15.01.2015 Views

ELECTROCHEMISTRY - Wits Structural Chemistry

ELECTROCHEMISTRY - Wits Structural Chemistry

ELECTROCHEMISTRY - Wits Structural Chemistry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ELECTROCHEMISTRY</strong><br />

Mrs Billing<br />

GH840<br />

Caren.Billing@wits.ac.za<br />

Water and<br />

effluent<br />

treatment<br />

Study and<br />

control of<br />

corrosion<br />

Electroplating<br />

and refining of<br />

metals<br />

Manufacture and<br />

synthesis of<br />

chemicals<br />

Study of redox<br />

reactions<br />

Applications of<br />

Electrochemistry<br />

Manufacturing and<br />

electromachining<br />

Batteries and<br />

fuel cells<br />

Sensors<br />

Bioelectrochemistry<br />

EQUILIBRIUM<br />

<strong>ELECTROCHEMISTRY</strong><br />

(POTENTIOMETRY)<br />

NERNST EQUATION<br />

THERMODYNAMICS<br />

OUTLINE<br />

TRANSPORT<br />

DYNAMIC<br />

<strong>ELECTROCHEMISTRY</strong><br />

(VOLTAMMETRY)<br />

BUTLER-VOLMER EQN<br />

KINETICS<br />

EQUILIBRIUM <strong>ELECTROCHEMISTRY</strong><br />

REVISION<br />

The Cell Potential<br />

Nernst Equation<br />

Types of electrodes<br />

Standard Electrode Potentials<br />

Thermodynamic Functions from the Cell Potential<br />

Applications of Standard Potentials<br />

MOLECULES and IONS<br />

in MOTION<br />

Part of Chapter 6<br />

REVISION<br />

Oxidation at anode<br />

Reduction at cathode<br />

Composition of an electrochemical cell:<br />

2 electrodes: anode + cathode<br />

Connected together<br />

In contact with ionic conductor<br />

(solution, liquid, solid)<br />

Of the same composition<br />

V<br />

Galvanic cell: produces<br />

electricity due to<br />

spontaneous reaction.<br />

Cell Notation:<br />

Daniell Cell:<br />

electrode<br />

Separate<br />

phases<br />

in soln<br />

Salt<br />

bridge<br />

in soln<br />

Separate<br />

phases<br />

electrode<br />

Zn(s) | Zn 2+ (aq,1 M) | | Cu 2+ (aq,1 M) | Cu(s)<br />

Or different composition<br />

Need a salt bridge to<br />

complete the circuit<br />

Electrolytic cell: the nonspontaneous<br />

reaction is<br />

driven by an external current<br />

source.<br />

Zn(s) looses e − ’s<br />

Cu 2+ (aq) gains e − ’s<br />

Overall reaction: Zn(s) + Cu 2+ (aq) → Zn 2+ (aq) + Cu(s)<br />

Eventually equilibrium in reached: Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s)<br />

1


w max = ∆G<br />

Before Equilibrium<br />

The Cell Potential<br />

Consider a galvanic cell reaction:<br />

The cell can do electrical work by driving<br />

e − ’s through the external circuit.<br />

The larger the potential difference between the<br />

two electrodes, the more work can be done by<br />

each e−.<br />

Measure E cell by applying an opposing<br />

potential s.t. the reaction occurs reversibly<br />

and the composition is constant (no nett<br />

current flows).<br />

∆G = −nFE cell<br />

for electrical work for a<br />

reversible reaction<br />

At Equilibrium<br />

No more work can be done<br />

E cell = 0 V<br />

The composition in electrode compartment is expressed by:<br />

the reaction quotient, Q<br />

the equilibrium constant, K<br />

Derive Nernst equation:<br />

RT<br />

E = E<br />

o − ln Q<br />

nF<br />

Applies to:<br />

∆G = −nFE<br />

Half-reactions<br />

RT<br />

E<br />

nF<br />

and<br />

Cells<br />

RT<br />

nF<br />

o<br />

o<br />

= Ered<br />

− lnQred<br />

E = Ecell<br />

− lnQrxn<br />

Half-cell reaction written as a<br />

reduction reaction.<br />

Nernst Equation<br />

o<br />

∆G<br />

= ∆G<br />

+ RT ln Q<br />

2.303 RT<br />

E = E<br />

o − log Q<br />

nF<br />

E<br />

o<br />

cell<br />

= E<br />

o<br />

cathode<br />

− E<br />

o<br />

anode<br />

NOTE: E o used in the calculations are always for the reduction reactions.<br />

loge<br />

x<br />

log x =<br />

10<br />

loge<br />

10<br />

2 .303 log x = ln x<br />

0.05916<br />

E = E<br />

o − log Q at 25°C<br />

n<br />

E o = standard cell potential all reactants and products in their standard states,<br />

