17.01.2015 Views

2010 Chapter 8 homework SOLUTIONS _v2 - Department of ...

2010 Chapter 8 homework SOLUTIONS _v2 - Department of ...

2010 Chapter 8 homework SOLUTIONS _v2 - Department of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ILLINOIS STATE UNIVERSITY<br />

DEPARTMENT OF CHEMISTRY, ILLINOIS STATE UNIVERSITY, NORMAL, IL 61790-4160<br />

<strong>Chapter</strong> 8: The Chemistry <strong>of</strong> the Alcohols<br />

Read Section 8.1 (Nomenclature) and do exercises 8.1-8.2 on page 289 and<br />

problems 24 and 25 and page 326.<br />

1. Provide reasonable IUPAC names for the following molecules.<br />

OH<br />

2-Heptanol<br />

OH<br />

2,5,5-trimethyl-3-hexanol<br />

Br<br />

OH<br />

6-bromo-1-heptanol<br />

OH<br />

cis-4-methyl-1-cyclohexanol<br />

OH<br />

F<br />

7-Fluoro-5-isopropyl-4-octanol<br />

7-Fluoro-5-(1-methylethyl)-4-octanol<br />

OH<br />

6-(1,1-Dimethylethyl)-3-methyl-2-nonanol<br />

6-tert-Butyl-3-methyl-2-nonanol<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 1


2. Provide acceptable IUPAC names for the following molecules.<br />

A<br />

OH<br />

B OH<br />

Br<br />

A. 7-Bromo-4-(1-methylethyl)-2-octanol or 7-Bromo-4-isopropyl-2-octanol<br />

B. trans-2-(1,1-dimethylethyl)cyclopentane or trans-2-tert-butylcyclopentane<br />

3. Provide acceptable IUPAC names for the following molecules.<br />

4. Draw a reasonable structure for the molecule (S)-3-methyl-3-heptanol.<br />

OH<br />

CH 3 CH 2 CH 2 CH 2<br />

C CH 2 CH 3<br />

CH 3<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 2


Read Section 8.2 (Properties) and do problems 26 and 27 page 326.<br />

5. The boiling point <strong>of</strong> methane is -161.7 o C and the boiling point <strong>of</strong> methanol is 65 o C. Provide a<br />

strong defense for why there is greater than 200 o C difference in temperatures.<br />

This involves the intermolecular forces that hold collections <strong>of</strong> these molecules together. The<br />

bonds in methane are not polarized and so there is virtually no attraction between these<br />

molecules. The OH group in methanol is strongly polarized positive at the hydrogen and<br />

negative at the oxygen. This leads to extensive intermolecular bonding which gives rise to<br />

the higher temperature requirement to break up this interaction.<br />

6. Provide a strong rationale for why 1,2-ethanediol has a boiling point <strong>of</strong> 196-198 o C and butane has<br />

a boiling point <strong>of</strong> -0.5 o C. Why are these two compounds so different<br />

The molecular weights for these compounds are nearly the same. In the case <strong>of</strong> butane,<br />

intermolecular London forces are responsible for the low boiling point. The instantaneous<br />

dipole-dipole attraction is weak and not sufficient enough to give rise to a higher boiling<br />

point. The compound 1,2-ethanediol has significant hydrogen bonding that serves to create<br />

an intermolecular network <strong>of</strong> strong hydrogen bonding between molecules.<br />

7. Consider the general structure for the α-amino acids: RCH(NH 2 )CO 2 H. Which <strong>of</strong> the side chains<br />

below would enhance the hydrophilicity <strong>of</strong> an α-amino acid<br />

(a) R = -CH 2 Ph<br />

(b) R = -CH 2 OH<br />

(c) R = -CH 2 (CH 2 ) 16 CH 3<br />

(d) R = -CH(CH 3 ) 2<br />

B<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 3


Read Section 8.3 (Acid/Base chemistry) and do exercises 4-6 on pages 293-294 and<br />

