07.01.2015 Views

Inverse dynamics for a three-link planar chain

Inverse dynamics for a three-link planar chain

Inverse dynamics for a three-link planar chain

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Marcos Duarte (2002)<br />

http://www.usp.br/eef/lob/md<br />

<strong>Inverse</strong> <strong>dynamics</strong> <strong>for</strong> a <strong>three</strong>-<strong>link</strong> <strong>planar</strong> <strong>chain</strong><br />

This text is part of an appendix in “Cesari, P., Shiratori, T., Olivato, P., Duarte, M. (2001) Analysis of<br />

kinematically redundant reaching movements using the equilibrium-point hypothesis. Biological<br />

Cybernetics, 84, 217-226.” and is also included in the book “Zatsiorsky, VM (2002) Kinetics of Human<br />

Motion. Champaign, Human Kinetics”.<br />

The following convention applies to the notation used in this paper:<br />

Subscript i runs 1, 2, or 3 meaning shoulder, elbow, or wrist joint when referring to angles, joint<br />

moments, or joint reaction <strong>for</strong>ces; or meaning upper arm, <strong>for</strong>earm, or hand segment when<br />

referring to everything else.<br />

x i , y i refer to the position of the center of mass of segment i in the horizontal or vertical direction,<br />

respectively<br />

l i is the length of segment i<br />

d i is the distance from the proximal joint of the segment i to its center of mass position<br />

d S is the distance from the wrist joint to the point of application of the spring <strong>for</strong>ce<br />

m i is the mass of segment i<br />

I i is the moment of inertia of segment i<br />

F xi , F yi are the joint reaction <strong>for</strong>ces of joint i in the horizontal or vertical direction, respectively<br />

F S is the spring <strong>for</strong>ce<br />

T i is the joint moment of joint i<br />

g is the gravitational acceleration<br />

Based on the model used here (see figure 1) the following relation applies to angles α, β,<br />

and θ:<br />

α 1 =β 1 =θ 1 (-)<br />

α 2 =θ 2 - α 1 β 2 =π−α 2 (1)<br />

1


Marcos Duarte (2002)<br />

http://www.usp.br/eef/lob/md<br />

α 3 =θ 3 - α 2 - α 1 β 3 =π−α 3<br />

α i and β i are the angles in the "joint space", β i is the internal angle of the joint i and α I the external<br />

one; θ i is the angle of the joint i in the "segment space".<br />

Figure 1. Model of the human body <strong>for</strong> the arm movement in the sagittal plane with the schematic<br />

location of the initial and target position. In this figure the spring <strong>for</strong>ce accounts <strong>for</strong> the external <strong>for</strong>ce<br />

on the hand (see the text).<br />

In order to compute the equations of motion, the linear accelerations of the center of gravity<br />

of each <strong>link</strong> taking into account the constraints imposed by the kinematics of the <strong>link</strong>age and<br />

starting from the shoulder joint as a fixed reference point were calculated by the first derivate of the<br />

Jacobian, J, of the respective angular velocities; or in a <strong>for</strong>mal matrix <strong>for</strong>m:<br />

T<br />

T<br />

T<br />

[& x<br />

&& y ] = J&<br />

[ & α & α & α ] + J [ && α && α & α<br />

] i = 1...3<br />

(2)<br />

i<br />

i<br />

i<br />

1<br />

2<br />

3<br />

i<br />

1<br />

2<br />

3<br />

The linear accelerations of the segment’s center of mass represented in figures 1 and 6 can<br />