thus all activities = 1<br />

∆G = −nFE<br />

Do Self-test 6.7<br />

Standard Reduction Potentials in H 2 O at 25 o C<br />

The cell reaction is spontaneous<br />

if E cell > 0<br />

At equilibrium:<br />

∆G = 0 E cell = 0 and Q = K<br />

Strong oxidising<br />

agent<br />

Gibbs free energy, G<br />

∆G < 0<br />

E > 0<br />

∆G = 0<br />

E = 0<br />

∆G > 0<br />

E < 0<br />

RT<br />

E = E<br />

− lnQ<br />

nF<br />

RT<br />

0 E − lnK<br />

nF<br />

= nF <br />

ln K = E<br />

RT<br />

E > 0 <br />

spontaneous<br />

reduction<br />

reactants<br />

Extent of reaction<br />

products<br />

The steeper the slope, the greater<br />

the driving power of the cell.<br />

Recall:<br />

∆G°= –RT ln K<br />

∆G°= –nFE°<br />

E < 0 nonspontaneous<br />

reduction<br />

Strong reducing<br />

agent<br />

Example 1<br />

Consider the Daniell cell:<br />

Using the standard reduction potentials, calculate the equilibrium constant at 25 °C.<br />

Standard reduction potentials at 25 °C:<br />

Cu 2+ + 2e - → Cu(s)<br />

Zn 2+ + 2e - → Zn(s)<br />

Zn(s)<br />

ZnSO 4 (aq) CuSO 4 (aq) Cu(s)<br />

E o = +0.34 V<br />

E o = −0.76 V<br />

Do Self-test 6.8<br />

Metal/metal ion:<br />

e.g. Zn(s) in zinc ion solution<br />

M(s) | M n+ (aq)<br />

Metal-insoluble salt: M(s) | MX(s) | X - (aq)<br />

e.g. silver-silver chloride electrode<br />

−<br />

Ag(s)<br />

AgCl(s) Cl (aCl)<br />

AgCl(s) + e - Ag(s) + Cl - (aq)<br />

Inert electrode: Pt(s) | M n+ (aq), M p+ (aq)<br />

e.g. Pt immersed in a solution containing a redox couple<br />

4 + 3+<br />

Pt(s) Ce (aq),Ce (aq)<br />

Ce 4+ + e - Ce 3+<br />

o RT a<br />

E = E − ln<br />

F a<br />

Gas electrode:<br />

Zn 2+ + 2e - Zn(s)<br />

Pt(s) | X 2 (g) | X +/− (aq)<br />

e.g. a standard hydrogen electrode<br />

+<br />

Pt(s)<br />

H2(g)<br />

H (aq)<br />

2H + + 2e - H 2 (g)<br />

Types of Electrodes<br />

E<br />

E<br />

RT<br />

2F<br />

o<br />

= E − ln<br />

2+<br />

RT<br />

F<br />

o<br />

= E − ln a<br />

−<br />

Cl<br />

RT<br />

2F<br />

1<br />

a<br />

p<br />

3+<br />

Ce<br />

4+<br />

Ce<br />

o<br />

H2<br />

E = E − ln<br />

2<br />

a<br />

Zn<br />

+<br />

H<br />

2


Standard Electrode Potentials<br />

The potential of a half-cell is measured relative to the standard<br />

hydrogen electrode (SHE) under standard conditions.<br />

Pt(s) | H 2 (g) | H + (aq)<br />

activities = 1 mol kg -1<br />

E o SHE = 0 V at all temperatures fugacities = 1 atm<br />

Determining the standard potential of a silver-silver chloride electrode using<br />