problems 30 and 31 on page 327.<br />

8. Write out the dissociation expression for 1-butanol in water and the corresponding K a expression.<br />

What is the average pK a for most alcohols<br />

The average pK a is about 16 to 19.<br />

CH 3 CH 2 CH 2 CH 2 OH + H 2 O CH 3 CH 2 CH 2 CH 2 O + H 3 O<br />

CH 3 CH 2 CH 2 CH 2 O<br />

H 3 O<br />

K a =<br />

CH 3 CH 2 CH 2 CH 2 OH<br />

9. Which <strong>of</strong> the following acids has the greater acidity, CH 3 CH 2 OH or F 3 CCH 2 OH Provide a<br />

strong rationale for your answer. It is not sufficient to suggest that one material has a lower pK a<br />

than the other.<br />

F 3 CCH 2 OH has the greater acidity due to the presence <strong>of</strong> the electronegative fluorines.<br />

These fluorines stabilize the buildup <strong>of</strong> negative charge on the oxygen. A more stable<br />

conjugate base leads to a more acidic compound. See page 292 in the text.<br />

10. Which one <strong>of</strong> the following reagents would not be effective in terms <strong>of</strong> completely removing an<br />

alcoholic proton (RO-H) from an alcohol such as butanol<br />

(a) Na + - OH (sodium hydroxide)<br />

(b) Na + - NH 2 (sodium amide)<br />

A<br />

(c) K + - H (potassium hydride)<br />

(d) Li + - CH 2 CH 2 CH 2 CH 3 (n-butyllithium)<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 4


Read Section 8.5 (Acid/Base chemistry) and do exercise 7 on pages 296 and<br />

problem 34 on page 327.<br />

11. Complete the following reactions. If there is no reaction, then write NR.<br />

Br<br />

KOH, dmf<br />

S N 2<br />

OH<br />

Cl<br />

OH<br />

H<br />

KOH, dmf<br />

S N 2-E2 mix<br />

H<br />

H<br />

I<br />

Br<br />

H 2 O<br />

S N 1-E1<br />

1. O S N 2<br />

H 3 C O<br />

Na<br />

H<br />

H<br />

OH<br />

O<br />

O CH 3<br />

H<br />

H<br />

OH<br />

H<br />

H<br />

OH<br />

2. NaOH<br />

OMs<br />

1.<br />

O<br />

O<br />

Na<br />

S N 2<br />

O<br />

O CH 3<br />

OH<br />

2. KOH<br />

Cl<br />

H 2 O<br />

S N 1-E1<br />

OH<br />

Cl<br />

NaOH, 0 o C<br />

E2<br />

12. Write in the reagent that would most effectively convert the following alkyl halides into their<br />

corresponding alcohols. No stereochemistry is implied for these reactions.<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 5


Read Section 8.6 (Acid/Base chemistry) and do exercises 8-11 on pages 300-304<br />

and problems 38, 46, and 47 on page 328-329.<br />

13. Complete the following reactions concerning the reduction <strong>of</strong> carbonyl compounds. If there is no<br />

reaction, then write NR.<br />

O<br />

OH<br />

H<br />

NaBH 4 , CH 3 OH<br />

H<br />

H<br />

O<br />

OH<br />

NaBH 4 , CH 3 OH<br />

H<br />

O<br />

H<br />

OH<br />

1. LiAlH 4 , THF<br />

2. dilute HCl<br />

O<br />

1. LiAlH 4 , THF<br />

2. dilute HCl<br />

OH<br />

H<br />

O<br />

NaBH 4 , CH 3 OH<br />

OH<br />

H<br />

O<br />

1. LiAlH 4 , THF<br />

2. dilute HCl<br />

OH<br />

H<br />

O<br />

1. LiAlH 4 , THF<br />

2. dilute HCl<br />

H<br />

H<br />

OH<br />

14. Which <strong>of</strong> the reagents below would you use to accomplish the following transformation<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

