04.01.2015 Views

Effects of Lower Magnetic Fields on the Thermosphere-Ionosphere

Effects of Lower Magnetic Fields on the Thermosphere-Ionosphere

Effects of Lower Magnetic Fields on the Thermosphere-Ionosphere

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1/19<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Lower</str<strong>on</strong>g> <str<strong>on</strong>g>Magnetic</str<strong>on</strong>g> <str<strong>on</strong>g>Fields</str<strong>on</strong>g> <strong>on</strong><br />

<strong>the</strong> <strong>Thermosphere</strong>-I<strong>on</strong>osphere<br />

Erdal Yiğit 1 , and Aar<strong>on</strong> J. Ridley 1<br />

1 University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan, Ann Arbor, USA<br />

email: erdal@umich.edu<br />

Sunspot Workshop<br />

Sunspot, New Mexico, USA, 19 - 22 September 2011<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


C<strong>on</strong>tents<br />

1 Introducti<strong>on</strong> - Science Questi<strong>on</strong> 3<br />

2/19<br />

2 Introducti<strong>on</strong> - Earth’s <str<strong>on</strong>g>Magnetic</str<strong>on</strong>g> Field 4<br />

3 Model Descripti<strong>on</strong> 6<br />

4 Model C<strong>on</strong>figurati<strong>on</strong>s 8<br />

5 Model Simulati<strong>on</strong>s 10<br />

6 Model Results 11<br />

7 Electr<strong>on</strong> Density Distributi<strong>on</strong>s 12<br />

8 Temperature and Neutral Flows 14<br />

9 Meridi<strong>on</strong>al Flow & Electr<strong>on</strong> Density 15<br />

10 Temperature Variati<strong>on</strong>s 16<br />

11 Summary and C<strong>on</strong>clusi<strong>on</strong> 17<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Introducti<strong>on</strong> - Science Questi<strong>on</strong><br />

This Study<br />

How does<br />

3/19<br />

decreasing magnetic field impact<br />

<strong>the</strong> <strong>the</strong>rmosphere-i<strong>on</strong>osphere<br />

system<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Introducti<strong>on</strong> - Earth’s <str<strong>on</strong>g>Magnetic</str<strong>on</strong>g> Field<br />

• Tilted <str<strong>on</strong>g>of</str<strong>on</strong>g>fset dipole field<br />

• Variable: magnitude and distributi<strong>on</strong><br />

• Magnitude decreased in <strong>the</strong> last 150 years 10-15% and still decreasing...<br />

• Geophysical (dynamics, chemistry) and biological impacts (pige<strong>on</strong>s,<br />

bees).<br />

4/19<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Research Strategy & Outcome<br />

This study<br />

A General Circulati<strong>on</strong> Model that simulates<br />

<strong>the</strong> <strong>the</strong>rmosphere-i<strong>on</strong>osphere self-c<strong>on</strong>sistently<br />

+<br />

<str<strong>on</strong>g>Lower</str<strong>on</strong>g> <strong>the</strong> magnetic field density<br />

↓<br />

Quantify <strong>the</strong> changes in <strong>the</strong><br />

<strong>the</strong>rmosphere-i<strong>on</strong>osphere<br />

5/19<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Model descripti<strong>on</strong>-I<br />

Global I<strong>on</strong>osphere <strong>Thermosphere</strong> Model (GITM)<br />

• First principle n<strong>on</strong>hydrostatic general circulati<strong>on</strong> model (GCM)<br />

described in <strong>the</strong> work by Ridley et al. (2006)<br />

• Vertical extent: 100-∼650 km<br />

• Variable time step 2-4 s.<br />

• Variable flexible grid resoluti<strong>on</strong>, e.g., 5 ◦ × 5 ◦ , 0.3125 ◦ × 2.5 ◦<br />

(Yiğit and Ridley, 2011)<br />

• GSWM, MSIS tidal forcing<br />

• 2-way self-c<strong>on</strong>sistent <strong>the</strong>rmosphere-i<strong>on</strong>osphere coupling<br />

• Vertical momentum equati<strong>on</strong> explicitly solved.<br />

• Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Space Wea<strong>the</strong>r Modeling Framework (SWMF)<br />

6/19<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Model descripti<strong>on</strong>-II<br />

Global I<strong>on</strong>osphere <strong>Thermosphere</strong> Model (GITM)<br />

• Dynamics: i<strong>on</strong> drag, advecti<strong>on</strong>, tides, etc.<br />

• Solar and Magnetospheric input:<br />

- Joule heating<br />

- Auroral heating<br />

- High-latitude electric fields<br />

- Interplanetary magnetic field (IMF)<br />

- Solar F10.7 flux<br />

- Solar wind speed<br />

• Chemistry: Neutral densities <str<strong>on</strong>g>of</str<strong>on</strong>g> O, O 2 , N( 2 P ), N( 2 D), S( 2 P ), N 2 ,<br />

and NO; and i<strong>on</strong> species O + ( 2 P ) ,O + 2 , N + ,O + ( 4 S), O + ( 2 D), N + 2 ,<br />

and NO +<br />

7/19<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Model C<strong>on</strong>figurati<strong>on</strong>s<br />