a Harned cell:<br />

Pt⏐H 2 (g)⏐HCl(aq), a H+ , a Cl- ⏐AgCl(s)⏐Ag(s)<br />

Half-reactions:<br />

H + + e − → ½H 2 (g)<br />

anode E o<br />

1e - SHE = 0 V<br />

AgCl(s) + e − → Ag(s) + Cl − (aq) cathode<br />

Recall: E o is an intensive property!<br />

E o cell = Eo indicator – Eo reference<br />

SHE<br />

Overall reaction:<br />

AgCl(s) + ½H 2 (g) → H + (aq) + Ag(s) + Cl − (aq)<br />

Nernst equation:<br />

o RT a<br />

+<br />

a<br />

−<br />

H Cl<br />

E = E − ln<br />

cell cell<br />

F PH 2<br />

For SHE: P H2 = 1 atm<br />

o RT<br />

Ecell<br />

= Ecell<br />

− ln a + a −<br />

F H Cl<br />

Let a H+ = γ m ± H+ and a Cl- = γ ± m o RT 2 2<br />

Cl- Ecell = Ecell<br />

− ln (mHCl<br />

γ ± )<br />

F<br />

γ ± = mean activity coefficient<br />

m = molality (concentration in mol kg -1 )<br />

o RT 2 2<br />

Ecell = Ecell<br />

− ln (mHCl<br />

γ ± )<br />

F<br />

o RT 2 RT<br />

Ecell = Ecell<br />

− ln (mHCl<br />

) − ln ( γ ±<br />

F<br />

F<br />

2RT<br />

o 2RT<br />

Ecell<br />

+ ln mHCl<br />

= Ecell<br />

− ln γ ±<br />

F<br />

F<br />

Debye-Hückel law: log γ<br />

for a 1:1 electrolyte:<br />

±<br />

= −<br />

log γ ±<br />

2 .303 log x = ln x<br />

2<br />

)<br />

A z z<br />

= −<br />

+<br />

−<br />

ln = −A′<br />

γ ±<br />

I<br />

A I = −A<br />

mHCl<br />

If E o cell is known, then using E cell<br />

the activity coefficient γ ± can be<br />

calculated for a solution of<br />

molality m.<br />

m HCl<br />

1<br />

2<br />

I = m i z i<br />

2 i<br />

I<br />

1<br />

2<br />

[(m<br />

)( + 1) + (m<br />

H +<br />

2<br />

)( −1)<br />

]<br />

=<br />

2<br />

− Cl<br />

1<br />

I = [ 2(m )]<br />

HCl<br />

2<br />

Evaluating a standard potential from two others:<br />

E o +<br />

Cu 2 + =<br />

/ Cu(s)<br />

E o + = +<br />

Cu / Cu(s)<br />

0.340 V<br />

0.522 V<br />

E o =<br />

Cu 2 + +<br />

/ Cu<br />

Cu 2+ (aq) + 2e - → Cu(s) E o = 0.340 V (A)<br />

Cu + (aq) + e - → Cu(s) E o = 0.522 V (B)<br />

(A) – (B): Cu 2+ (aq) + e - → Cu + (aq) E o (C) = <br />

NOTE:<br />

Thermodynamic Functions from the Cell Potential<br />

This is NOT a cell reaction!!<br />

→ the electrons do NOT cancel out<br />

<br />

Redox couple Cu 2+ /Cu +<br />

→ Reduction reaction<br />

reduction<br />

oxidation<br />

2RT<br />

o 2RT<br />

E<br />

cell<br />

+ ln mHCl<br />

= Ecell<br />

+ A′<br />

m<br />

F<br />

F<br />

HCl<br />

y = c + m x<br />

Measure the cell potential for<br />

various HCl concentrations.<br />

Plot y vs x and extrapolate to the<br />

y-intercept to determine E o cell<br />

Applications of Standard Potentials<br />

1) The determination of activity coefficients<br />

2) The determination of equilibrium constants<br />

3) The electrochemical series<br />

4) The determination of thermodynamic functions<br />

Example 2<br />

The mean activity coefficients of HBr in 5.0 and 20.0 mmol kg –1 are 0.930 and 0.879,<br />

respectively. Consider a hydrogen electrode in HBr(aq) solution at 25 °C operating at<br />

1.15 atm.<br />

Calculate the change in the electrode potential when the molality of the acid solution<br />

is changed from 5.0 and 20.0 mmol kg –1 .<br />

Thermodynamics has the striking ability of to relate apparently unrelated<br />

relationships.<br />

<br />

∆G = −nFE<br />

E o cell used to calculate ∆Go f of ions in solution.<br />

Using the relationship<br />

<br />

dE ∆S<br />

=<br />

dT nF<br />

∂G<br />

<br />

= −S<br />

∂T<br />

p<br />

The temperature coefficient of E o cell gives the standard entropy<br />

of the cell reaction and hence entropies of ions in solution.<br />

Combining both relationships:<br />

<br />

<br />

<br />

dE<br />

∆H<br />

= ∆G<br />

+ T∆S<br />

= −nF<br />

E − T<br />

<br />

<br />

dT <br />

Non-calorimetric measurement of ∆H°<br />

and hence ∆H o f of ions in solution can<br />

be determined.<br />

3


Example 3<br />

Devise a cell in which the cell reaction is:<br />

Mn(s) + Cl 2 (g) → MnCl 2 (aq)<br />

Give the half reactions at the electrodes and from the standard cell potential of 2.54 V<br />

deduce the standard potential for the Mn 2+ /Mn(s) redox couple.<br />

Given: E°(Cl 2 /Cl - ) = +1.36 V<br />

Example 4<br />

Estimate the cell potential at 25°C for<br />

Ag(s)|AgBr(s)|KBr(aq, 0.050 mol kg –1 )||Cd(NO 3 ) 2 (aq,0.0034 mol kg –1 )|Cd(s)<br />