O<br />

HO<br />

<br />

D<br />

D = deuterium ( 2 H)<br />

LiAlD 4 in ether followed by treatment with H 2 O<br />

LiAlD 4 in ether followed by treatment with D 2 O<br />

LiAlH 4 in ether followed by treatment with H 2 O<br />

LiAlH 4 in ether followed by treatment with D 2 O<br />

A<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 6


Read Section 8.6 (Acid/Base chemistry) and do exercises 8-11 on pages 300-304<br />

and problems 38, 46, and 47 on page 328-329.<br />

15. Complete the following reactions concerning the reduction <strong>of</strong> carbonyl compounds.<br />

CH 2 CHO<br />

NaBH 4 , CH 3 OH<br />

CH 2 CH 2 OH<br />

O<br />

H<br />

OH<br />

NaBH 4 , CH 3 OH<br />

CH 3 O<br />

O<br />

CH 3 O<br />

OH<br />

1. LiAlH 4 , THF<br />

2. dilute HCl<br />

H<br />

O<br />

O<br />

H<br />

OH<br />

OH<br />

H<br />

H CH 3<br />

1. LiAlH 4 , THF<br />

H CH 3<br />

2. dilute HCl<br />

CHO<br />

1. LiAlH 4 , THF<br />

CH 2 OH<br />

2. dilute HCl<br />

O<br />

1. LiAlH 4 , THF<br />

H<br />

OH<br />

2. dilute HCl<br />

O<br />

HO<br />

H<br />

NaBH 4 , CH 3 OH<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 7


Read Section 8.6 (Acid/Base chemistry) and do exercises 8-11 on pages 300-304<br />

and problems 38, 46, and 47 on page 328-329.<br />

16. Complete the following reactions. It there is no reaction, then write NR and explain why there is<br />

no reaction. If there is over-oxidation, then state so.<br />

OH<br />

K 2 CrO 7 , H 2 SO 4<br />

O<br />

CH 2 CH 2 OH<br />

K 2 CrO 7 , H 2 SO 4<br />

CH 2 CO 2 H<br />

over-oxidation via the aldehyde<br />

OH<br />

CrO 3 , H 2 SO 4<br />

No oxidation; teriary alcohols do not have the<br />

necessary alpha proton<br />

CH 2 CH 2 OH<br />

CH 2<br />

PCC<br />

CH 2 Cl 2<br />

OH K 2 CrO 7 , H 2 SO 4<br />

CH 3<br />

CH 2 CHO<br />

CH 2<br />

successful aldehyde<br />

formation because <strong>of</strong><br />

there is no strong acid<br />

present.<br />

CH 3<br />

O<br />

OH<br />

H 2 SO 4 , CrO 3<br />

No oxidation; teriary alcohols do not have the<br />

necessary alpha proton<br />

17. Which <strong>of</strong> the following alcohols cannot be oxidized by a combination <strong>of</strong> chromium trioxide<br />

(CrO 3 ) and sulfuric acid (H 2 SO 4 ) to a carbonyl compound<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

2-propanol<br />

3-octanol<br />

4-methyl-2-hexanol<br />

3-ethyl-3-octanol<br />

A<br />

18. Using 2-methyl-2-pentanol, provide a strong rationale for why this alcohol does not react with<br />

chromium trioxide and sulfuric acid. You must draw the chromate ester <strong>of</strong> this alcohol to<br />

complete your answer.<br />

CH 3 CH 2 CH 2<br />

OH<br />

O Cr O<br />

CrO<br />

C CH 3 , H 2 SO 4 O<br />

3<br />

CH 3 CH 2 CH 2 C CH 3<br />

CH 3<br />

CH 3<br />

There is no hydrogen for removal during the oxidation process.<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 8<br />

O


Read Section 8.7 (organometallics chemistry) and do exercise 13 on pages 307-309<br />

and problem 40 on page 328.<br />

19. Complete the following reactions and identify the carbon atom that carries the negative charge.<br />

Cl<br />

2 Li metal, ether<br />

Cl<br />

+ LiCl<br />

H 3 C<br />

Br<br />

OCH 3<br />

Magnesium metal<br />

ether<br />

H 3 C<br />

MgBr<br />

OCH 3<br />

Cl<br />

2 Li metal, ether<br />

Li<br />

+ LiCl<br />

CH 2 Cl<br />

Magnesium metal<br />

ether<br />

CH 2 MgCl<br />

Br<br />

2 Li metal, ether<br />

Li<br />

+ LiBr<br />

CH 2 F<br />

Magnesium metal<br />

ether<br />

No reaction. The carbon-fluorine bond is<br />

too strong.<br />

CH 3<br />

2 Li metal, ether<br />

No reaction. There is no halogen<br />

leaving group.<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 9


20. Indicate the polarization <strong>of</strong> each <strong>of</strong> the BOLD bonds in the following molecules. The first<br />

