15.01.2015 Views

ELECTROCHEMISTRY - Wits Structural Chemistry

ELECTROCHEMISTRY - Wits Structural Chemistry

ELECTROCHEMISTRY - Wits Structural Chemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

w max = ∆G<br />

Before Equilibrium<br />

The Cell Potential<br />

Consider a galvanic cell reaction:<br />

The cell can do electrical work by driving<br />

e − ’s through the external circuit.<br />

The larger the potential difference between the<br />

two electrodes, the more work can be done by<br />

each e−.<br />

Measure E cell by applying an opposing<br />

potential s.t. the reaction occurs reversibly<br />

and the composition is constant (no nett<br />

current flows).<br />

∆G = −nFE cell<br />

for electrical work for a<br />

reversible reaction<br />

At Equilibrium<br />

No more work can be done<br />

E cell = 0 V<br />

The composition in electrode compartment is expressed by:<br />

the reaction quotient, Q<br />

the equilibrium constant, K<br />

Derive Nernst equation:<br />

RT<br />

E = E<br />

o − ln Q<br />

nF<br />

Applies to:<br />

∆G = −nFE<br />

Half-reactions<br />

RT<br />

E<br />

nF<br />

and<br />

Cells<br />

RT<br />

nF<br />

o<br />

o<br />

= Ered<br />

− lnQred<br />

E = Ecell<br />

− lnQrxn<br />

Half-cell reaction written as a<br />

reduction reaction.<br />

Nernst Equation<br />

o<br />

∆G<br />

= ∆G<br />

+ RT ln Q<br />

2.303 RT<br />

E = E<br />

o − log Q<br />

nF<br />

E<br />

o<br />

cell<br />

= E<br />

o<br />

cathode<br />

− E<br />

o<br />

anode<br />

NOTE: E o used in the calculations are always for the reduction reactions.<br />

loge<br />

x<br />

log x =<br />

10<br />

loge<br />

10<br />

2 .303 log x = ln x<br />

0.05916<br />

E = E<br />

o − log Q at 25°C<br />

n<br />

E o = standard cell potential all reactants and products in their standard states,<br />

thus all activities = 1<br />

∆G = −nFE<br />

Do Self-test 6.7<br />

Standard Reduction Potentials in H 2 O at 25 o C<br />

The cell reaction is spontaneous<br />

if E cell > 0<br />

At equilibrium:<br />

∆G = 0 E cell = 0 and Q = K<br />

Strong oxidising<br />

agent<br />

Gibbs free energy, G<br />

∆G < 0<br />

E > 0<br />

∆G = 0<br />

E = 0<br />

∆G > 0<br />

E < 0<br />

RT<br />

E = E<br />

− lnQ<br />

nF<br />

RT<br />

0 E − lnK<br />

nF<br />

= nF <br />

ln K = E<br />

RT<br />

E > 0 <br />

spontaneous<br />

reduction<br />

reactants<br />

Extent of reaction<br />

products<br />

The steeper the slope, the greater<br />

the driving power of the cell.<br />

Recall:<br />

∆G°= –RT ln K<br />

∆G°= –nFE°<br />

E < 0 nonspontaneous<br />

reduction<br />

Strong reducing<br />

agent<br />

Example 1<br />

Consider the Daniell cell:<br />

Using the standard reduction potentials, calculate the equilibrium constant at 25 °C.<br />

Standard reduction potentials at 25 °C:<br />

Cu 2+ + 2e - → Cu(s)<br />

Zn 2+ + 2e - → Zn(s)<br />

Zn(s)<br />

ZnSO 4 (aq) CuSO 4 (aq) Cu(s)<br />

E o = +0.34 V<br />

E o = −0.76 V<br />

Do Self-test 6.8<br />

Metal/metal ion:<br />

e.g. Zn(s) in zinc ion solution<br />

M(s) | M n+ (aq)<br />

Metal-insoluble salt: M(s) | MX(s) | X - (aq)<br />

e.g. silver-silver chloride electrode<br />

−<br />

Ag(s)<br />

AgCl(s) Cl (aCl)<br />

AgCl(s) + e - Ag(s) + Cl - (aq)<br />

Inert electrode: Pt(s) | M n+ (aq), M p+ (aq)<br />

e.g. Pt immersed in a solution containing a redox couple<br />

4 + 3+<br />

Pt(s) Ce (aq),Ce (aq)<br />

Ce 4+ + e - Ce 3+<br />

o RT a<br />

E = E − ln<br />

F a<br />

Gas electrode:<br />

Zn 2+ + 2e - Zn(s)<br />

Pt(s) | X 2 (g) | X +/− (aq)<br />

e.g. a standard hydrogen electrode<br />

+<br />

Pt(s)<br />

H2(g)<br />

H (aq)<br />

2H + + 2e - H 2 (g)<br />

Types of Electrodes<br />

E<br />

E<br />

RT<br />

2F<br />

o<br />

= E − ln<br />

2+<br />

RT<br />

F<br />

o<br />

= E − ln a<br />

−<br />

Cl<br />

RT<br />

2F<br />

1<br />

a<br />

p<br />

3+<br />

Ce<br />

4+<br />

Ce<br />

o<br />

H2<br />

E = E − ln<br />

2<br />

a<br />

Zn<br />

+<br />

H<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!