 nm


Laser structure 732 nm :<br />

GaAsP / AlGaAs / AlGaAs<br />

• Tensile strained GaAsP QW<br />

TM polarisation<br />

• <strong>High</strong> Al – content<br />

of waveguide <strong>and</strong> cladding layers<br />

• LOC structure (1µm waveguide)


Fabrication<br />

•Materials<br />

• Epitaxy<br />

• Process<br />

Characterization<br />

Laser diodes<br />

• power <strong>and</strong> spectrum measurement<br />

• far-field <strong>and</strong> near-field measurement<br />

• The M² factor : definition, measurement<br />

• Saturation of the power : cause <strong>and</strong> solution = the large optical cavity<br />

Main epitaxial structures : at 808 nm, 940 nm, 980 nm <strong>and</strong> 732 nm<br />

Examples of lasers diodes<br />

• Ridge <strong>and</strong> broad-area lasers at 980 nm<br />

• high brigthness lasers near at 980 nm<br />

• state of the art<br />

• external approach : four-wave mixing<br />

• internal approach : the tapered laser diode<br />

• Tapered lasers bars at 980 nm coupled into an optical fiber<br />

• Laser diodes at 732 nm : broad-area laser results <strong>and</strong> aging test<br />

• Application to photodynamic therapy of laser diodes at 732 nm<br />

• Application to surgery <strong>and</strong> denistry of laser diodes at 980 nm


All the results presented here have been<br />

obtained in the IST-1999-10356 european<br />

project ULTRABRIGHT<br />

Reliable Ultra-Bright Laser <strong>Diode</strong> Sources<br />

For Terabit Telecommunications<br />

<strong>and</strong> Photodynamic Therapy Applications<br />

Results from :<br />

Thales Research <strong>and</strong> Technology (TRT)<br />

Thales Laser <strong>Diode</strong>s (TLD)<br />

Ceram Optec<br />

Ferdin<strong>and</strong>-Braun-Institut für Höchstfrequenztechnik<br />

R&T<br />

CeramOptec GmbH


Why a high brightness laser diode at 980 nm<br />

Laser with a GaInAs quantum well on GaAs<br />

substrate.<br />

Losses on the 1.55 µm signal in the optical fibers<br />

1.55 µm signal<br />

Erbium<br />

doped fiber<br />

pump<br />

Erbium<br />

Ion<br />

optical amplification with the EDFA<br />

(Erbium Doped Fiber Amplifier)


How can we bring more power in the optical<br />

fiber<br />

Efficient coupling of the emitted power in the optical fiber<br />

Pump diode<br />

Coupling optics<br />

Optical fiber<br />

⇒ that’s why we need : high power + high beam<br />

spatial quality<br />

= high brightness


12<br />

11<br />

10<br />

CW optical power records delivered by<br />

single 100µm wide emitters at 25°C<br />

30/06/00 13:35:35<br />

Max. optical power (W)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

(55 µm)<br />

GaAs/AlGaAs : Mitsui Chemicals, Jap.<br />

Al-free : Wisconsin U./ Coherent USA<br />

AlGaInAs/AlGaAs : Optopower Corp. USA<br />

AlGaAs : SDL, USA<br />

AlGaAs : Fraunhofer Inst., Ger.<br />

GaAsP/AlGaAs : F. Braun Inst., Ger.<br />

GaAs/AlGaAs : Thales TLD<br />

Al-free : Thales TRT<br />

720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000<br />

Wavelength (nm)


In the perpendicular direction : quasi-gaussian<br />

far-field profile (M² close to 1) <strong>for</strong> all the<br />

lasers fabricated with the same epitaxy.<br />

1,0<br />

I (u.a.)<br />

0,5<br />

0,0<br />

-60 -30 0 30 60<br />

Angle (°)<br />

θ 1/e² ≈ 52-65°<br />

But in the parallel direction, it depends on the<br />

waveguide shape …


In the parallel direction : 2 main kinds of lasers<br />

The broad-area laser : high power (∼10W at 0.98µm) but low beam spatial quality<br />