structure is completed for you.<br />

δ<br />

δ<br />

H<br />

H<br />

δ<br />

Cl<br />

δ<br />

Br<br />

hydrogen chloride<br />

hydrogen chloride<br />

δ<br />

δ<br />

H O H<br />

water<br />

H<br />

H<br />

C<br />

H<br />

δ<br />

O<br />

H<br />

δ<br />

(methanol, CH 3 OH)<br />

H 3 C<br />

O<br />

H<br />

O<br />

δ<br />

δ<br />

acetic acid, a carboxylic acid<br />

sometimes written as CH 3 CO 2 H<br />

O<br />

H<br />

O<br />

δ<br />

δ<br />

benzoic acid, a carboxylic acid<br />

21. The following reactions involve quenching organometallic reagents. These reactions are driven by<br />

the formation <strong>of</strong> more stable compounds.<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 10


Read Section 8.8 (organometallics chemistry) and do exercises 15 and 16 on page 309<br />

and problems 43, 44, and 53 on pages 328-329.<br />

22. Complete the following reactions. If there is no reaction, then write NR.<br />

H<br />

O<br />

H<br />

1.<br />

2. dilute HCl<br />

MgBr<br />

OH<br />

H<br />

H<br />

O<br />

OH<br />

H<br />

1. CH 3 CH 2 MgBr<br />

2. dilute HCl<br />

H<br />

CH 2 CH 3<br />

O<br />

1. CH 3 CH 2 OCH 2 Li<br />

2. dilute HCl<br />

HO CH 2 OCH 2 CH 3<br />

O<br />

1.<br />

MgBr<br />

HO<br />

2. dilute HCl<br />

O<br />

1.<br />

CH 2 CH 2 Li<br />

HO<br />

2. dilute HCl<br />

CH 3<br />

O<br />

1.<br />

MgCl<br />

CH 2 CH 2<br />

OH<br />

CH 3<br />

2. dilute HCl<br />

23. What combination <strong>of</strong> reagents would NOT form the alcohol shown after a work up with dilute<br />

HCl Circle the best choice.<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 11