E°(R-H) = –0.40 V E°(L-H) = +0.07 V (assume non-ideal solutions)<br />

Write the spontaneous electrochemical reaction.<br />

Example 5<br />

The standard potential of the cell below at 25 °C is 0.95 V.<br />

Ag(s) |AgI(s) | AgI(aq) | Ag(s)<br />

Calculate: a) its solubility constant and b) the solubility of AgI .<br />

MOLECULAR MOTION IN LIQUIDS<br />

Mass Transport<br />

Migration of ions - Conductivities of Electrolyte Solutions<br />

Mobilities of Ions<br />

Diffusion of Ions<br />

Part of Chapter 20<br />

Mass Transport<br />

Three main ways to transport ions to the surface of an electrode<br />

→ called mass transport<br />

Conductivities of Electrolyte Solutions<br />

Ions can be dragged through the solvent by applying a potential difference<br />

between two electrodes in solution.<br />

MIGRATION<br />

To measure conductivity:<br />

Incorporate conductivity cell into<br />

one arm of resistance bridge and<br />

search for balance point.<br />

R 3<br />

Convection<br />

Movement due to<br />

mechanical intervention.<br />

e.g. stirring, pumping,<br />

shaking<br />

Affects molecules and<br />

ions in solution.<br />

Diffusion<br />

Movement due to<br />

concentration gradient.<br />

e.g. movement across a<br />

cell membrane<br />

Affects molecules and<br />

ions in solution.<br />

Migration<br />

Movement due to applied<br />

electric field.<br />

e.g. in an electrolysis cell<br />

Affects only ions in<br />

solution.<br />

1 <br />

R =<br />

κ A<br />

1 <br />

κ =<br />

R A<br />

C<br />

κ =<br />

R<br />

R = resistance of solution (Ω)<br />

κ = conductivity (S cm -1 )<br />

= distance between electrodes<br />

A = area of electrodes<br />

C = cell constant<br />

κ depends on the number of ions in a solution.<br />

R 4<br />

2<br />

R 1<br />

R R =<br />

1 2<br />

R R<br />

3<br />

R 4<br />

Resistance bridge R 1R<br />

= R R3<br />

4 2<br />

Note: use ac current (ν~1kHz)<br />

to avoid electrolysis and<br />

polarisation of the electrodes<br />

which would change the<br />

composition of the solution at<br />

the electrode surfaces.<br />

4


Measuring the conductivity of tap water:<br />

κ<br />

=<br />

c<br />

Λ<br />

Λ<br />

m = molar conductivity (S cm 2 mol -1 )<br />

m c = molarity<br />

If κ ∝ c, the molar conductivity should be<br />

independent of the concentration of an<br />

electrolyte. Is this the case<br />

Parallel<br />

plates<br />

293.3 µS / cm<br />

1 S = 1 Siemen<br />

= 1 Ω -1<br />

NO!<br />

Molar conductivity varies with<br />

concentration because:<br />

- no. of ions in solution may not be<br />

proportional to concentration (especially<br />

for weak electrolytes)<br />

- ions interact strongly with one another<br />

reducing effective charge<br />

NB: Don’t confuse conductivity (κ) with conductance (G)<br />

Strong electrolyte – Λ m<br />

decreases slightly as<br />

conc increases.<br />

Weak electrolyte –<br />

normal Λ m at low conc,<br />

but Λ m decreases sharply<br />

as conc increases.<br />

1<br />

G =<br />

R<br />

Kohlrausch’s law:<br />

At low concentrations, molar conductivities vary with the square root of conc.<br />

Λ = Λ − K c<br />

m<br />

Λ o m<br />

= ν<br />

o<br />

m<br />

+<br />

λ<br />

+<br />

+ ν<br />

−λ<br />

−<br />

STRONG ELECTROLYTES<br />

Λ m o = limiting molar conductivity<br />

(ions are infinitely far apart no interaction)<br />

K → related to stoichiometry of electrolyte<br />

Kohlrausch’s law of independent migration of ions:<br />

Λ m o → expressed as sum of contributions from its individual ions.<br />

λ = limiting molar conductivity of ions<br />

ν = no. of ions per formula unit of electrolyte<br />

H +<br />

34.96 OH -<br />

19.91<br />

Na + 5.01 Cl -<br />

7.63<br />

K + 7.35 Br -<br />

7.81<br />

Zn 2+ 10.56 SO 2-<br />

4 16.00<br />

e.g. for MgCl 2 : ν + = 1 ν − = 2<br />

Limiting ionic conductivies in water at 298 K, λ /mS m 2 mol -1<br />

Weak electrolytes do NOT dissociate completely,<br />

conductivity of weak electrolytes depends on the degree of ionization (α)<br />

e.g. HA + H 2 O A - + H 3 O +<br />

+ −<br />

[H3O<br />

][A ]<br />

+<br />

K<br />

[ H3O<br />

] = αc<br />

a =<br />

[HA]<br />

−<br />

[ A ] = αc<br />

2<br />

α c<br />

Ka<br />

=<br />

[ HA] = ( 1−<br />

α)c<br />

1 − α<br />

At infinite dilution the electrolyte is fully<br />

ionised :<br />

Λ o m<br />

= ν<br />

+<br />

λ<br />

+<br />

+ ν<br />

−λ<br />

−<br />

At very low conc’s:<br />

Ostwald’s<br />

dilution<br />

law<br />

WEAK ELECTROLYTES<br />

Λ = α<br />

o<br />

m<br />

Λ m<br />

1 1 Λ<br />

mc<br />

= +<br />

o<br />

Λ<br />

m Λ<br />

m K<br />

( Λ ) o 2<br />

1 1 1<br />

= + Λ<br />

mc<br />

o<br />

o 2<br />

Λ<br />

m Λ<br />

m K<br />

a<br />

( Λ<br />

m<br />

)<br />

y c m x<br />

a<br />

m<br />

(c = formal conc of HA)<br />

Example 6<br />

Calculate the degree of ionization and the acid dissociation constant at 298 K for a<br />

