04.01.2015 Views

Lecture 5 Contact Stress

Lecture 5 Contact Stress

Lecture 5 Contact Stress

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Contact</strong> <strong>Stress</strong><br />

(3.19)<br />

MAE 316 – Strength of Mechanical Components<br />

Y. Zhu<br />

1<br />

<strong>Contact</strong> <strong>Stress</strong>


Introduction<br />

Where does contact stress occur<br />

Ball bearings<br />

Railroad wheel on a track<br />

Bowling ball on an alley<br />

Want to find the local stress at the point (region) of<br />

contact.<br />

This will depend on elasticity of contacting materials (E &<br />

ν), loading, and geometry.<br />

2<br />

<strong>Contact</strong> <strong>Stress</strong>


Spherical <strong>Contact</strong> Surfaces (3.19)<br />

Where a = radius of circular contact area and p o = p max =<br />

maximum pressure.<br />

3<br />

<strong>Contact</strong> <strong>Stress</strong>


Spherical <strong>Contact</strong> Surfaces (3.19)<br />

For spheres in contact, the contact patch is circular<br />

(radius a).<br />

a<br />

<br />

3<br />

3F<br />

(1 <br />

) / E (1 <br />

) / E<br />

8 1/ d 1/<br />

d<br />

2 2<br />

1 1 2 2<br />

1 2<br />

Where:<br />

F = force pressing the two spheres together<br />

d 1 and d 2 = diameters of the two solid spheres in contact<br />

E 1 , ν 1 , E 2 , ν 2 = respective elastic constants of the two spheres<br />

4<br />

<strong>Contact</strong> <strong>Stress</strong>


Spherical <strong>Contact</strong> Surfaces (3.19)<br />

The maximum contact pressure is<br />

The stress distribution is<br />

p<br />

<br />

3F<br />

2 a<br />

max 2<br />

<br />

z 1 1 <br />

1 <br />

<br />

1 2 x<br />

y<br />

pmax <br />

1 tan (1 )<br />

<br />

<br />

2<br />

<br />

a z a 21 ( za)<br />

<br />

<br />

pmax<br />

3 z<br />

<br />

2<br />

1 ( za)<br />

<br />

12<br />

<br />

0<br />

1 1<br />

max 13 23 yz<br />

xz<br />

( 1 3) ( 2 3)<br />

2 2<br />

xy<br />

5<br />

<strong>Contact</strong> <strong>Stress</strong>


Spherical <strong>Contact</strong> Surfaces (3.19)<br />

Figure 3-37 in the<br />

textbook shows the<br />

magnitude of the stress<br />

components below the<br />

surface as a function of<br />

p max of contacting<br />

spheres with ν = 0.3.<br />

6<br />

<strong>Contact</strong> <strong>Stress</strong>


Cylindrical <strong>Contact</strong> Surfaces (3.19)<br />

2b<br />

l<br />

Where b = half-width of rectangular contact area and p o = p max<br />

= maximum pressure.<br />

7<br />

<strong>Contact</strong> <strong>Stress</strong>


Cylindrical <strong>Contact</strong> Surfaces (3.19)<br />

For cylinders in contact, the contact patch is rectangular<br />

(half-width b).<br />

b<br />

<br />

2F<br />

(1 <br />

) / E (1 <br />

) / E<br />

l 1/ d 1/<br />

d<br />

2 2<br />

1 1 2 2<br />

1 2<br />

Where:<br />

l = length of contact area<br />

F = force pressing the two spheres together<br />

d 1 and d 2 = diameters of the two solid spheres in contact<br />

E 1 , ν 1 , E 2 , ν 2 = respective elastic constants of the two spheres<br />

8<br />

<strong>Contact</strong> <strong>Stress</strong>


Cylindrical <strong>Contact</strong> Surfaces (3.19)<br />

The maximum contact pressure is<br />

The stress distribution is<br />

p<br />

max<br />

<br />

2F<br />

bl<br />

<br />

<br />

2<br />

1<br />

<br />

x<br />

2 pmax<br />

1 ( zb)<br />

zb<br />

<br />

<br />

<br />

2<br />

1<br />

2( zb)<br />

<br />

p<br />

2<br />

<br />

2<br />

1 ( zb)<br />

pmax<br />

3<br />

z<br />

<br />

2<br />

1 ( zb)<br />

2 y max<br />

zb<br />

<br />

<br />

<br />

9<br />

<strong>Contact</strong> <strong>Stress</strong>


Cylindrical <strong>Contact</strong> Surfaces (3.19)<br />

Figure 3-39 in the<br />

textbook shows the<br />

magnitude of the stress<br />

components below the<br />

surface as a function of<br />

p max of contacting<br />

cylinders with ν = 0.3.<br />

10<br />

<strong>Contact</strong> <strong>Stress</strong>


Example<br />

Two carbon steel balls, each 30 mm in diameter, are<br />

pressed together by a force F. Find the maximum values<br />

of the principal stress and the maximum shear stress if F<br />

= 50 N, ν = 0.3, and E = 207 GPa.<br />

11<br />

<strong>Contact</strong> <strong>Stress</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!