13.01.2015 Views

Resilience in aquatic ecosystems - hysteresis, homeostasis, and ...

Resilience in aquatic ecosystems - hysteresis, homeostasis, and ...

Resilience in aquatic ecosystems - hysteresis, homeostasis, and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

16<br />

Reynolds/ Aquatic Ecosystem Health <strong>and</strong> Management 5 (2002) 3–17<br />

stress (Costanza <strong>and</strong> Mageau, 1999). Is this not just<br />

another way of ask<strong>in</strong>g how much structural <strong>and</strong><br />

resourc<strong>in</strong>g resilience the system has<br />

In the same way that systems emerge only through<br />

the aggregate of the behaviors of <strong>in</strong>dividual organisms<br />

of discrete populations, so system health should be<br />

manifest <strong>in</strong> the representation of key <strong>in</strong>dicator species<br />

<strong>and</strong> functional types. Thus, the <strong>in</strong>dices of ecosystem<br />

susta<strong>in</strong>ability promoted by Costanza <strong>and</strong> Mageau<br />

(1999) provide a ready framework of dimensions for<br />

dist<strong>in</strong>guish<strong>in</strong>g “good” from less desirable resilience.<br />

The l<strong>in</strong>es <strong>in</strong> Figure 5a represent the axes of a threedimensional<br />

plot, which share a common orig<strong>in</strong> at<br />

“0”. The z-dimension corresponds to specific process<strong>in</strong>g<br />

rate (represent<strong>in</strong>g gross primary production,<br />

forag<strong>in</strong>g rate, oxidative capacity); the y-dimension<br />

corresponds to structure (represent<strong>in</strong>g greater species<br />

richness <strong>and</strong> <strong>in</strong>terconnectance, more <strong>in</strong>formation<br />

organized <strong>in</strong> more biological complexity). These two<br />

axes def<strong>in</strong>e a (y-z) plane analogous to that used by<br />

Reynolds (1999) to dist<strong>in</strong>guish lakes on the basis of<br />

their metabolic properties. The third (x-) dimension<br />

corresponds to resilience as a separate measure of<br />

ecosystem behavior. It was not qualified by Costanza<br />

<strong>and</strong> Mageau; their <strong>in</strong>tention is the “structural” context<br />

but it holds for “resourc<strong>in</strong>g” too. In Figure 5b, two trajectories<br />

of ecosystem development are <strong>in</strong>serted <strong>in</strong>to<br />

the three-dimensional space created by the axis<br />

boundaries. For simplicity, they refer strictly to the<br />

early development <strong>and</strong> they do not show symptoms of<br />

disturbance. Both trajectories commence close to the<br />

orig<strong>in</strong> <strong>and</strong>, quite properly, demonstrate high biomass<br />

production. Both trajectories acquire resilience, also<br />

as anticipated but one of them also rises with respect<br />

to the y axis, as it ga<strong>in</strong>s more species, develops more<br />

network connectances <strong>and</strong> becomes more complex.<br />

This is the trajectory of Ulanowicz’ (1986) ascendancy<br />

<strong>and</strong> the resilience it builds is of the structural k<strong>in</strong>d.<br />

The other trajectory advances <strong>in</strong> productivity <strong>and</strong> process<strong>in</strong>g<br />

but the biomass <strong>in</strong>vestment is <strong>in</strong> a few specialist<br />

species, not <strong>in</strong> structural diversity. Managers<br />

will attest to its high resilience to therapy. The second<br />

trajectory acquires resourc<strong>in</strong>g resilience but high<br />

diversity is delayed. It is productive but has low <strong>in</strong>formation.<br />

Presently judgement resides with the view that<br />

high-diversity, low-productivity systems are healthier<br />

than low-diversity ones, though high productivity is a<br />

characteristic of early successions <strong>and</strong> it is what<br />

makes them so attractive for exploitation. For<br />

exploitation to be susta<strong>in</strong>able, systems must always be<br />

allowed the resilience to recover their ascendancy.<br />

References<br />

Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A.,<br />

Th<strong>in</strong>gstad, T., 1983. The ecological role of water-column<br />

microbes <strong>in</strong> the sea. Mar. Ecol. Prog. Ser. 10, 257––263.<br />

Bratbak, G., Th<strong>in</strong>gstad, T. F., 1985. Phytoplankton-bacteria <strong>in</strong>teractions:<br />