100<br />

µm<br />

1.0<br />

2 mm Far field<br />

P = 1 W<br />

M² = 15-20<br />

I (u.a.)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-15 -10 -5 0 5 10 15<br />

Angle (°)<br />

8,7°<br />

9,8°<br />

in the //<br />

direction<br />

The ridge laser: high spatial beam quality but a few hundreds of mW<br />

5<br />

µm<br />

2 mm<br />

P =300 mW<br />

M² = 1.2<br />

I (u.a.)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-15 -10 -5 0 5 10 15<br />

Angle (°)<br />

8°<br />

14°<br />

Far field<br />

in the //<br />

direction


The broad-area laser 100 µm large * 2mm long :<br />

The broad-area laser 0.98µm AR/HR 100 µm * 2mm:<br />

8.5W CW, (usually operating at 3-4 W)<br />

Threshold : 340mA (170 A/cm²)<br />

Efficiency : 0.95W/A<br />

Mondial Record : 10.6W CW (Botez, U Wisc.)<br />

I (u.a.)<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

// Far-field<br />

at 1W<br />

//<br />

2.5<br />

10<br />

1.0<br />

0,2<br />

Voltage U /V<br />

2.0<br />

1.5<br />

1.0<br />

V<br />

P<br />

eff<br />

.<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Optical <strong>Power</strong> P /W<br />

0.8<br />

0.6<br />

0.4<br />

Efficiency η<br />

C<br />

I (u.a.)<br />

0,0<br />

-15 -10 -5 0 5 10 15<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

Angle (°)<br />

// Near-field<br />

at 1W<br />

//<br />

0.5<br />

2<br />

1<br />

0.2<br />

0,2<br />

0.0<br />

0<br />

0 2 4 6 8 1 0<br />

C u rre nt I /A<br />

0.0<br />

0,0<br />

0 40 80 120 160 200 240<br />

x (µm)<br />

At 1W , parallel M² > 15 …


The broad-area laser 100 µm large at 980 nm :<br />

reliability<br />

PROFIL DE VIEILLISSEMENT TGB 969 P= 1W I=1.4A à 30°C<br />

PUISSANCE OPTIQUE (W)<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000<br />

TEMPS CUMULE (HEURES)<br />

1-4 1-6 1-7 1-8 1-9 2-5 2-7


The broad-area laser 100 µm large at 808 nm :<br />

reliability<br />

1.60<br />

PROFIL DE VIEILLISSEMENT TGB963D A 1W, 1,4 A, 40°C<br />

Puissance optique (W)<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000<br />