be derived in a explicit <strong>for</strong>m by:<br />

Upper arm:<br />

x = d<br />

(3)<br />

1 1<br />

cosα1<br />

2<br />

& x = −d<br />

&& α sinα<br />

+ & α cos )<br />

(4)<br />

1 1( 1 1 1<br />

α1<br />

y = d<br />

(5)<br />

1 1<br />

sinα1<br />

2


Marcos Duarte (2002)<br />

http://www.usp.br/eef/lob/md<br />

3<br />

)<br />

sin<br />

cos<br />

( 1<br />

2<br />

1<br />

1<br />

1<br />

1<br />

1 α<br />

α<br />

α<br />

α<br />

&<br />

&&<br />

&<br />

&<br />

−<br />

= d<br />

y (6)<br />

Forearm:<br />

)<br />

cos(<br />

cos 2<br />

1<br />

2<br />

1<br />

1<br />

2 α<br />

α<br />

α +<br />

+<br />

= d<br />

x l (7)<br />

)<br />

)(2<br />

cos(<br />

)]<br />

cos(<br />

cos<br />

[<br />

)<br />

sin(<br />

)]<br />

sin(<br />

sin<br />

[<br />

2<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2<br />

α<br />

α α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

&<br />

&<br />

&<br />

&<br />

l<br />

&&<br />

&&<br />

l<br />

&&<br />

+<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

−<br />

+<br />

+<br />

= −<br />

d<br />

d<br />

d<br />

d<br />

x<br />

(8)<br />

)<br />

sin(<br />

sin 2<br />

1<br />

2<br />

1<br />

1<br />

2 α<br />

α<br />

α +<br />

+<br />

= d<br />

y l (9)<br />

)<br />

)(2<br />

sin(<br />

)]<br />

sin(<br />

sin<br />

[<br />

)<br />

cos(<br />

)]<br />

cos(<br />

cos<br />

[<br />

2<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2<br />

α<br />

α α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

&<br />

&<br />

&<br />

&<br />

l<br />

&&<br />

&&<br />

l<br />

&&<br />

+<br />

+<br />

+<br />

+<br />

−<br />

−<br />

+<br />

+<br />

+<br />

+<br />

=<br />

d<br />

d<br />

d<br />

d<br />

y<br />

(10)<br />

Hand:<br />

)<br />

cos(<br />

)<br />

cos(<br />

cos 3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

1<br />

3 α<br />

α<br />

α<br />

α<br />

α<br />

α +<br />

+<br />

+<br />

+<br />

+<br />

= d<br />

x<br />

l<br />

l (11)<br />

)<br />

2<br />

)(2<br />

cos(<br />

)]2<br />

cos(<br />

)<br />

cos(<br />

[<br />

)<br />

cos(<br />

)]<br />

cos(<br />

)<br />

cos(<br />

[<br />

)]<br />

cos(<br />

)<br />

cos(<br />

cos<br />

[<br />

)<br />

sin(<br />

)]<br />

sin(<br />

)<br />

sin(<br />

[<br />

)]<br />

sin(<br />

)<br />

sin(<br />

sin<br />

[<br />

3<br />

2<br />

3<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

2<br />

3<br />

3<br />

2<br />

1<br />

3<br />

2<br />

2<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

1<br />

3<br />

3<br />

2<br />

1<br />

3<br />

2<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

1<br />

3<br />

α<br />

α<br />

α α<br />

α<br />

α<br />

α<br />

α α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

&<br />

&<br />

&<br />

&<br />

&<br />

&<br />

l<br />

&<br />

&<br />

l<br />

&<br />

l<br />

l<br />

&&<br />

&&<br />

l<br />

&&<br />

l<br />

l<br />

&&<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

+<br />

= −<br />

d<br />

d<br />

d<br />

d<br />

d<br />

d<br />

d<br />

d<br />

x<br />

(12)<br />

)<br />

sin(<br />

)<br />

sin(<br />

sin 3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

1<br />

3 α<br />

α<br />

α<br />

α<br />

α<br />

α +<br />

+<br />

+<br />

+<br />

+<br />

= d<br />

y<br />

l<br />

l (13)<br />

)<br />

2<br />

)(2<br />

sin(<br />

)]2<br />

cos(<br />

)<br />

sin(<br />

[<br />

)<br />

sin(<br />

)]<br />

sin(<br />

)<br />

sin(<br />

[<br />

)]<br />

sin(<br />

)<br />

sin(<br />

sin<br />

[<br />

)<br />

cos(<br />

)]<br />

cos(<br />

)<br />

cos(<br />

[<br />

)]<br />

cos(<br />

)<br />

cos(<br />

cos<br />

[<br />

3<br />

2<br />

3<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

2<br />

3<br />

3<br />

2<br />

1<br />

3<br />

2<br />

2<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

1<br />

3<br />

3<br />

2<br />

1<br />

3<br />

2<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

1<br />

3<br />

α<br />

α<br />

α α<br />

α<br />

α<br />

α<br />

α α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

α<br />

&<br />

&<br />

&<br />

&<br />

&<br />

&<br />

l<br />

&<br />

&<br />

l<br />

&<br />

l<br />

l<br />

&&<br />

&&<br />

l<br />

&&<br />

l<br />

l<br />

&&<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

=<br />

d<br />

d<br />

d<br />

d<br />

d<br />

d<br />

d<br />

d<br />

y<br />

(14)<br />

Based on the free body diagrams, the equations of motion in the sagittal plane were derived<br />

by means of the Newton-Euler method.<br />

Hand:


