13.01.2015 Views

Rayleigh criterion for spatial resolution - NSRRC User Portal

Rayleigh criterion for spatial resolution - NSRRC User Portal

Rayleigh criterion for spatial resolution - NSRRC User Portal

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Rayleigh</strong> <strong>criterion</strong> <strong>for</strong> <strong>spatial</strong><br />

<strong>resolution</strong><br />

45


The <strong>Rayleigh</strong> <strong>criterion</strong> is the generally accepted <strong>criterion</strong> <strong>for</strong> the<br />

minimum resolvable detail - the imaging process is said to be<br />

diffraction-limited when the first diffraction minimum of the image of<br />

one source point coincides with the maximum of another.<br />

Circular aperture<br />

Single slit<br />

47


=1.22λ/(2N. A. )=0.61λ/nsinθ<br />

48


Calculating Diffraction:<br />

r=1.22λ/(2N. A. )=0.61λ/nsinθ<br />

d<br />

For 1469 cm<br />

(1469 cm -1<br />

d<br />

<br />

1.22 λ<br />

N.A.obj. <br />

-1<br />

1.22(6.8 μm)<br />

<br />

0.58 0.71<br />

,<br />

N.A.cond.<br />

6.8 μm)<br />

<br />

6.4 μm<br />

When calculating diffraction the Numeric Aperture of the objective and condenser as<br />

well as the wavelength of interest. The Numerical Aperture is calculated as:<br />

N.A = n sin (u) (where n = refractive index of the medium and u = the semi-field<br />

angle of the optical device.<br />

In general, the higher the Numerical Aperture, the better. The drawback of high<br />

Numeric Aperture is a small working distance and a very small depth of view.<br />

49


Focal Plane Array (FPA) Detectors<br />

<strong>for</strong> Full-Field Imaging<br />

There are a variety of Detector arrays, including<br />

MCT, InSb, PtSi, Si, Si:As etc.<br />

The array sizes vary from 16 x 16, up to 1024 x<br />

1024 pixels<br />

320 x 240 Si:As<br />

128 x 128 MCT<br />

1024 x 1024 InSb<br />

64 x 64 MCT<br />

50


Full-Field FT-IR imaging system<br />

Hyperion 3000<br />

FFT<br />

Optical layout of FPA-base FT-IR imaging system<br />

51


Focal Plane Array (FPA) Detectors<br />

<strong>for</strong> Full-Field Imaging<br />

“The missile is equipped with an imaging<br />

infrared seeker which is based on mercury<br />

cadmium telluride (HgCdTe) Focal Plane<br />

Array technology in the long wave infra-red<br />

band at wavelength 8 to 12 microns of the<br />

electromagnetic spectrum.”<br />

The MCT 64 x 64 element array was developed <strong>for</strong> the Javelin anti-tank<br />

missile program<br />

These arrays are only a ‘reasonable’ price because of the number being<br />

manufactured <strong>for</strong> this program<br />

52


II. Background and Motivation<br />

Infrared spectra are obtained from individual living cells.<br />

• Lipids (cell walls)<br />

• Nucleic acids (DNA, RNA)<br />

• Proteins<br />

• Each of these major<br />

classes of cellular<br />

components have<br />

distinct IR markers<br />

53


Chemical Features of Biological Components<br />

Amide A<br />

Amide B<br />

54


DNA/RNA<br />

n s<br />

(C-O-C)<br />

55


II. Background and Motivation (Cont.)<br />

1. Higher An as CH 2 / An as CH 3 (lipid/<br />

protein ratio) was found in the<br />

cancer tissues than that of Normal<br />

tissues.<br />

2. The ratio could be affected by<br />

different method of fixation <strong>for</strong><br />

tissue sample.<br />

3. IR spectrum marker is also<br />

strongly disturbed by different<br />

sample preparation.<br />

Normal<br />

Cancer<br />

R. K. Sah, Journal of Biomedical Optics, 10(5), 054017 (2005)<br />

J. G. Wu, Biospectroscopy 62, 185 (2001)<br />

56


II. Background and Motivation(Cont.)<br />

Fig.1<br />

Fig.3<br />

Fig.2<br />

(iii)<br />

(ii)<br />

(i)<br />

Fig. 1. Raman of pure paraffin wax<br />

Fig. 2. Raman spectra comparing (i) paraffin<br />

wax, (ii) frozen tissue section of cervical<br />

cancer and (iii) dewaxed FFPP (Formalin<br />

Fixed Paraffin Processed) tissue section of<br />

cervical cancer.<br />

Fig. 3 Raman spectra after each subsequent<br />

dewaxing cycle using xylene.<br />

57


2.4<br />

2 hr xylene washing<br />

Malignant part of tissue section<br />

T 1<br />

T 2<br />

Normal colon tissue<br />

N 1<br />

Absorbance<br />

Colon cancer tissue<br />

T 1<br />

0.0<br />

N 2<br />

N 3<br />

Absorbance<br />

1.8<br />

1.2<br />

0.6<br />

N 1<br />

2.4<br />

Normal part of tissue section<br />

Wavenumbers/ cm -1 N 2<br />

1.8<br />

N 3<br />

1.2<br />

0.6<br />

0.0<br />

3500 3000 2500 2000 1500 1000<br />

T 3<br />

T 2<br />

T 3<br />

58


Construction of Spectral Image<br />

0 . 3<br />

0 .1 5<br />

P a ra ffi n<br />

B e e s w a x<br />

Absorbance<br />

0 . 2<br />

0 . 1<br />

Absorbance<br />

0 .1 0<br />

0 .0 5<br />

0 .0 0<br />

IR spectrum of cell sample<br />

3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0<br />

W a v e n u m b e r/c m -1<br />

0 . 0<br />

3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0<br />

W a v e n u m b e r s / c m<br />

- 1<br />

Reference Image<br />

Be<strong>for</strong>e Treatment<br />

Cell sample<br />

Cells image<br />

After Treatment<br />

The area beneath the spectral curve was integrated in the range of 3000-<br />

2800 cm -1 , being the absorbance of wax residual of cell sample and<br />

collected to construct spectral image to be identify disease stage of cell.<br />