0.010 M acetic acid solution that has a resistance of 2220 Ω. The resistance of a 0.100<br />

M potassium chloride solution was also found to be 28.44 Ω.<br />

Λ m (0.1 M KCl) = 129 S cm 2 mol -1<br />

λ o (H + ) = 349.6 S cm 2 mol -1<br />

λ o (CH 3 COO - ) = 40.9 S cm 2 mol -1<br />

Example 7<br />

The molar conductivity of a strong electrolyte in water at 25 °C was found to be 109.9<br />

S cm 2 mol -1 for a concentration of 6.2 × 10 -3 mol L -1 and 106.1 S cm 2 mol -1 for a<br />

concentration of 1.5 × 10 -3 mol L -1 .<br />

Estimate the limiting molar conductivity of the electrolyte.<br />

5


Example 8<br />

The limiting molar conductivities of KCl, KNO 3 , and AgNO 3 are 149,9, 145.0, and 133.4<br />

S cm 2 mol -1 , respectively (all at 25 °C).<br />

What is the limiting molar conductivity of AgCl at this temperature<br />

To understand conductivity measurements, we need to understand why<br />

ions move at different rates<br />

Motion of ions is largely random, but in the presence of an electric field the<br />

motion is biased → migration<br />

DC, uniform electric<br />

field is applied<br />

Mobilities of Ions<br />

Electric field:<br />

∆φ<br />

ε =<br />

<br />

∆φ = potential difference<br />

= distance between electrodes<br />

ε = electric field<br />

V source<br />

+ ∆φ<br />

+<br />

-<br />

<br />

Force acting on the ion due to electric field:<br />

ze∆φ<br />

ze = charge of ion<br />

F e<br />

= zeε<br />

=<br />

<br />

e = 1.602×10 -19 C<br />

causes ion to accelerate towards oppositely<br />

charge electrode.<br />

But ion undergoes frictional retardation<br />

when moving through the solvent:<br />

F Fric<br />

viscosity drag<br />

= fs = 6<br />

πη<br />

as<br />

s = speed of ion<br />

η = viscosity of solvent<br />

a = radius of ion<br />

The two forces (one due to the electric field force and the other due to the viscosity<br />

drag, interactions between ions, etc.) act in the opposite directions.<br />

Eventually, these forces are balanced<br />

F e = F Fric<br />

and the ions reach a terminal speed called the drift speed.<br />

zeε<br />

= 6<br />

πη<br />

as<br />

Self-study:<br />

What is the Grotthaus mechanism which is used to explain the very high mobility of<br />

H + in water<br />

zeε<br />

Drift speed: s =<br />

6πη<br />

a<br />

stronger electric field ε<br />

faster ions drift<br />

s = uε<br />

u = ionic mobility =<br />

ze<br />

6<br />

πη<br />

a<br />

The drift speed<br />

governs the rate<br />

at which charge<br />

is transported.<br />

theoretical<br />

measurable<br />

LINK between mobility and molar conductivity<br />

∴ expect the conductivity to decrease with increasing solution viscosity and<br />

