04.01.2015 Views

AME 436

AME 436

AME 436

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Example"<br />

For an ideal Diesel cycle with the following parameters: r = 20, γ = 1.3, M = 0.029 kg/<br />

mole, f = 0.05, Q R = 4.45 x 10 7 J/kg, initial temperature T 2 = 300K, initial pressure P 2<br />

= 1 atm, P exh = 1 atm, determine:<br />

a) Temperature (T 3 ) & pressure (P 3 ) after compression & compression work per kg<br />

P 3<br />

P 2<br />

= r ! ! P 3<br />

= P 2<br />

r ! =1atm(20) 1.3 ! P 3<br />

= 49.1atm<br />

T 3<br />

= r !"1 ! T<br />

T<br />

3<br />

= T 2<br />

r !"1 = 300K ( 20) 1.3"1 ! T 3<br />

= 737K<br />

2<br />

W comp<br />

= "C v<br />

(T 3<br />

"T 2<br />

) = " R<br />

! "1 (T "T ) = " # 1<br />

8.314J / moleK 1<br />

(737 " 300) = " (737K " 300K)<br />

3 2<br />

M ! "1 0.029kg / mole 1.3"1<br />

W comp<br />

= "(955.6J / kgK)(737K " 300K) = "417.6kJ / kg (negative since work is into system)<br />

b) Temperature (T 4 ) and pressure (P 4 ) after combustion, and the work output<br />

during combustion per kg of mixture<br />

T 4<br />

= T 3<br />

+ fQ R<br />

;C<br />

C<br />

p<br />

= !<br />

p<br />

! !1 R = 1.3 8.314J / moleK<br />

1.3!1 0.029kg / mole = 1242J<br />

kgK<br />

$ v '<br />

P 4<br />

= P 3<br />

= 49.1atm " W comb<br />

= P(v 4<br />

! v 3<br />

) = Pv 4<br />

3 & !1<br />

% v<br />

)<br />

3 (<br />

= RT $ T '<br />

4<br />

!1<br />

3&<br />

% T<br />

)<br />

3 (<br />

= R T !T 4 3<br />

W comb<br />

=<br />

8.314J / moleK<br />

0.029kg / mole<br />

( 2528K ! 737K) = +513.5kJ / kg<br />

" T = 737K + (0.05)(4.45#107 J / kg)<br />

= 2528K<br />

4<br />

1242J / kgK<br />

( ) = * (<br />

M T !T 4 3)<br />

<strong>AME</strong> <strong>436</strong> - Lecture 8 - Spring 2013 - Ideal cycle analysis<br />

35<br />

!<br />

!<br />

Example (continued)"<br />

c) Cutoff Ratio<br />

" = V 4<br />

= V 4<br />

m<br />

= RT )1<br />

#<br />

3<br />

P 4<br />

&<br />

% ( = T 4<br />

= 2528K<br />

V 3<br />

m V 3 $ P 3<br />

RT 4 ' T 3<br />

737K = 3.43<br />

d) Temperature (T 5 ) and pressure (P 5 ) after expansion, and the expansion work per kg of<br />

mixture<br />

P 4<br />

= r )<br />

# & #<br />

% ( = 20 &<br />

1.3<br />

% ( = 9.89 * P<br />

P 5 $ " ' $ 3.43'<br />

5<br />

= P 4<br />

9.89 = 49.1atm = 4.96atm<br />

9.89<br />

T 4<br />

#<br />

= r &<br />

% (<br />

T 5 $ " '<br />

) +1<br />

W exp<br />

= +C V<br />

T 5<br />

+ T 4<br />

= ( 5.83) 1.3+1 =1.7 * T 5<br />

= T 4<br />

1.7 = 2528K =1489K<br />

1.7<br />

( ) = +955.63J /kgK( 1489K + 2528K) = 992.9kJ /kg<br />

e) Net work per kg of mixture<br />

Net work = Compression work + Work during combustion + Expansion work<br />

= -417.6 + 992.9 + 513.5 = 1089 kJ/kg<br />

<strong>AME</strong> <strong>436</strong> - Lecture 8 - Spring 2013 - Ideal cycle analysis<br />

36<br />

• 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!