An apparent paradox Analysis of a model system with<br />

both competition <strong>and</strong> commensalism. Mar. Ecol. Prog. Ser. 25,<br />

23–30.<br />

Brown, J. H., Maurer, B. A., 1989. Macroecology: The division of<br />

food <strong>and</strong> space among species on cont<strong>in</strong>ents. Science 243,<br />

1145–1150.<br />

Carpenter, S. R., Kitchell, J. F., 1993. The Trophic Cascades <strong>in</strong><br />

Lakes. Cambridge University Press, New York, NY.<br />

Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., 1985. Cascad<strong>in</strong>g<br />

trophic <strong>in</strong>teractions <strong>and</strong> lake productivity. Biosciences 35,<br />

634–639.<br />

Connell, J. H., 1978. Diversity <strong>in</strong> tropical ra<strong>in</strong> forests <strong>and</strong> coral<br />

reefs. Science 199, 1302–1310.<br />

Costanza, R., Mageau, M., 1999. What is a healthy ecosystem<br />

Aquat. Ecol. 33, 105–115.<br />

Dryden, R. C., Wright, S. J. L., 1987. Predation of cyanobacteria by<br />

protozoa. Can. J. Microbiol. 33, 471–482.<br />

Elliott, J. M., Hurley, M. A., 1999. A new energetics model for<br />

brown trout, Salmo trutta. Freshwat. Biol. 42, 235–246.<br />

Geider, R. J., Osborne, B. A., 1992. Algal Photosynthesis: The<br />

Measurement of Algal Gas Exchange. Chapman & Hall,<br />

New York.<br />

Gleick, J., 1988. Chaos. He<strong>in</strong>emann, London.<br />

Gliwicz, Z. M., Preis, A., 1977. Can planktivorous fish keep <strong>in</strong><br />

check planktonic crustacean populations A test of the sizeefficiency<br />

hypothesis. Ekol. Polska, Ser. A 25, 567–591.<br />

Greenwood, P. H., 1963. A History of Fishes (2nd ed.). Ernest Benn,<br />

London.<br />

Gull<strong>and</strong>, J. A. , 1983. Fish Stock Assessment. John Wiley & Sons,<br />

Chichester.<br />

Hairston, N. G., Smith, F. E., Slobodk<strong>in</strong>, L. B., 1960. Community<br />

structure, population control <strong>and</strong> competition. Am. Nat. 94,<br />

421–425.<br />

Harrison, G. W., 1979. Stability under environmental stress:<br />

Resistance, resilience, persistence <strong>and</strong> variability. Am. Nat. 115,<br />

659–669.<br />

Holl<strong>in</strong>g, C. S., 1973. <strong>Resilience</strong> <strong>and</strong> stability of ecological systems.<br />

Annu. Rev. Ecol. System. 4, 1–23.<br />

Huisman, J., Oostven, P., Weiss<strong>in</strong>g, F. J., 1999. Critical depth <strong>and</strong><br />

critical turbulence: Two different mechanisms for the development<br />

of phytoplankton blooms. Limnol. Oceanog. 1781–1787.<br />

Jónasson, P. M., 1996. Limits for life <strong>in</strong> the lake ecosystem.<br />

Verh<strong>and</strong>lungen der <strong>in</strong>ternationale Vere<strong>in</strong>igung für theoretische<br />

und angew<strong>and</strong>te Limnologie 26, 1–33.<br />

Jones, R. I., 1992. The <strong>in</strong>fluence of humic substances <strong>in</strong> lacustr<strong>in</strong>e<br />

planktonic food cha<strong>in</strong>s. Hydrobiologia 229, 73–91.<br />

Jørgensen, S.-E., 1982. Exergy <strong>and</strong> buffer<strong>in</strong>g capacity <strong>in</strong> ecological<br />

systems. In: W. Mitsch, R. Ragade, R. Bosserman, J. Dillon<br />

(Eds.), Energetics <strong>and</strong> Systems, pp. 61–72. Ann Arbor Science<br />

Publishers, Ann Arbor.<br />

Kirk, J. T. O., 1994. Light <strong>and</strong> Photosynthesis <strong>in</strong> Aquatic<br />

Ecosystems (2nd ed.). Cambridge University Press, Cambridge.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!