Marcos Duarte (2002)<br />

http://www.usp.br/eef/lob/md<br />

m & x<br />

3 3<br />

= F x 3<br />

− F (15)<br />

S<br />

& y<br />

= F m g<br />

(16)<br />

m3 3 y3<br />

−<br />

3<br />

I && α = T<br />

3<br />

3<br />

3<br />

+ F<br />

+ F<br />

S<br />

d<br />

S<br />

x3<br />

d<br />

3<br />

sin( α + α + α ) − F<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

3<br />

1<br />

y3<br />

sin( α + α + α ) − I && α − I && α<br />

d<br />

3<br />

3<br />

cos( α + α + α )<br />

2<br />

1<br />

2<br />

3<br />

(17)<br />

Forearm:<br />

m & x<br />

= F x<br />

− F<br />

(18)<br />

2 2 2 x3<br />

m & y<br />

= F − F m g<br />

(19)<br />

2 2 y2<br />

y3<br />

−<br />

2<br />

I && α = T<br />

2<br />

2<br />

2<br />

+ F<br />

− T + F<br />

x2<br />

d<br />

3<br />

2<br />

x3<br />

( l<br />

1<br />

2<br />

sin( α + α ) − F<br />

− d )sin( α + α ) − F<br />

2<br />

2<br />

y2<br />

d<br />

2<br />

1<br />

2<br />

1<br />

y3<br />

cos( α + α ) − I && α<br />

2<br />

( l<br />

2<br />

− d )cos( α + α )<br />

2<br />

1<br />

2<br />

1<br />

2<br />

(20)<br />

Upper arm:<br />

m & x<br />

= F x<br />

− F<br />

(21)<br />

1 1 1 x2<br />

m & y<br />

= F − F m g<br />

(22)<br />

1 1 y1<br />

y2<br />

−<br />

1<br />

I && α = T − T + F ( l − d )sinα<br />

− F ( l<br />

1<br />

1<br />

1<br />

+ F<br />

x1<br />

1<br />

2<br />

x2<br />

1<br />

1<br />

d sinα<br />

− F<br />

y1<br />

1<br />

d cosα<br />

1<br />

1<br />

1<br />

y2<br />

1<br />

− d )cosα<br />

1<br />

1<br />

(23)<br />

The joint moments can be straight<strong>for</strong>wardly found solving the set of equations (15-23) in a<br />

top-down way (first the wrist moment and so on) once the inertial parameters and the kinematics<br />

data are known (the accelerations in the set of equations (3-14) are found first). If the kinematics<br />

data are time-series, the equations are implemented in any programming package and the timeseries<br />

of the joint moments are obtained. In this paper all data processing was implemented in<br />

Matlab. In a matrix-vector <strong>for</strong>m (useful <strong>for</strong> viasualizing the moment components, coupling and<br />