Temps cumulé (heures)<br />

8-2 8-8 9-1 9-2 9-4


The ridge laser 5 µm large * 2mm long :<br />

1,0<br />

Laser ridge 0.98µm AR/HR 5µm * 2mm: 300 W<br />

CW, (usually operating at 100-300 mW)<br />

Threshold : 40mA<br />

Efficiency : 0.95W/A<br />

Record : 1.2W (with optimized mirrors treatments)<br />

I (u.a.)<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

// Far-field<br />

at 300 mW<br />

//<br />

300<br />

250<br />

0,0<br />

-25 -20 -15 -10 -5 0 5 10 15 20 25<br />

angle (°)<br />

P (mW)<br />

200<br />

150<br />

100<br />

I (u.a.)<br />

1,0<br />

0,5<br />

//<br />

// Near-field<br />

at 300 mW<br />

50<br />

0<br />

0 50 100 150 200 250 300 350 400 450<br />

I (mA)<br />

0,0<br />

28 32 36 40 44<br />

x (µm)<br />

At 300 mW , parallel M² =1.2


Others solutions to improve the brightness (1) :<br />

internal approach<br />

MOPA<br />

1 mm<br />

Laser (straight section with a<br />

Bragg grating)<br />

R 2 =0.01%<br />

- 1.5W FWHM// 0.26° Ortel IEEE-<br />

PLT 99<br />

- Difficulties:<br />

•R 2 ≈ 0.01%<br />

• interaction between the 2 sections<br />

I 1 I 2<br />

Master Oscillator <strong>Power</strong> Amplifier<br />

Tapered amplifier<br />

section<br />

• p-down mounting is difficult<br />

α- DFB<br />

I<br />

- 0.94 W FWHM// 0.2° SDL<br />

CLEO-97<br />

- 14 éléments bar, 20 W 75 A,<br />

FWHM// 1.1° , SDL CLEO-97<br />

- weak wall-plug efficiency<br />

- difficult fabrication


Others solutions to improve the brightness (2) :<br />

internal approach<br />

The index guided tapered laser bar<br />

30 µm<br />

15 µm<br />

- 8W 10A, FWHM// 5° à 4.5W,<br />

R 2 =1%, GEC EL-99<br />

200 µm 1800 µm<br />

The gain guided tapered laser<br />

100 µm 1900 µm<br />

- 2.2 W 4 A FWHM// 0.24° M²=2.2, R2= 0.05%,<br />

θ 200 µm<br />

Fraunhofer SPIE-98<br />

- 25 lasers bar, 25W 50A, M²=2.6 / emitter,<br />

Ipol<br />

Monomode lateral section :<br />

ridge<br />

Fraunhofer IEEE-PTL99


Others solutions to improve the brightness (3) :<br />

external approach<br />

Risø National Laboratory<br />

<strong>Optics</strong> & Fluid Dynamics Dept.<br />

Improving the Spatial <strong>and</strong> Temporal<br />

Coherence of <strong>High</strong>-<strong>Power</strong> <strong>Diode</strong> <strong>Lasers</strong><br />

Using Four-Wave Mixing in the Gain Material<br />

Paul M. Petersen<br />

<strong>Optics</strong> <strong>and</strong> Fluid Dynamics Department, Risø<br />

National Laboratory,<br />

DK-4000 Roskilde, Denmark<br />

P.M. Petersen et al.


Others solutions to improve the brightness (3) : external approach<br />

Risø National Laboratory<br />

<strong>Optics</strong> & Fluid Dynamics Dept.<br />

<strong>New</strong> Laser design at Risø National Laboratory<br />

Gain- <strong>and</strong> refractive index gratings in broad area laser<br />

diodes<br />

may be used <strong>for</strong> selective amplification of spatial modes<br />

The effect is based on spatial hole burning in the active<br />

semiconductor gain material.<br />

The third order nonlinear susceptibility <strong>and</strong> the mode<br />

suppressions factor depend on the angle between the<br />

interacting beams in the four-wave mixing.<br />

A narrow range of angles exist with strong gratings <strong>and</strong><br />

good mode suppression.<br />

P.M. Petersen et al.


Others solutions to improve the brightness (3) : external approach<br />

Risø National Laboratory<br />

<strong>Optics</strong> & Fluid Dynamics Dept.<br />

Gain- <strong>and</strong> refractive index gratings in laser diodes<br />

0<br />

L<br />

Z<br />

Gain <strong>and</strong> refractive<br />

index gratings<br />

A 1<br />

A 3<br />

Semiconductor<br />

amplifier<br />

A 2<br />

Electrode<br />

Z=0<br />

Z=L<br />

The induced gain- <strong>and</strong><br />

refractive index<br />

gratings lead to<br />

selective amplification<br />

of one spatial mode<br />

<strong>and</strong> suppression of all<br />

other modes<br />

P.M. Petersen et al.