24. Complete the following reactions by writing in the products. If there is no reaction, then you<br />

should write, NR.<br />

Br<br />

Mg o , ether<br />

redox<br />

MgBr<br />

Cl<br />

CH 2 OMe<br />

Li o , ether<br />

redox<br />

Li<br />

CH 2 OMe<br />

+ LiCl<br />

Br<br />

O<br />

H<br />

1. CH 3 CH 2 MgBr<br />

2. dilute HCl<br />

Br<br />

OH<br />

H<br />

CH 2 CH 3<br />

O<br />

1.<br />

Li<br />

ether<br />

OH<br />

2. dilute HCl<br />

OCH 3<br />

CH 3<br />

1. Magnesium, ether<br />

OCH 3<br />

CH 3<br />

2.<br />

Br<br />

CH 3 O<br />

MgCl<br />

H 3 C<br />

CHO<br />

O<br />

OH<br />

CH 3 O<br />

HO<br />

H<br />

H<br />

O<br />

+<br />

H 3 C<br />

O<br />

MgCl<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 12


25. Complete the following. If there are multiple products, then you must clearly state which product<br />

is the major product. Assume a work up for all reactions.<br />

O<br />

O<br />

1. LiAlD 4 , ether<br />

2. dilute HCl<br />

NaBH 4 , CH 3 OH<br />

OH<br />

D<br />

OH<br />

H<br />

CH 3<br />

O<br />

1. LiAlH 4 , ether<br />

2. dilute HCl<br />

CH 3<br />

H<br />

OH<br />

O<br />

OH<br />

1. LiAlH 4 , ether<br />

2. dilute HCl<br />

CrO 3 , H 2 SO 4<br />

OH<br />

H<br />

O<br />

CH 3<br />

OH<br />

1.PCC, CH 2 Cl 2<br />

CH 3<br />

O<br />

CH 3<br />

OH<br />

H<br />

CH 3<br />

2. Cyclopropyl lithium<br />

H<br />

CH 3<br />

H<br />

CH 3<br />

O<br />

H<br />

OCH 3<br />

1. NaBH 4 , EtOH<br />

2. CD 3 MgBr<br />

OH<br />

H<br />

H<br />

OCH 3<br />

O<br />

H<br />

H<br />

OCH 3<br />

MgBr<br />

+ CD 3 H<br />

Na 2 Cr 2 O 7 , H 2 SO 4<br />

OH<br />

OH<br />

O<br />

O<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 13


26. Complete the following integrated reactions. Assume a work up for all reactions.<br />

Br<br />

1. Mg o , ether<br />

2. CH 3 CH 2 CHO<br />

MgBr<br />

OH<br />

C<br />

O<br />

CH 2 CH 3<br />

3. Na 2 Cr 2 O 7 , H 2 SO 4<br />

OCH 3<br />

H CH 2 CH 3 C<br />

OCH 3<br />

OCH 3<br />

(CH 3 ) 2 CH<br />

OCH 3<br />

OH<br />

OH<br />

C H<br />

H<br />

1.<br />

N<br />

H<br />

CrO 3 Cl<br />

(PCC)<br />

2. CH 3 CH 2 MgCl<br />

3. Na 2 Cr 2 O 7 , H 2 SO 4<br />

4. CD 3 CD 2 MgBr, ether<br />

(CH 3 ) 2 CH<br />

(CH 3 ) 2 CH<br />

O<br />

C H (CH 3 ) 2 CH<br />

OH<br />

C H<br />

CH 2 CH 3<br />

O<br />

C<br />

CH 2 CH 3<br />

OH<br />

(CH 3 ) 2 CH<br />

C<br />

CD 2 CD 3<br />

CH 2 CH 3<br />

O<br />

1. PCC, CH 2 Cl 2<br />

2. CD 3 CH 2 CH 2 MgBr<br />

3. dilute HCl<br />

H<br />

OH<br />

CH 2 CH 2 CD 3<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 14


27. Complete the following problems. If there is no reaction, then write NR.<br />

O<br />

OH<br />

CH 2 CH 3<br />

1.<br />

CH 3 CH 2 MgBr, THF<br />

2. dilute HCl<br />

CH 2 CH 3<br />

CH 2 CH 3<br />

OH<br />

O<br />

CH 3<br />

1.<br />

CD 3 MgBr, THF<br />

2. dilute HCl<br />

CH 3<br />

CD 3<br />

O<br />

CH 3<br />

1.<br />

MgBr<br />

2. dilute HCl<br />

OH<br />

CH 3<br />

HO CH 2 CH 2<br />

O<br />

1.<br />

CH 2 CH 2 MgBr, THF<br />

2. dilute HCl<br />

O<br />

1. CH 3 CH 2 CH 2 MgCl<br />

HO<br />

CH 2 CH 2 CH 3<br />

2. dilute HCl<br />

O<br />

1. CH 3 CH 2 CH 2 MgCl<br />

OH<br />

H<br />

CH 2 CH(CH 3 ) 2<br />

2. dilute HCl<br />

H<br />

CH 2 CH(CH 3 ) 2<br />

CH 2 CH 2 CH 3<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 15


28. Complete the following integrated problems. Write out the products <strong>of</strong> each transformation.<br />