transfer effects) the joint moments can be represented as:<br />

T = M ( α)<br />

& α<br />

+ v(<br />

α,<br />

& α)<br />

+ G(<br />

α)<br />

+ T ( α)<br />

(24)<br />

or<br />

ext<br />

4


Marcos Duarte (2002)<br />

http://www.usp.br/eef/lob/md<br />

⎡T1<br />

⎤ ⎡M<br />

( α)<br />

⎢ ⎥ ⎢<br />

⎢<br />

T2<br />

⎥<br />

=<br />

⎢<br />

M ( α)<br />

⎢⎣<br />

T ⎥⎦<br />

⎢<br />

3 ⎣M<br />

( α)<br />

1,1<br />

2,1<br />

3,1<br />

M ( α)<br />

M ( α)<br />

M ( α)<br />

1,2<br />

2,2<br />

3,2<br />

M ( α)<br />

M ( α)<br />

M ( α)<br />

1,3<br />

2,3<br />

3,3<br />

⎤⎡<br />

&& α1<br />

⎤ ⎡v(<br />

α,<br />

& α)<br />

⎥⎢<br />

⎥<br />

+<br />

⎢<br />

⎥<br />

&&<br />

⎢<br />

α<br />

2<br />

⎥ ⎢<br />

v(<br />

α,<br />

& α)<br />

⎥<br />

⎦<br />

⎢⎣<br />

&& α ⎥⎦<br />

⎢<br />

3 ⎣v(<br />

α,<br />

& α)<br />

1<br />

2<br />

3<br />

⎤ ⎡G(<br />

α)<br />

⎥<br />

+<br />

⎢<br />

⎥ ⎢<br />

G(<br />

α)<br />

⎥⎦<br />

⎢⎣<br />

G(<br />

α)<br />

1<br />

2<br />

3<br />

⎤ ⎡T<br />

⎥<br />

+<br />

⎢<br />

⎥ ⎢<br />

T<br />

⎥⎦<br />

⎢⎣<br />

T<br />

ext<br />

ext<br />

ext<br />

( α)<br />

1 ⎤<br />

( α)<br />

⎥<br />

2<br />

⎥<br />

( α)<br />

⎥<br />

3 ⎦<br />

(24a)<br />

Where:<br />

T is the vector of joint moments (3x1).<br />

M (α) is the inertia matrix (3x3). Because inertia matrices are symmetric (I 1,2 =I 2,1 , I 1,3 =I 3,1 and<br />

I 2,3 =I 3,2 ), only six elements of the matrix should be determined. The elements are the <strong>three</strong><br />

moments of inertia, I 1,1 , I 2, 2 and I 3, 3<br />

α& & is the vector of angular accelerations (3x1).<br />

v ( α , & α)<br />

is the vector of centrifugal/Coriolis terms (3x1).<br />

G (α) is the vector of gravity terms (3x1).<br />

T<br />

ext<br />

is the vector of joint moments due to other external <strong>for</strong>ces besides gravity; in this case,<br />

represents the moment due to the spring <strong>for</strong>ce (3x1).<br />

The motion equations were rearranjed in the above <strong>for</strong>mat and the correspondent terms are:<br />

