12.01.2015 Views

Optical phase conjugation technique using four-wave mixing in ...

Optical phase conjugation technique using four-wave mixing in ...

Optical phase conjugation technique using four-wave mixing in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

electrical power, dBm<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

–80<br />

–90<br />

–100<br />

0<br />

pump<br />

conjugate<br />

1 2 3 4 5 6 7 8 9<br />

frequency, GHz<br />

Fig. 2 Measured spectrum at optical receiver output for 500 MHz<br />

modulation frequency<br />

Horizontal co-ord<strong>in</strong>ate represents frequency detun<strong>in</strong>g between laser 2 and pump<br />

and conjugate <strong>wave</strong>s. This frequency is measured <strong>in</strong> gagahertz. Vertical coord<strong>in</strong>ate<br />

represents measured electrical power measured <strong>in</strong> dBm<br />

We repeated this measurement for modulation frequencies rang<strong>in</strong>g<br />

from 0.5 to 3.5 GHz with 0.5 GHz steps. The conjugate signal power<br />

(relative to its power at 500 MHz) is shown <strong>in</strong> Fig. 3. The frequency<br />

response is not flat, as predicted <strong>in</strong> [1].<br />

relative power, dB<br />

0<br />

–2<br />

–4<br />

–6<br />

–8<br />

–10<br />

–12<br />

–14<br />

0.5<br />

1.0 1.5 2.0<br />

frequency, GHz<br />

2.5 3.0 3.5<br />

Fig. 3 Conjugate <strong>wave</strong> relative powers measured <strong>in</strong> dB<br />

Reference power is 227 dBm. Modulation frequencies are 0.5, 1, 1.5, 2, 2.5, 3<br />

and 3.5 GHz<br />

Operation conditions are same as <strong>in</strong> Fig. 1<br />

Conclusion: We have shown experimentally that, <strong>in</strong> strong contrast to<br />

exist<strong>in</strong>g <strong>technique</strong>s, SOA-based optical <strong>conjugation</strong> schemes are not<br />

necessarily restricted to the highly non-degenerate <strong>four</strong>-<strong>wave</strong> <strong>mix<strong>in</strong>g</strong><br />

regime, because the probe and conjugate <strong>wave</strong>s can propagate <strong>in</strong> opposite<br />

directions <strong>in</strong>side the SOA, as proposed <strong>in</strong> [1].<br />

Acknowledgments: This work was supported <strong>in</strong> part by the Spanish<br />

Department of Education under the Programa Nacional de Movilidad<br />

de Recursos Humanos del Plan Nacional de I + D + I 2008-2011 and<br />

Science Foundation Ireland, Pr<strong>in</strong>ciple Investigator Award (09/IN.1/<br />

II2641).<br />

# The Institution of Eng<strong>in</strong>eer<strong>in</strong>g and Technology 2011<br />

22 March 2011<br />

doi: 10.1049/el.2011.0737<br />

One or more of the Figures <strong>in</strong> this Letter are available <strong>in</strong> colour onl<strong>in</strong>e.<br />

C.L. Janer (Departamento de Ingenieria Electronica, Escuela Superior<br />

de Ingenieros, Universidad de Sevilla, Seville, Spa<strong>in</strong>)<br />

E-mail: janer@us.es<br />

M.J. Connelly (<strong>Optical</strong> Communications Research Group, Department<br />

of Electronic and Comput<strong>in</strong>g Eng<strong>in</strong>eer<strong>in</strong>g, University of Limerick,<br />

Limerick, Ireland)<br />

References<br />

1 Agrawal, G.P.: ‘Population pulsation and nondegenerate <strong>four</strong>-<strong>wave</strong><br />

<strong>mix<strong>in</strong>g</strong> <strong>in</strong> semiconductor lasers and amplifiers’, J. Opt. Soc. Am. B.,<br />

1988, 5, (1), pp. 147–159<br />

2 Fu, T., and Sargent, M. III.: ‘Effects of signal detun<strong>in</strong>g on <strong>phase</strong><br />

<strong>conjugation</strong>’, Opt. Lett., 1979, 4, (11), pp. 366–368<br />

3 He, G.S.: ‘<strong>Optical</strong> <strong>phase</strong> <strong>conjugation</strong>: pr<strong>in</strong>ciples, <strong>technique</strong>s and<br />

applications’, Prog. Quantum Electron., 2002, 26, pp. 131–191<br />

4 Yariv, A., Fekete, D., and Pepper, D.M.: ‘Compensation for channel<br />

dispersion by nonl<strong>in</strong>ear optical <strong>phase</strong> <strong>conjugation</strong>’, Opt. Lett., 1979, 4,<br />

(2), pp. 52–54<br />

5 Bogatov, A.P., Eliseev, P.G., and Sverdlov, B.N.: ‘Anomalous<br />

<strong>in</strong>teraction of spectral modes <strong>in</strong> a semiconductor laser’, IEEE<br />

J. Quantum Electron., 1975, 11, pp. 510–515<br />

6 Fabre, F., and Guen, D. le: ‘Contradirectional <strong>four</strong>-<strong>wave</strong> <strong>mix<strong>in</strong>g</strong> <strong>in</strong><br />

1,51 mm near-travell<strong>in</strong>g-<strong>wave</strong> semiconductor laser amplifier’, Electron.<br />

Lett., 1989, 25, (16), pp. 1053–1055<br />

7 Xue, W., Chen, Y., Ohman, F., Sales, S., and Mork, J.: ‘Enhanc<strong>in</strong>g light<br />

slow-down <strong>in</strong> semiconductor optical amplifiers by optical filter<strong>in</strong>g’, Opt.<br />

Lett., 2008, 33, (10), pp. 1084–1086<br />

8 Erdogan, T.: ‘Fiber grat<strong>in</strong>g spectra’, IEEE J. Light<strong>wave</strong> Technol., 1997,<br />

15, (8), pp. 1277–1294<br />

ELECTRONICS LETTERS 9th June 2011 Vol. 47 No. 12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!