OH<br />

1. PCC, CH 2 Cl 2<br />

2. CH 3 MgBr<br />

O<br />

OH<br />

3. dilute HCl<br />

CH 3<br />

OH<br />

1. PCC, CH 2 Cl 2<br />

2. CH 3 CD 2 MgBr<br />

3. dilute HCl<br />

O<br />

OH<br />

CD 2 CH 3<br />

1. Na 2 Cr 2 O 7 , H 2 SO 4<br />

HO<br />

CH 3<br />

2.<br />

MgBr<br />

O<br />

CH 3<br />

HO<br />

CH 3<br />

3. dilute HCl<br />

OH<br />

1. PCC, CH 2 Cl 2<br />

O<br />

OH<br />

2. (CH 3 )CHCH 2 Li<br />

CH 2 CH(CH 3 ) 2<br />

3. dilute HCl<br />

OH<br />

1. K 2 Cr 2 O 7 , H 2 SO 4<br />

2. CH 3 MgBr<br />

3. dilute HCl<br />

No reaction. Tertiary alcohols cannot be<br />

oxidized because they do not have the<br />

hydrogen necessary for the elimination<br />

process.<br />

OH<br />

1. CrO 3 , H 2 SO 4<br />

2.<br />

Li<br />

O<br />

OH<br />

3. dilute HCl<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 16


Read Section 8.9 (organometallics chemistry) and do exercises 19, 20, and 21 on pages<br />

315-317 and problems 54-56 on pages 329-330.<br />

29. Complete the following problem. Show all possible products.<br />

1. PCC, CH 2 Cl 2<br />

2. CD 3 MgBr, ether (D = deuterium, 2 H)<br />

3. dilute HCl<br />

methanol<br />

4. PCC, CH 2 Cl 2<br />

5. CT 3 Li, ether (T = tritium, 3 H)<br />

6. dilute HCl<br />

7. PCC, CH 2 Cl 2<br />

8. CH 3 Na in ether<br />

9. dilute HCl<br />

H<br />

OH<br />

C H<br />

H<br />

O<br />

OH<br />

H C H H C H<br />

CD 3<br />

H<br />

O<br />

C<br />

CD 3<br />

H<br />

OH<br />

C CT 3<br />

CD 3<br />

O<br />

C CT 3<br />

CD 3<br />

H 3 C<br />

OH<br />

C<br />

CD 3<br />

CT 3<br />

Is this molecule chiral<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 17


30. Design at least two different syntheses for the molecule that is illustrated below.<br />

OH<br />

C CH 3<br />

CH 3<br />

OH<br />

OH<br />

C CH 3<br />

C CH 3<br />

CH 3<br />

CH 3<br />

OH<br />

C CH 3<br />

MgBr<br />

+<br />

O<br />

H 3 C CH 3<br />

CH 3<br />

O<br />

C CH 3<br />

+ CH 3 MgBr<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 18


31. Design at least three different syntheses for the molecule that is illustrated below.<br />

OH<br />

CH 3 CH 2<br />

C CH 3<br />

OH<br />

CH 3 CH 2<br />

OH<br />

C CH 3<br />

CH 3 CH 2<br />

C CH 3<br />

A<br />

C<br />

B<br />

CH 3 CH 2<br />

OH<br />

C CH 3<br />

OH<br />

CH 3 CH 2<br />

C CH 3<br />

OH<br />

O<br />

CH 3 CH 2<br />

C CH 3<br />

CH 3 CH 2<br />

C<br />

A<br />

CH 3 MgBr<br />

OH<br />

MgBr<br />

B<br />

CH 3 CH 2<br />

C CH 3<br />

O<br />

CH 3 CH 2<br />

C CH 3<br />

OH<br />

O<br />

C<br />

CH 3 CH 2<br />

C CH 3<br />

CH 3 CH 2 MgBr<br />

C CH 3<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 19


32. Complete the following retrosynthesis problems by writing in the appropriate reagents. No more<br />

than two steps are required for each <strong>of</strong> the following transformations.<br />

Cl<br />

Magnesium metal<br />

ether solvent<br />

MgCl<br />

Br<br />

OCH 3<br />

lithium metal<br />

ether solvent<br />

Li<br />

OCH 3<br />

Br<br />

1. Mg, ether<br />

2. dilute HCl<br />

H<br />

CH 2 Cl<br />

1. Li, ether<br />

2. O<br />

(<strong>Chapter</strong> 9)<br />

CH 2 CH 2 CH 2 OH<br />

O<br />

CH 3<br />

1. CH 3 CH 2 CH 2 MgBr<br />

OHCH 3<br />

2. dilute HCl<br />

CH 2 CH 2 CH 3<br />

© <strong>2010</strong>, Pr<strong>of</strong>. S. R. Hitchcock, <strong>Department</strong> <strong>of</strong> Chemistry, Illinois State University, Normal, IL 61790-4160 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!