Input<br />

• Variable F10.7, hemispheric power, and IMF c<strong>on</strong>diti<strong>on</strong>s from observati<strong>on</strong>s<br />

• Empirical high-latitude electric fields (Weimer, 2005)<br />

• Auroral particle precipitati<strong>on</strong> (Fuller-Rowell and Evans, 1987)<br />

• MSIS lower boundary fields<br />

8/19<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Model C<strong>on</strong>figurati<strong>on</strong>s: Input<br />

10<br />

5<br />

9/19<br />

Bx (nT)<br />

0<br />

-5<br />

-10<br />

10<br />

By GSM (nT)<br />

5<br />

0<br />

-5<br />

Bz GSM (nT)<br />

-10<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

20<br />

Figure 1: Heliospheric variati<strong>on</strong>s from<br />

30 Aug - 1 Sept 2008.<br />

Vx (km/s)<br />

Density (/cc)<br />

15<br />

10<br />

5<br />

0<br />

-350<br />

-400<br />

-450<br />

-500<br />

-550<br />

Aug 30 Aug 31 Sep 01 Sep 02<br />

Aug 30 to Sep 02, 2001 Universal Time<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Model Simulati<strong>on</strong>s and Methodology<br />

Period <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>s<br />

• 30 August - 1 September 2008<br />

• Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 September 2008<br />

10/19<br />

Reducing <strong>the</strong> magnetic field<br />

I. B 100%<br />

II. B 95%<br />

III. B 90%<br />

IV. B 85%<br />

V. B 80%<br />

Then calculate <strong>the</strong> differences with respect to I.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Electr<strong>on</strong> density distributi<strong>on</strong>s - 1200 UT<br />

95% 90%<br />

[e-] at 394.6 km Altitude 31-AUG-01 12:00:00.000<br />

[e-] at 394.6 km Altitude 31-AUG-01 12:00:00.000<br />

100.0 m/s<br />

100.0 m/s<br />

30<br />

30<br />

11/19<br />

20<br />

20<br />

18<br />

00<br />

-7.35 3.97<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

[e-]<br />

18<br />

00<br />

-14.73 9.78<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

[e-]<br />

Figure 2: Polar distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relative electr<strong>on</strong> density changes<br />

in percentage for decreasing magnetic<br />

fields <strong>on</strong> 31 Aug 1200 UT.<br />

Relative changes i<strong>on</strong> flows are<br />

overplotted.<br />

[e-] at 394.6 km Altitude 31-AUG-01 12:00:02.000<br />

100.0 m/s<br />

10<br />

18<br />

0<br />

-10<br />

-20<br />

-30<br />

00<br />

85% 80%<br />

-22.51 17.67<br />

100.0 m/s<br />

30<br />

20<br />

[e-]<br />

[e-] at 394.6 km Altitude 31-AUG-01 12:00:00.000<br />

18<br />

00<br />

-30.30 27.13<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

[e-]<br />

• v enhanced dramatically at<br />

high-latitudes.<br />

• n e increases around midnight<br />

at midlatitudes, while everywhere<br />

else n e decreases.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Electr<strong>on</strong> density distributi<strong>on</strong>s - 0000 UT<br />

95% 90%<br />

[e-] at 394.6 km Altitude 01-SEP-01 00:00:00.000<br />

100.0 m/s<br />

30<br />

[e-] at 394.6 km Altitude 01-SEP-01 00:00:00.000<br />

100.0 m/s<br />

30<br />

12/19<br />

20<br />

20<br />

18<br />

00<br />

-2.05 6.59<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

[e-]<br />

18<br />

00<br />

-4.42 13.33<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

[e-]<br />

Figure 3: Polar distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relative electr<strong>on</strong> density change<br />

in percentage for decreasing magnetic<br />

fields <strong>on</strong> 1 Sept 0000 UT.<br />

Relative changes i<strong>on</strong> flows are<br />

overplotted.<br />

18<br />

[e-] at 394.6 km Altitude 01-SEP-01 00:00:00.000<br />

100.0 m/s<br />

00<br />

85% 80%<br />

-7.08 23.44<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

[e-]<br />

[e-] at 394.6 km Altitude 01-SEP-01 00:00:00.000<br />

100.0 m/s<br />

18<br />

00<br />

-10.06 35.45<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

[e-]<br />

• v enhanced dramatically at<br />

high-latitudes!<br />

• n e increases around midnightdawn<br />

at midlatitudes, while<br />

everywhere else n e decreases.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Electr<strong>on</strong> density distributi<strong>on</strong>s: Lat-l<strong>on</strong><br />