increasing ion size.<br />

Ionic mobilities in water at 298 K,<br />

u /10 -8 m 2 s -1 V -1<br />

H + 36.23 OH - 20.64<br />

Na + 5.19 Cl - 7.91<br />

K + 7.62 Br - 8.09<br />

Zn 2+ 5.47 SO 2-<br />

4 8.29<br />

However, we see the larger ion (with the<br />

same charge) has a larger mobility.<br />

Need to consider:<br />

a = hydrodynamic radius<br />

i.e. includes hydration sphere<br />

Small ions are more extensively<br />

hydrated that larger ions (due to the<br />

stronger electric field)<br />

For cations and anions:<br />

λ = zuF<br />

And for very diluted solutions:<br />

o<br />

Λ m = ( ν+ z+<br />

u+<br />

+ ν−z−u<br />

− )F<br />

Faraday’s constant = F = N A e<br />

Since Λ o m = ν+ λ+<br />

+ν−λ−<br />

Ion-ion interactions affecting mobilities:<br />

In ionic solutions the ion-atmosphere also needs to be<br />

considered when ions migrate.<br />

When an electric field is introduced, two effects occur:<br />

Relaxation effect:<br />

When an electric field is introduced the ionic atmosphere is<br />

distorted as it drags behind moving charge.<br />

Central ion and atmosphere opposite in charge retardation<br />

of moving ion.<br />

Electrophoretic Effect:<br />

The ion-atmosphere moves in the opposite direction to the<br />

central ion which lead to the reduction in ion mobility.<br />

Both effects results in lower mobilities!<br />

Fick’s first law of diffusion:<br />

The flux (J) of particles is proportional to the concentration gradient.<br />

dc<br />

J = −D<br />

dx<br />

D = diffusion coefficient<br />

c = molar concentration<br />

x = distance<br />

Einstein equation:<br />

Stokes-Einstein equation:<br />

Nernst-Einstein equation:<br />

Applies to ions and uncharged particles in a solution.<br />

RT<br />

D = u<br />

zF<br />

Diffusion of Ions<br />

kT<br />

D =<br />

6<br />

πη<br />

a<br />

c 1 > c 2<br />

c 1<br />

c 2<br />

J<br />

substitute expression for u<br />

k = Boltzmann constant = 1.381×10 -23 J K -1<br />

Λ =<br />

F 2<br />

o 2<br />

( ν+ z+<br />

D+<br />

+ ν−z<br />

2 Or for a<br />

m −D−<br />

)<br />

λ+ =<br />

F 2<br />

o<br />

( ν + z<br />

2<br />

+ D+<br />

)<br />

RT<br />

single ion: RT<br />

c<br />

Do Self-test 20.4<br />

dc<br />

dx<br />

x<br />

6


Fick’s second law of diffusion or the<br />

diffusion equation:<br />

2<br />

∂c<br />

∂ c<br />

= D<br />

2<br />

∂t<br />

∂x<br />

→ describes time<br />

dependence of the<br />

diffusion process<br />

Diffusion coefficients at 298 K, 10 -9 m 2 s -1 Example 9<br />

H + in water<br />

9.31<br />

The mobility of the NO 3- ion in aqueous solution at 25 °C is 7.40×10 -8 m 2 s -1 V -1 .<br />

Na + in water<br />

1.33<br />

(Viscosity of water is 0.89110 -3 kg m -1 s -1 ).<br />

sucrose in water 0.522<br />

Calculate its diffusion coefficient and the effective radius at this temperature.<br />

It shows that the rate of change of conc is proportional to the<br />

curvature (the second derivative) of the concentration with<br />

respect to the distance.<br />

This equation shows that:<br />

1) If the concentration changes sharply from point to<br />

point, then the concentration changes rapidly in time.<br />

c<br />

vs<br />

c<br />

x<br />

x<br />

2) If the curvature = 0, then the concentration does not<br />

change in time.<br />

3) If the concentration decreases linearly with distance,<br />

then the concentration is constant at any point,<br />

because the inflow is exactly balanced by the outflow<br />

of particles or ions.<br />

c<br />

x<br />

Remember: in the calculations you have to show the work on units.<br />

Without that, the work might be considered as not done at all.<br />

DYNAMIC <strong>ELECTROCHEMISTRY</strong><br />

Double Layer at the Electrode-Solution Interface<br />

Dynamic Equilibrium<br />

Butler-Volmer Equation<br />

No Mass Transport Effects<br />

Mass Transport Effects<br />

Tafel Plot<br />

Electrolysis and Galvanic Cells<br />

Double Layer at the Electrode-Solution Interface<br />

Electrode reaction = heterogeneous chemical process<br />

e - ’s move from electrode surface to chemical species in solution (at the surface), or<br />

vice versa<br />

Diffusion layer – region<br />

dominated by unequal<br />

(1 µm − 1 mm) charge distribution<br />

Region of charge neutrality<br />

Part of Chapter 22<br />

(1 − 10 nm)<br />

Double layer generated due<br />

to electrostatic forces<br />

Faradaic process:<br />

Helmholtz Model<br />

Gouy-Chapman Model<br />

Electrons transferred across the electrode-solution interface (reduction/oxidation)<br />

Governed by Faraday’s Law: current ∝ charge<br />

Non-Faradaic process:<br />

Under some conditions an electrodesolution<br />

interface shows a range of<br />

potentials where no charge transfer<br />

reaction occurs.<br />

E.g. capacitive or charging currents<br />

i<br />

Charging currents decay rapidly<br />

after applying a potential.<br />

t<br />

φ M<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Electrode<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

Solution<br />

φ s<br />

Distance<br />

Double layer is like a capacitor<br />

20-40 µF/cm 2<br />

∆φ = φ M - φ S = Galvani potential difference<br />

The potential difference between points<br />

in the bulk metal and the bulk solution.<br />

φ M<br />

Electrode<br />

OHP<br />

Solvated<br />

ions<br />

φ S<br />

φ M<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Electrode<br />

Solution<br />

Distance<br />

Double layer has no thickness and is<br />

diffused by thermal motion of ions<br />

Stern Model<br />

φ M<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Electrode<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

OHP<br />

rigid Helmholz plane<br />

Diffusion of<br />

charges caused<br />

by thermal<br />

motion of ions<br />

Distance<br />

7


Exchange Current Density<br />

Under zero current conditions:<br />

Dynamic Equilibrium<br />

Ox + ne - Red<br />

o RT a<br />

Eeq<br />

= E − ln<br />

nF a<br />

Re d<br />

Ox<br />

EQUILIBRIUM!<br />

Overpotential (η):<br />

the difference between the applied potential and the<br />

equilibrium potential.<br />

η = E – E eq<br />

Equilibrium potential: potential where i = 0<br />

By definition, no net chemical change occurs i = 0<br />

However, this is a dynamic equilibrium! i = ia + ic<br />

= 0<br />

Increasing rate of reduction<br />

η = E – E eq<br />

E eq<br />

Increasing rate of oxidation<br />

η = E – E eq<br />

i.e. there is still current flowing:<br />

i a = −ic<br />

= io<br />

E eq<br />

exchange current<br />

η > 0<br />

Recall: current is the variation of charge with time:<br />

current ∝ rate of electron transfer<br />

dq<br />

i =<br />

dt<br />

η < 0<br />

i o is a measure of the electron transfer activity in both cathodic and anodic directions<br />