[ T T ] T<br />

T = (25)<br />

1 2<br />

T3<br />

[&&<br />

α && α &<br />

] T<br />

& α<br />

= (26)<br />

1 2<br />

α<br />

3<br />

M ( α)<br />

1,1<br />

= m d<br />

1<br />

3<br />

2<br />

1<br />

+ m [ l<br />

+ I<br />

2<br />

1<br />

1<br />

+ l<br />

+ m ( l<br />

2<br />

2<br />

2<br />

+ d<br />

2<br />

3<br />

2<br />

1<br />

+ d<br />

1<br />

2<br />

2<br />

+ 2l<br />

l<br />

+ 2l<br />

d<br />

2<br />

1<br />

2<br />

2<br />

cosα<br />

) + I<br />

1<br />

2<br />

cosα<br />

+ 2l<br />

d<br />

3<br />

2<br />

cos( α + α ) + 2l<br />

d<br />

2<br />

3<br />

2<br />

3<br />

cosα<br />

] + I<br />

3<br />

3<br />

(27)<br />

M ( α)<br />

1,2<br />

= m ( d<br />

+ l<br />

1<br />

2<br />

3<br />

2<br />

2<br />

+ l<br />

1<br />

2<br />

d<br />

2<br />

cosα<br />

) + I<br />

d cos( α + α ) + 2l<br />

d<br />

3<br />

2<br />

2<br />

2<br />

3<br />

+ m [ l<br />

3<br />

3<br />

2<br />

2<br />

+ d<br />

cosα<br />

] + I<br />

3<br />

2<br />

3<br />

+ l l<br />

1<br />

2<br />

cosα<br />

2<br />

(28)<br />

M ( α)<br />

l + I<br />

(29)<br />

2<br />

1 ,3<br />

= m3[<br />

d<br />

3<br />

+<br />

1d<br />

3<br />

cos( α<br />

2<br />

+ α3)<br />

+ l<br />

2d<br />

3<br />

cosα3]<br />

3<br />

M ( α)<br />

2,1<br />

= m ( d<br />

2<br />

+ m [ l<br />

3<br />

2<br />

2<br />

2<br />

2<br />

+ l<br />

+ d<br />

1<br />

2<br />

3<br />

d<br />

2<br />

+ l<br />

cosα<br />

) + I<br />

1<br />

2<br />

2<br />

l cosα<br />

+ 2l<br />

d<br />

2<br />

2<br />

2<br />

3<br />

cosα<br />

+ l d<br />

3<br />

1<br />

3<br />

cos( α + α )] + I<br />

2<br />

3<br />

3<br />

(30)<br />

5


Marcos Duarte (2002)<br />

http://www.usp.br/eef/lob/md<br />

M ( α)<br />

l + I<br />

(31)<br />

2<br />

2 2<br />

2 ,2<br />

= m2d<br />

2<br />

+ I<br />

2<br />

+ m3(<br />

2<br />

+ d<br />

3<br />

+ l<br />

2d<br />

3<br />

cosα<br />

3)<br />

3<br />

M ( α)<br />

l + I<br />

(32)<br />

2<br />

2 ,3<br />

= m3(<br />

d<br />

3<br />

+<br />

2d<br />

3<br />

cosα3)<br />

3<br />

M ( α)<br />

l + I<br />

(33)<br />

2<br />

3 ,1<br />

= m3[<br />

d<br />

3<br />

+<br />

1d<br />

3<br />

cos( α<br />

2<br />

+ α<br />

3)<br />

+ l<br />

2d<br />

3<br />

cosα<br />

3]<br />

3<br />

M ( α)<br />

l + I<br />

(34)<br />

2<br />

3 ,2<br />

= m3(<br />

d<br />

3<br />

+<br />

2d<br />

3<br />

cosα<br />

3)<br />

3<br />

M ( α = m d + I<br />

(35)<br />

) 3,3<br />

3<br />

2<br />

3<br />

3<br />

v(<br />

α,<br />

& α)<br />

= −[(<br />

m l d<br />

1<br />

3<br />

2<br />

1<br />

1<br />

− [ m l d<br />

3<br />

2<br />

+ m l<br />

3<br />

2<br />

1<br />

l<br />

)sinα<br />

+ m l d<br />

2<br />

sin( α + α ) + m l d<br />

3<br />

2<br />

3<br />

2<br />

3<br />

3<br />

1<br />

3<br />

2<br />

sin( α + α )](2 & α & α + & α )<br />

2<br />

sinα<br />

](2 & α & α + 2 & α & α + & α )<br />

3<br />

2<br />

1<br />

3<br />

3<br />

2<br />

3<br />

1<br />

2<br />

3<br />

2<br />

(36)<br />

v(<br />

α,<br />

& α)<br />

v(<br />

α,<br />

& α)<br />

2<br />

3<br />

= [( m l l<br />

3<br />

3<br />

− m d<br />

3<br />

3<br />

1<br />

3<br />

2<br />

1<br />

l<br />

= [ m l d<br />

3<br />

+ m l d<br />

2<br />

2<br />

3<br />

+ m<br />

2<br />

2<br />

d l )sinα<br />

+ m d l sin( α + α )] & α<br />

2<br />

sinα<br />

(2 & α & α + 2 & α & α + & α )<br />

3<br />

2<br />

2<br />

1<br />

1<br />

sin( α + α ) + m l d<br />

2<br />

sinα<br />

(2 & α & α + & α )<br />

3<br />

3<br />

1<br />

3<br />

2<br />

2<br />

3<br />

2<br />

2<br />

2<br />

3<br />

3<br />

3<br />

3<br />

1<br />

3<br />

2<br />

sinα<br />

] & α<br />

3<br />

1<br />

2<br />

3<br />

1<br />

(37)<br />

(38)<br />

G(<br />

α)<br />

1<br />

= m gd<br />

1<br />

+ m<br />

3<br />

1<br />

g[<br />

l<br />

cosα<br />

+ m<br />

1<br />

1<br />

cosα<br />

+ l<br />

1<br />

2<br />

g[<br />

l<br />

2<br />

1<br />

cosα<br />

+ d<br />

cos( α + α ) + d<br />

1<br />

1<br />

2<br />

2<br />

cos( α + α )]<br />

3<br />

1<br />

cos( α + α + α )]<br />

1<br />

2<br />

2<br />

3<br />

(39)<br />

G α ) = m gd cos( α + α ) + m g[<br />

l cos( α + α ) + d cos( α + α + )] (40)<br />

(<br />

2 2 2 1 2 3 2 1 2 3 1 2<br />

α3<br />

G α ) = m gd cos( α + α + )<br />

(41)<br />

T<br />

(<br />

3 3 3 1 2<br />

α3<br />

ext<br />

(<br />

1<br />

=<br />

S 1 1 S 2 1 2 S 3 S 1 2<br />

α<br />

3<br />

α ) −F<br />

l sinα<br />

− F l sin( α + α ) − F ( d + d )sin( α + α + ) (42)<br />

T α ) −F<br />

l sin( α + α ) − F ( d + d )sin( α + α + )<br />

(43)<br />

ext<br />

(<br />

2<br />

=<br />

S 2 1 2 S 3 S 1 2<br />

α3<br />

T α ) −F<br />

( d + d )sin( α + α + )<br />

(44)<br />

ext<br />

(<br />

3<br />

=<br />

S 3 S 1 2<br />

α3<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!