Semiconductor<br />

amplifier<br />

<strong>and</strong> refractive<br />

Gain<br />

index gratings<br />

Others solutions to improve the brightness (3) : external approach<br />

Risø National Laboratory<br />

<strong>Optics</strong> & Fluid Dynamics Dept.<br />

Four-wave mixing in diodes using spatial hole burning<br />

<strong>High</strong> reflective<br />

coating<br />

A 1<br />

0<br />

Z=0<br />

A 3<br />

A 2<br />

Electrode<br />

L<br />

Z<br />

Z=L<br />

Antireflection<br />

coating<br />

Spatial- <strong>and</strong> temporal<br />

filtering<br />

M<br />

Output<br />

beam<br />

The induced gratings<br />

eliminate filamentation<br />

<strong>and</strong> lateral lasing in the<br />

laser diode.<br />

P.M. Petersen et al.


Others solutions to improve the brightness (3) : external approach<br />

Risø National Laboratory<br />

<strong>Optics</strong> & Fluid Dynamics Dept.<br />

Far-field profiles<br />

Intensity [arb. units]<br />

0<br />

1.4 times the<br />

diffraction limit<br />

Single- lobe<br />

80% of the total<br />

power is contained in<br />

a diffraction limited<br />

output lobe.<br />

0<br />

0<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

Radiation angle [deg]<br />

Runs freely<br />

P.M. Petersen et al.


Others solutions to improve the brightness (3) : external approach<br />

Risø National Laboratory<br />

<strong>Optics</strong> & Fluid Dynamics Dept.<br />

Singlemode<br />

(a)<br />

Single-mode<br />

operation<br />

BW < 0.02 nm<br />

Wavelength<br />

is tunable<br />

over 20 nm !<br />

Intensity [arbitrary units]<br />

807 808 809 810 811 812 813 814<br />

Wavelength [nm]<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

P.M. Petersen et al.


Other solution to improve the brightness at 980 nm developed in<br />

Thales Research <strong>and</strong> Technology (4) : the tapered laser diode<br />

Between power (broad-area laser) <strong>and</strong> spatial beam quality (ridge laser)<br />

Straight section (ridge)<br />

<strong>High</strong> reflection<br />

(HR)<br />

Tapered section<br />

θ<br />

Anti-reflection<br />

coatings (AR) =<br />

3%<br />

output<br />

Ridge<br />

L1<br />

Tapered sec. L2<br />

2-3 mm


Between the broad-area laser <strong>and</strong> the ridge:<br />

the tapered laser<br />

200 µm 2300 µm<br />

// Far- field at 600 mW<br />

1,0<br />

P (mW)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />


To have more power : bars<br />

To obtain a lower divergence : tapered laser bars.<br />

• Broad- area laser bars (8 lasers) : P = 20W CW (<strong>for</strong> coupling into a<br />

multimode fiber).<br />

• Index guided tapered laser bars : P = 20W CW at 33A<br />

25°C<br />

Is : 4,8 A Rdt : 0.7W/A Eff. : 41% λ = 974 nm<br />

TOP VIEW<br />

TILTED FRONT VIEW<br />

ridge tapered section Single emitter output facet


Index guided tapered lasers bar<br />

Mini-bar width = 3 mm<br />

20 W, 33 A, 25°C, CW<br />

Is : 4.8 A Eff. : 0.7 W/A max Wall Plug Eff. : 41%<br />

Eff.<br />

P<br />

V<br />

At 33A λ = 974.5 nm <strong>and</strong> FWHM < 5 nm


Mini-bar of narrow index guided tapered lasers<br />

At 20 W, 33 A, 25°C, CW<br />

⊥ direction<br />

θ 1/2 = 31°<br />

θ 1/e² = 55°<br />

Intensity (a.u.)<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

// direction<br />

θ 1/2 = 3,5°<br />

θ 1/e² = 6°<br />

0,0<br />

-40 -20 0 20 40<br />

angle (°)