at equilibrium.<br />

It is a very useful kinetic parameter in dynamic electrochemistry.<br />

Rate of e - transfer depends on the electrode potential which drives the<br />

transfer of e - ’s.<br />

Current is defined as:<br />

i = nFAν<br />

A = surface area of electrode<br />

ν = reaction rate<br />

Forward reaction:<br />

Reverse reaction:<br />

k k ox<br />

Ox + ne - red<br />

Red<br />

Red Ox + ne-<br />

ν<br />

red<br />

= k<br />

red<br />

C<br />

i<br />

ν c<br />

red<br />

=<br />

nFA<br />

Butler-Volmer<br />

Equation<br />

ox<br />

1 st order<br />

Current at electrode:<br />

ν = k C<br />

ox<br />

ox<br />

i<br />

ν a<br />

ox<br />

=<br />

nFA<br />

Overall rate:<br />

1<br />

ν = νox<br />

− νred<br />

= koxCred<br />

− kredCox<br />

= (ia<br />

− ic<br />

)<br />

nFA<br />

i = ia<br />

− ic<br />

= nFA(k oxCred<br />

− kredCox<br />

)<br />

red<br />

Note: c red or c ox refers to the<br />

conc’s near the electrode surface<br />

Forward reaction:<br />

Reverse reaction:<br />

k<br />

Ox + ne - red<br />

k ox<br />

Red<br />

Red Ox + ne-<br />

Current at electrode:<br />

The rate constant varies with applied potential (in an exponential way):<br />

(1−α<br />

)nF<br />

−αnF<br />

η<br />

η<br />

o<br />

o<br />

RT<br />

RT<br />

k = kred<br />

= k e<br />

ox<br />

k e<br />

k o = standard rate constant (k when potential applied is E eq )<br />

α = transfer coefficient (0 < α < 1) → symmetry factor<br />

(1− α)nF<br />

o<br />

i = nFAk C RT<br />

<br />

rede<br />

<br />

i = ia<br />

− ic<br />

= nFA(k oxCred<br />

− kredCox<br />

)<br />

η<br />

− Coxe<br />

− αnF<br />

η <br />

RT<br />

<br />

<br />

(1− α)nF<br />

− αnF<br />

η<br />

η <br />

i = i RT − RT<br />

o e e<br />

<br />

<br />

<br />

<br />

Butler-Volmer equation<br />

and<br />

o<br />

io = nFAk C<br />

Current (rate of reaction) depends on:<br />

• Electrode area, A<br />

• Concentration of reactant, C<br />

• Temperature<br />

• The kinetic parameters i o and α<br />

• Overpotential, η<br />

Current density, j:<br />

i<br />

j =<br />

A<br />

(1− α)nF<br />

− αnF<br />

η<br />

η <br />

j = j RT − RT<br />

o e e<br />

<br />

<br />

<br />

<br />

(1−α)nF<br />

− αnF<br />

η<br />

η <br />

i = i RT − RT<br />

o e e<br />

<br />

<br />

<br />

<br />

i = nFAν<br />

j is independent of electrode area<br />

Butler-Volmer equation in<br />

terms of current density<br />

For small overpotentials (η < ~10 mV):<br />

nF<br />

j = joη<br />

RT<br />

In most practical situations, only the forward or the reverse reaction is significant and<br />