50.0 m/s<br />

95% [e-] at 394.6 km Altitude at 01-SEP-01 00:00 UT<br />

-5.33 6.59<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

[e-]<br />

Figure 4: Latitude-l<strong>on</strong>gitude distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> relative electr<strong>on</strong> density<br />

change in percentage for cases<br />

95% and 80% magnetic fields. Relative<br />

changes i<strong>on</strong> flows are overplotted.<br />

13/19<br />

80% [e-] at 394.6 km Altitude at 01-SEP-01 00:00 UT<br />

50.0 m/s<br />

-26.38 35.45<br />

20<br />

0<br />

-20<br />

[e-]<br />

• Electr<strong>on</strong> density increase around<br />

midlatitudes and decrease at<br />

high-latitudes<br />

• I<strong>on</strong> flows are faster at highlatitudes.<br />

• Hemispheric differences.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

1<br />

Close


Temperature and Neutral Flows<br />

Temperature at 394.6 km Altitude at 01-SEP-01 00:00 UT<br />

10.0 m/s<br />

Temperature at 394.6 km Altitude at 01-SEP-01 00:00 UT<br />

10.0 m/s<br />

14/19<br />

0.03 1.07<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

Temperature<br />

0.2<br />

0.0<br />

0.10 2.36<br />

2.0<br />

1.5<br />

1.0<br />

Temperature<br />

0.5<br />

0.0<br />

Temperature at 394.6 km Altitude at 01-SEP-01 00:00 UT<br />

50.0 m/s<br />

0.18 3.90<br />

4<br />

3<br />

Temperature<br />

2<br />

1<br />

0<br />

Temperature at 394.6 km Altitude at 01-SEP-01 00:00 UT<br />

1<br />

Figure 5: Relative percentage difference in temperature.<br />

Difference in neutral flows are overplotted.<br />

100.0 m/s<br />

0.26 5.71<br />

5<br />

4<br />

Temperature<br />

3<br />

2<br />

1<br />

0<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Meridi<strong>on</strong>al Flow & Electr<strong>on</strong> Density<br />

15/19<br />

Figure 6: Merisi<strong>on</strong>al flow and electr<strong>on</strong> density at a<br />

high-latitude.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Temperature Variati<strong>on</strong>s<br />

16/19<br />

Figure 7: Universal<br />

time variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

neutral temperature at<br />

68.75 ◦ , 2.5 ◦ E at 394<br />

km <strong>on</strong> 31 August.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Summary and C<strong>on</strong>clusi<strong>on</strong><br />

I<strong>on</strong> flows<br />

• With decreasing magnetic field, <strong>the</strong> i<strong>on</strong>s become faster E × B/B 2<br />

→ Variati<strong>on</strong>s in i<strong>on</strong> drag and Joule heating are expected!<br />

→ Changes in dynamics and heat balance<br />

• Variability (future work)<br />

17/19<br />

Electr<strong>on</strong> density distributi<strong>on</strong>s<br />

With decreasing B from 100 to 80%<br />

• 6-35% increase in n e at midlatitudes at night<br />

• Up to –35% change in n e at high-latitudes<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Summary and C<strong>on</strong>clusi<strong>on</strong> (c<strong>on</strong>t’d)<br />

Temperature and neutral flows<br />

• Temperatures increase overall up to 5% (SH high-latitudes)<br />

• Neutral flows are enhanced with decreasing B becoming more<br />

equatorward during <strong>the</strong> night.<br />

→ effects <strong>on</strong> chemistry<br />

• I<strong>on</strong> drag and Joule heating probably play a great role (future study).<br />

18/19<br />

Future Work<br />

• Modeling <strong>the</strong> Sun-Earth c<strong>on</strong>necti<strong>on</strong>.<br />

• Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> solar variability at various scales.<br />

• Observati<strong>on</strong>al implicati<strong>on</strong>s<br />

• I<strong>on</strong> drag and Joule heating.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


References<br />

Fuller-Rowell, T. J., and D. S. Evans (1987), Height-integrated Peders<strong>on</strong> and Hall c<strong>on</strong>ductivity patterns inferred from<br />

TIROS-NOAA satellite data, J. Geophys. Res., 92, 7606–7618.<br />

19/19<br />

Ridley, A. J., Y. Deng, and G. Tóth (2006), The global i<strong>on</strong>osphere–<strong>the</strong>rmosphere model, J. Atmos. Sol.-Terr. Phys., 68,<br />

839–864.<br />

Weimer, D. R. (2005), Improved i<strong>on</strong>ospheric electrodynamic models and applicati<strong>on</strong> to calculating Joule heating rates,<br />

J. Geophys. Res., 110, A05306, doi:10.1029/2004JA010884.<br />

Yiğit, E., and A. J. Ridley (2011), <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> high-latitude <strong>the</strong>rmosphere heating at various scale sizes simulated by a<br />

n<strong>on</strong>hydrostatic global <strong>the</strong>rmosphere-i<strong>on</strong>osphere model, J. Atmos. Sol.-Terr. Phys., 73, 592–600, doi:10.1016/j.jastp.<br />

2010.12.003.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!