• Tapered laser bars coupled in a multimode fiber (100 µm)<br />

coupled power = 10 W at 21A, 13°C<br />

24<br />

20<br />

With a new beam shaping technique<br />

Coupling efficiency<br />

60<br />

50<br />

Optical power (W)<br />

16<br />

12<br />

8<br />

4<br />

0<br />

Emitted power<br />

Coupled power<br />

0<br />

0 5 10 15 20 25 30 35<br />

Current (A)<br />

40<br />

30<br />

20<br />

10<br />

Coupling efficiency (%)


• Tapered laser bars coupled in a multimode fiber<br />

coupled power = 10 W at 21A, 13°C with a new beam<br />

shaping technique : method<br />

Requirement on beam product parameter<br />

• Beam product parameter of a beam:<br />

BPP = (width) x (divergence)<br />

if non symetric, BPP x <strong>and</strong> BPP y<br />

• Regulation <strong>for</strong> an efficient optical coupling:<br />

BPP source < BPP fibre (100µm, NA=0.26)<br />

• Laser diode bar BPP:<br />

BPP // ~ (100-1000)xBPP ⊥<br />

reshaping of the beam prior to fibre coupling<br />

beam<br />

fibre


Beam shaping technique<br />

General principle of “Optical stacking”<br />

1st plate<br />

2nd plate<br />

Input<br />

“Flat”Beam<br />

N intermediary<br />

beams<br />

Output<br />

“Stacked”<br />

Beams<br />

Fibre<br />

BPP // =X // x θ //<br />

BPP ⊥ =X ⊥ x θ ⊥<br />

squared BPP ⇒ BPP // / N = BPP ⊥ x N


θ ⊥<br />

Beam shaping technique<br />

Plates arrangement<br />

2nd plate<br />

Input beam:<br />

//: 2.6mm x 7°<br />

⊥: 0.5mm x 0.7°<br />

Number of sub-beams: 7<br />

Output beam:<br />

// : 0.37mm x 7° = 2.6 mm°<br />

⊥: 3.5mm x 0.7° = 2.45 mm°<br />

1st plate<br />

θ //<br />

Patent : C. Larat et al, Patent WO0014836.


Beam shaping technique<br />

Schematic optical system<br />

Laser<br />

diode<br />

Collimating<br />

lens<br />

2 plates Focusing lenses Optical fibre


Optical module<br />

Focusing lens<br />

Cylindrical lens<br />

Plates<br />

SMA HP<br />

tput connector<br />

Collimating<br />

lens<br />

Mini bars<br />

Commercialized by Thales Laser <strong>Diode</strong>s


ars at 808-980 nm<br />

On the laser diode market, main firms:<br />

• 808-980 nm :<br />

•Thales Laser <strong>Diode</strong>s : bars emitting 30-40W,<br />

stacks emitting from 2 to 5 kW,<br />

•OSRAM : the same <strong>and</strong> tapered laser bars<br />

•Coherent<br />

• <strong>for</strong> others kinds od laser diodes :<br />

•<strong>High</strong> <strong>Power</strong> Laser, Alfalight, JDS Uniphase...


Fabrication<br />

•Materials<br />

• Epitaxy<br />

• Process<br />

Characterization<br />

Laser diodes<br />

• power <strong>and</strong> spectrum measurement<br />

• far-field <strong>and</strong> near-field measurement<br />

• The M² factor : definition, measurement<br />

• Saturation of the power : cause <strong>and</strong> solution = the large optical cavity<br />

Main epitaxial structures : at 808 nm, 940 nm, 980 nm <strong>and</strong> 732 nm<br />

Examples of lasers diodes<br />

• Ridge <strong>and</strong> broad-area lasers at 980 nm<br />

• high brigthness lasers near at 980 nm<br />

• state of the art<br />

• external approach : four-wave mixing<br />

• internal approach : the tapered laser diode<br />

• Tapered lasers bars at 980 nm coupled into an optical fiber<br />

• Laser diodes at 732 nm : broad-area laser results <strong>and</strong> aging test<br />

• Application to photodynamic therapy of laser diodes at 732 nm<br />

• Application to surgery <strong>and</strong> dentistry of laser diodes at 980 nm