a simplified equation is sufficient.<br />

Large, positive overpotential predominantly oxidation:<br />

In practise, η ≥ ~ +0.12/n V<br />

j<br />

(1−α<br />

)nF<br />

η<br />

RT<br />

= j e o<br />

(1− α)nF<br />

ln j = ln jo<br />

+ η<br />

RT<br />

Large, negative overpotential predominantly reduction:<br />

In practise, η ≤ ~ -0.12/n V<br />

j<br />

−αnF<br />

η<br />

RT<br />

= j e o<br />

αnF<br />

ln j = ln jo<br />

− η<br />

RT<br />

(1− α)nF<br />

j = j RT<br />

o e<br />

<br />

<br />

η<br />

− e<br />

Anodic current<br />

− αnF<br />

η <br />

RT<br />

<br />

<br />

Cathodic current<br />

i.e. η nF < 1<br />

RT<br />

Low field region<br />

High field region<br />

Tafel equations<br />

8


(1− α)nF<br />

ln j = ln jo<br />

+ η<br />

RT<br />

Tafel Plot<br />

Tafel Plot<br />

Anodic current<br />

Butler-Volmer: No Mass Transport Effects<br />

j<br />

j a<br />

High field<br />

Oxidation: Red → Ox + ne -<br />

For oxidation reaction<br />

anodic current:<br />

nF<br />

slope = (1−<br />

α)<br />

RT<br />

∴ find α<br />

j = j a + j c<br />

Low field<br />

i ∝ E<br />

E<br />

ln j o<br />

Deviation from linearity at low<br />

η as the reverse reaction can<br />

no longer be ignored<br />

High field<br />

j c<br />

Reduction: Ox + ne - → Red<br />

<br />

j = jo<br />

e<br />

<br />

Anodic<br />

current<br />

(1−α<br />

)nF<br />

η<br />

RT<br />

− e<br />

Cathodic<br />

current<br />

−αnF<br />

RT<br />

η <br />

<br />

<br />

Focusing on low field region<br />

j<br />

Oxidation<br />

j a<br />

Effect of transfer coefficient (α) on j vs η relationship:<br />

j<br />

α = 0.25 α = 0.5<br />

η0<br />

Oxidation favoured<br />

α = 0.75<br />

j a = j o<br />

-j c = j o<br />

E = E eq potential at<br />

zero current flow<br />

E<br />

Reduction:<br />

Ox + ne - → Red<br />

Oxidation:<br />

Red → Ox + ne -<br />

η<br />

j c<br />

Reduction<br />

Reduction favoured<br />

(1− α)nF<br />

− αnF<br />

η<br />

η <br />

j = j RT − RT<br />

o e e<br />

<br />

<br />

<br />

<br />

α = the fraction of applied potential that<br />

influences the rate of electrochemical rxn<br />

Butler-Volmer: Mass Transport Effects<br />

Assumption in derivation of Butler-Volmer equation:<br />

negligible conversion of electroactive species at low current densities<br />

uniformity of concentration near the electrode<br />

j<br />

Predicted by the<br />

Butler-Volmer equation<br />

The Butler-Volmer equation fails at high current densities → current is limited<br />

by transport of ions towards the electrode.<br />

Larger η is needed to produce given current.<br />

η<br />

Current<br />

controlled only<br />

by mass<br />

transport<br />

This effect is called concentration polarisation<br />

and its contribution to the total overpotential is called the polarisation<br />

overpotential, η c .<br />

Current<br />

controlled only<br />

by electron<br />

transfer and j 0<br />

Exponential<br />

increase in<br />

current with η<br />

(B-V equation)<br />

Current<br />

controlled by η<br />

and transport<br />

9


Example 10<br />

The electron transfer coefficient of a certain electrode in contact with the redox couple<br />

M 3+ / M 4+ in aqueous solution at 25 °C is 0.39. The current density is found to be 55.0<br />

mA cm –2 when the overvoltage is 125 mV.<br />

What is the overvoltage required for a current density 75.0 mA cm –2 <br />

What is the exchange current density<br />

Example 11<br />

The exchange current density and the electron transfer coefficient for the reaction<br />

2H + + 2e H 2 (g) on nickel at 25 °C are 6.3 × 10 –6 A cm –2 and 0.58, respectively.<br />

Determine what current density would be required to obtain an overpotential of 0.20 V<br />

as calculated from the Butler-Volmer equation and the Tafel equation.<br />

Electrolysis Cells:<br />

Electrolysis and Galvanic Cells<br />

To induce current to flow through an electrolytic cell, have to apply a<br />

potential difference greater than that required to reach equilibrium:<br />

E applied > E eq<br />

In theory:<br />

Have to also overcome the cell overpotential:<br />

η cell = |η c | + |η a | + | iR s |<br />

There is an activation or charge<br />

transfer overpotential (η a and η c )<br />

at the anode and cathode.<br />

E eq = -E cell<br />

Additionally, the rate of e - transfer depends on the<br />

electrode potential which drives the transfer of e - ’s.<br />

E applied > E eq + |η cell |<br />

∆G > 0<br />

Ohmic drop due to the solution E cell < 0<br />

resistance, ∴ apply an overpotential to<br />

drive current through the solution. V = IR<br />

j<br />

η<br />

Many other factors also need to be taken into account<br />

E.g.: The magnitude of the exchange current density (j o ) also determines the<br />

overpotential required for a significant current to flow:<br />

j<br />

Decreasing j o<br />

For high j o :<br />

observable current at low η<br />

η<br />

Galvanic Cells:<br />

Conversely, in a galvanic cell a smaller potential difference is<br />

generated than expected due to these overpotentials.<br />

V<br />

j o /A m -2 : 10 10 2 10 3<br />

Self-test 6.7<br />

Express the formation of H 2 O from H 2 and O 2 in acidic solution (a redox reaction)<br />

as the difference of two reduction reactions.<br />

(You may need to consult the full table of standard reduction potentials in the Appendix)<br />

Self-test 6.8<br />

Write the half-reaction and the reaction quotient for a chlorine gas electrode.<br />

Self-test 20.4<br />

Use the experimental value of the mobility to evaluate the diffusion coefficient, the<br />

limiting molar conductivity and the hydrodynamic radius of the NH 4+ ion in<br />

aqueous solution. (u = 7.63 × 10 -8 m 2 s -1 V -1 )<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!