59


III. Experimental Strategies:<br />

Part 1. Bias-assisted Wax Physisorption using<br />

FTIR imaging <strong>for</strong> Cancer Diagnosis<br />

Part 2. Cancer Therapy by using Alternating<br />

Electric Fields<br />

60


III. Part 1. Bias-assisted Wax Physisorption<br />

Kinetics using FTIR imaging <strong>for</strong> Cancer Diagnosis<br />

nHOK /OECM-1 /SCC-15 /SCC-25 /OC-2 / OC-3<br />

@ G1 phase<br />

Step 2 Step 3<br />

A<br />

Alkanes(C n H 2n+2 )<br />

(N=22,23,24,25,26,28,<br />

30,32,34)<br />

Cells fixed on Low-e silde<br />

Step 1<br />

B<br />

Paraffin<br />

(C 25 H 52 )<br />

Beeswax<br />

(C 46 H 92 O 2 )<br />

C. Deglycosylation<br />

D. Hydrolysis<br />

Enzyme<br />

Waxing<br />

<strong>for</strong> 2 min<br />

Waxing and Dewaxing<br />

Stand and dry<br />

<strong>for</strong> 10 min<br />

Dewaxing<br />

<strong>for</strong> 5 s<br />

FT-IR imaging<br />

128 scans, 8 cm -1<br />

Xylene<br />

Washing<br />

E. + - Bias<br />

+<br />

E E = V/d<br />

d=0.5 cm<br />

V= 10..300<br />

Focal-plane-array-based Synchrotron-based<br />

FT-IR imaging system<br />

61


+<br />

+++++<br />

+<br />

+++++<br />

Part II. Innovative Cancer Therapy by using<br />

Alternating Electric Fields<br />

Interfering biological<br />

processes within cancer cells<br />

Apoptosis<br />

FTIR analysis of AEF<br />

treated cancer cell<br />

_ _ _ _ _ _ _ _ _ _ _<br />

Absorbance<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

AEF treatment of SCC-15<br />

25o kHz,E= 2 V/ cm treatment of SCC-15<br />

Amide A<br />

Lipid<br />

(V S CH and V as CH)<br />

Amide B<br />

Vs C=O<br />

Amide I<br />

Amide II<br />

DNA/RNA<br />

FTIR imaging<br />

apoptotic cell<br />

0.0<br />

3500 3000 2500 2000 1500 1000<br />

Wavenumber/ cm -1<br />

62


VI. Results and Discussion<br />

Treatment A:<br />

Wax Residual <strong>for</strong> Oral Cells by using alkane with different chain length as<br />

diagnostic agent (22C~34C) to pick out a suited alkane <strong>for</strong> differentiating<br />

malignancy from sample<br />

Aborbance (ABS)<br />

400<br />

320<br />

240<br />

160<br />

80<br />

nHOK SCC-25 SCC-15<br />

OC-2 OC-3 OEC-M1<br />

Pentacosane<br />

Triacontane<br />

Beeswax<br />

0<br />

C22H46 C23H48 C24H50 C25H52 C26H54 C27H56 C28H58 C30H62 C46H92O2 C32H66 C34H70 --<br />

The chain length of alkanes<br />

*Absorbance of averaged wax residue is divided by no. of carbon atom and cells<br />

63


Treatment B:<br />

Paraffin and Beeswax as diagnostic agents<br />

Normal Oral Cells<br />

Reference image<br />

Oral Cancer Cells<br />

The results of kinetic FT-IR imaging of Normal Oral cells showed a stronger<br />

capability of physisorption with paraffin than that of beeswax.<br />

The Oral Cancer cells showed a greater capability <strong>for</strong> adsorbing beeswax than<br />

that of paraffin.<br />

1. Lee et al., Method <strong>for</strong> detecting cancer and reagents <strong>for</strong> use therein, USA patent,<br />

US-8-354,222 B2 (2013); Japan patent, 119309 (2013)<br />

2. Chiu et al., Anal. Bioanal. Chem. 405 , 1995 (2013)<br />

64


Relative Paraffin Residues used as diagnostic agent<br />

<strong>for</strong> differentiating Colorectal Normal from Malignancy<br />

CCD-18Co<br />

Xylene washing<br />

60 min<br />

5 s<br />

Deparaffining<br />

10 s<br />

50 mm<br />

SW-480<br />

Paraffining<br />

2 min<br />

SW-403<br />

65


Relative Beeswax Residues used as diagnostic agent<br />

<strong>for</strong> differentiating Colorectal Malignancy from Normal<br />

CCD-18Co<br />

Xylene washing<br />

60 min<br />

5 s<br />

Debeeswaxing<br />

10 s<br />

50 mm<br />

SW-480<br />

Beeswaxing<br />

2 min<br />

SW-403<br />

66

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!