Results with broad-area lasers – FBH<br />

FBH<br />

Ferdin<strong>and</strong>-Braun-Institut<br />

für Höchstfrequenztechnik<br />

735nm GaAsP-QW / AlGaAs LOC Laser Structure:<br />

Typical Per<strong>for</strong>mance<br />

• Transparency current density j th<br />

< 200A/cm²<br />

• Threshold current <strong>for</strong> 100x1000µm² I th<br />

< 300mA<br />

• Gain coefficient Γ⋅G 0<br />

= 20cm -1<br />

• FA angle FWHM θ < 30°<br />

• Internal efficiency 0.8<br />

• Internal loss ≤ 1cm -1<br />

• T 0<br />

≈ 60K<br />

α - factor < 1.5 ⇒ good beam quality<br />

Comparable wall plug efficiency to longer wavelength structures<br />

Low temperature stability


Results with 732 nmbroad-area lasers – FBH<br />

FBH<br />

Ferdin<strong>and</strong>-Braun-Institut<br />

für Höchstfrequenztechnik<br />

1.0<br />

2.0<br />

2.0<br />

0.8<br />

• Threshold current Ith 1W/A<br />

• Conversion efficiency ≈ 50%<br />

• Reliability at facet load up to 20mW/µm<br />

Voltage U / V<br />

1.5<br />

1.0<br />

0.5<br />

η C<br />

P<br />

1.5<br />

1.0<br />

0.5<br />

opt. <strong>Power</strong> P /W<br />

0.6<br />

0.4<br />

0.2<br />

conversion efficiency η C<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0<br />

