15.01.2015 Views

ELECTROCHEMISTRY - Wits Structural Chemistry

ELECTROCHEMISTRY - Wits Structural Chemistry

ELECTROCHEMISTRY - Wits Structural Chemistry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Exchange Current Density<br />

Under zero current conditions:<br />

Dynamic Equilibrium<br />

Ox + ne - Red<br />

o RT a<br />

Eeq<br />

= E − ln<br />

nF a<br />

Re d<br />

Ox<br />

EQUILIBRIUM!<br />

Overpotential (η):<br />

the difference between the applied potential and the<br />

equilibrium potential.<br />

η = E – E eq<br />

Equilibrium potential: potential where i = 0<br />

By definition, no net chemical change occurs i = 0<br />

However, this is a dynamic equilibrium! i = ia + ic<br />

= 0<br />

Increasing rate of reduction<br />

η = E – E eq<br />

E eq<br />

Increasing rate of oxidation<br />

η = E – E eq<br />

i.e. there is still current flowing:<br />

i a = −ic<br />

= io<br />

E eq<br />

exchange current<br />

η > 0<br />

Recall: current is the variation of charge with time:<br />

current ∝ rate of electron transfer<br />

dq<br />

i =<br />

dt<br />

η < 0<br />

i o is a measure of the electron transfer activity in both cathodic and anodic directions<br />

at equilibrium.<br />

It is a very useful kinetic parameter in dynamic electrochemistry.<br />

Rate of e - transfer depends on the electrode potential which drives the<br />

transfer of e - ’s.<br />

Current is defined as:<br />

i = nFAν<br />

A = surface area of electrode<br />

ν = reaction rate<br />

Forward reaction:<br />

Reverse reaction:<br />

k k ox<br />

Ox + ne - red<br />

Red<br />

Red Ox + ne-<br />

ν<br />

red<br />

= k<br />

red<br />

C<br />

i<br />

ν c<br />

red<br />

=<br />

nFA<br />

Butler-Volmer<br />

Equation<br />

ox<br />

1 st order<br />

Current at electrode:<br />

ν = k C<br />

ox<br />

ox<br />

i<br />

ν a<br />

ox<br />

=<br />

nFA<br />

Overall rate:<br />

1<br />

ν = νox<br />

− νred<br />

= koxCred<br />

− kredCox<br />

= (ia<br />

− ic<br />

)<br />

nFA<br />

i = ia<br />

− ic<br />

= nFA(k oxCred<br />

− kredCox<br />

)<br />

red<br />

Note: c red or c ox refers to the<br />

conc’s near the electrode surface<br />

Forward reaction:<br />

Reverse reaction:<br />

k<br />

Ox + ne - red<br />

k ox<br />

Red<br />

Red Ox + ne-<br />

Current at electrode:<br />

The rate constant varies with applied potential (in an exponential way):<br />

(1−α<br />

)nF<br />

−αnF<br />

η<br />

η<br />

o<br />

o<br />

RT<br />

RT<br />

k = kred<br />

= k e<br />

ox<br />

k e<br />

k o = standard rate constant (k when potential applied is E eq )<br />

α = transfer coefficient (0 < α < 1) → symmetry factor<br />

(1− α)nF<br />

o<br />

i = nFAk C RT<br />

<br />

rede<br />

<br />

i = ia<br />

− ic<br />

= nFA(k oxCred<br />

− kredCox<br />

)<br />

η<br />

− Coxe<br />

− αnF<br />

η <br />

RT<br />

<br />

<br />

(1− α)nF<br />

− αnF<br />

η<br />

η <br />

i = i RT − RT<br />

o e e<br />

<br />

<br />

<br />

<br />

Butler-Volmer equation<br />

and<br />

o<br />

io = nFAk C<br />

Current (rate of reaction) depends on:<br />

• Electrode area, A<br />

• Concentration of reactant, C<br />

• Temperature<br />

• The kinetic parameters i o and α<br />

• Overpotential, η<br />

Current density, j:<br />

i<br />

j =<br />

A<br />

(1− α)nF<br />

− αnF<br />

η<br />

η <br />

j = j RT − RT<br />

o e e<br />

<br />

<br />

<br />

<br />

(1−α)nF<br />

− αnF<br />

η<br />

η <br />

i = i RT − RT<br />

o e e<br />

<br />

<br />

<br />

<br />

i = nFAν<br />

j is independent of electrode area<br />

Butler-Volmer equation in<br />

terms of current density<br />

For small overpotentials (η < ~10 mV):<br />

nF<br />

j = joη<br />

RT<br />

In most practical situations, only the forward or the reverse reaction is significant and<br />

a simplified equation is sufficient.<br />

Large, positive overpotential predominantly oxidation:<br />

In practise, η ≥ ~ +0.12/n V<br />

j<br />

(1−α<br />

)nF<br />

η<br />

RT<br />

= j e o<br />

(1− α)nF<br />

ln j = ln jo<br />

+ η<br />

RT<br />

Large, negative overpotential predominantly reduction:<br />

In practise, η ≤ ~ -0.12/n V<br />

j<br />

−αnF<br />

η<br />

RT<br />

= j e o<br />

αnF<br />

ln j = ln jo<br />

− η<br />

RT<br />

(1− α)nF<br />

j = j RT<br />

o e<br />

<br />

<br />

η<br />

− e<br />

Anodic current<br />

− αnF<br />

η <br />

RT<br />

<br />

<br />

Cathodic current<br />

i.e. η nF < 1<br />

RT<br />

Low field region<br />

High field region<br />

Tafel equations<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!