Current I / A<br />

0.0<br />

0.0


Results with tapered lasers – FBH<br />

653365 - <strong>Diode</strong> 030302<br />

L = 2.75 mm; L RW<br />

= 1 mm; W RW<br />

= 3 µm; ϕ TR<br />

= 6°<br />

R f<br />

= 1%; R r<br />

= 94%; T = 25°C<br />

I th<br />

= 643 mA; S = 0.97 W/A; η C<br />

= 40%<br />

I = 5 A ⇒ P = 3.3 W<br />

P / W<br />

0.5<br />

1.0<br />

2.0<br />

3.0<br />

BW / µm FF / °<br />

M 2<br />

∆x / µm Centr.lobe<br />

4.4 16.6 1.4 576 86%<br />

4.4 16.6 1.4 591 86%<br />

4.4 14.7 1.2 606 79%<br />

4.8 12.2 1.1 669 80%<br />

rel. Intensity / arb. units<br />

0.5 W<br />

1.0 W<br />

2.0 W<br />

3.0 W<br />

0 10 20 30 40 50 60<br />

Position x / µm


Results – FBH - Aging tests done with tapered lasers<br />

• Sample 653309<br />

• All five diodes show reliable<br />

operation over 3200 h.<br />

• The degradation rates were<br />

below 3.2x10 -5 h -1 (estimated<br />

lifetime > 6000 h).<br />

Laser<br />

020601<br />

020603<br />

M 2<br />

be<strong>for</strong>e<br />

Aging<br />

1.3<br />

1.5<br />

M2 after<br />

1007.4 h<br />

@ 1 W<br />

1.4<br />

4.3<br />

M 2 after<br />

3166 h<br />

@ 1 W<br />

1.2<br />

3.1<br />

Current I / mA<br />

2000<br />

1500<br />

1000<br />

020601<br />

020603<br />

500<br />

020705<br />

020713<br />

020716<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

Aging time t / h<br />

020705<br />

020713<br />

020716<br />

1.4<br />

1.3<br />

1.6<br />

2.0<br />

1.2<br />

1.7<br />

1.3<br />

1.3<br />

1.4<br />

Aging behaviour of 2 mm long<br />

devices at P = 1 W, T = 25°C


CeramOptec GmbH<br />

Medical applications : laser diodes at 732 nm Siemensstr. 44<br />

D-53121 Bonn<br />

Germany<br />

• 8W @ 732nm laser system<br />

– Applied <strong>for</strong> test of photo<br />

toxicity of photosensitizer<br />

• 10W @ 975nm laser system<br />

– Applied in dental<br />

applications<br />

• Cleaning of root canal<br />

• Cutting of soft tissue<br />

• 4W @ 732nm <strong>and</strong> 10W 975nm<br />

prototype laser system


CeramOptec GmbH<br />

Medical applications : laser diodes at 732 nm<br />

Coupling of 4W at 732nm from single emitters<br />

into an optical fibre with 400µm core <strong>and</strong> NA < 0.3<br />

• Bundle of 8 lasers (9 fibres)<br />

– ∅≈470µm, NA = 0.15<br />

– P ~ 11W<br />

• Coupling to application fibre<br />

– ∅ = 200µm, NA = 0.35<br />

– P ~ 8.4W<br />

• Outmatches originally planned<br />

specs significantly<br />

• Runs in “time- mode” = ON <strong>for</strong> pre- selected treatment time<br />

• Has been applied <strong>for</strong> test of photo- toxicity of photosensitizer


CeramOptec GmbH<br />

Application Test of 732 nm system I<br />

Evaluation of photo-toxicity of PDT substance (BLC2025)<br />

Typical test procedure<br />

• Growth of cell cultures<br />

• Incubation with photosensitizer in<br />

varying concentrations<br />

• Excitation of the sensitizer with<br />

different energy densities <strong>and</strong><br />

total energy<br />

• Continuation of cell growth<br />

• Determination of survival rate,<br />

e.g. via concentration of<br />

enzymes, which only exist in<br />

living cells<br />

100µl cell suspension per well


Application Test of 732 nm system II<br />

CeramOptec GmbH<br />

• HT29 cell line, 732 nm, BLC2025, 30 minutes incubation<br />

• Variation of photosensitizer concentration<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0µM 10µM 20µM 30µM 40µM 50µM<br />

concentration BLC2025<br />

10J/cm2 0.5 W 12 sec 10J/cm2 1 W 6 sec 20J/cm2 0.5 W 25 sec<br />

20J/cm2 1 W 12 sec 50J/cm2 0.5 W 70 sec 50J/cm2 1 W 35 sec


CeramOptec GmbH<br />

Application Test of 732 nm system III<br />

• 30 µM BLC 2025, 50 J/cm2, 35 J<br />

• Variation of Treatment time with constant energy<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.5 W 70 sec 1 W 35 sec 2 W 17 sec 3 W 12 sec 4 W 9 sec 5 W 7 sec<br />

laser setting<br />

PBS HEK293 BLC2025 HEK293 BLC2025 HT29


CeramOptec GmbH<br />

Application Test of 975 nm system<br />

Cutting of soft tissue<br />

• Comparable conditions of wounds<br />

– 8h after treatment with 100µm<br />

core fibre<br />

– 24h after treatment with 400µm<br />

core fibre<br />

• <strong>High</strong>er power density leads to<br />

– more accurate cuts without<br />

carbonisation<br />

– Less postoperative pains<br />

– Slightly reduced treatment time


Application Test of 975 nm system<br />

Cleaning of root canal<br />

CeramOptec GmbH<br />

Advantages of smaller<br />

application fibre<br />

• Especially interesting<br />

in cases where a<br />

regular cleaning is not<br />

possible<br />

• Strong bended roots<br />

become accessible<br />

• Small space situations<br />

benefit from higher<br />

flexibility of fibre


At last :<br />

• Others laser diodes:<br />

-VCSELs (vertical emission), quantum cascade lasers (<br />

intra-b<strong>and</strong> recombination ), lasers with gratings (DFB,<br />

DBR) …<br />

- other wavelengthes<br />

- a lot of applications : Telecoms, dentistry, surgery, gas<br />

detection …<br />

• any questions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!