18.01.2015 Views

voltage to frequency converter based on the analog devices ad652 ...

voltage to frequency converter based on the analog devices ad652 ...

voltage to frequency converter based on the analog devices ad652 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

VOLTAGE TO FREQUENCY CONVERTER<br />

BASED ON THE ANALOG DEVICES<br />

AD652 CHIP<br />

David Cuadrado Calle, José An<str<strong>on</strong>g>to</str<strong>on</strong>g>nio López Pérez<br />

INFORME TÉCNICO - CAY 2012 - 11<br />

Marzo 2012


INDEX<br />

CONTENTS<br />

1. Introducti<strong>on</strong> ................................................................................................................... 2<br />

2. Descripti<strong>on</strong> of <strong>the</strong> circuit ............................................................................................... 2<br />

3. PCB circuit design ........................................................................................................... 4<br />

4. Measurements ............................................................................................................... 5<br />

5. C<strong>on</strong>clusi<strong>on</strong>s .................................................................................................................... 8<br />

6. Acknowledgments ......................................................................................................... 8<br />

Appendix A: Datasheets ...................................................................................................... 9<br />

LIST OF FIGURES<br />

Figure 1: Standard V/f c<strong>on</strong>necti<strong>on</strong> for positive input <str<strong>on</strong>g>voltage</str<strong>on</strong>g> with dual supply ................. 2<br />

Figure 2: Scheme for offset calibrati<strong>on</strong> ............................................................................... 3<br />

Figure 3: Schematic ............................................................................................................. 3<br />

Figure 4: PCB layout (<str<strong>on</strong>g>to</str<strong>on</strong>g>p layer) .......................................................................................... 4<br />

Figure 5: PCB layout (bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m layer) .................................................................................... 4<br />

Figure 6: Printed circuit board ............................................................................................ 5<br />

Figure 7: V/F <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g> graphical results ............................................................................ 7<br />

LIST OF TABLES<br />

Table 1: Measurements for Fclk = 50 KHz. .......................................................................... 6<br />

Table 2: Measurements for Fclk = 100 KHz. ........................................................................ 6<br />

Table 3: Measurements for Fclk = 500 KHz. ........................................................................ 6<br />

Table 4: Measurements for Fclk = 1 MHz. .......................................................................... 6<br />

Table 5: V/F circuit equati<strong>on</strong>s ............................................................................................. 7<br />

1


1. Introducti<strong>on</strong><br />

This report shows <strong>the</strong> design and implementati<strong>on</strong> of a <str<strong>on</strong>g>voltage</str<strong>on</strong>g>-<str<strong>on</strong>g>to</str<strong>on</strong>g>-<str<strong>on</strong>g>frequency</str<strong>on</strong>g> (VF)<br />

<str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g> circuit <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Analog Devices AD652 chip. The AD652 is an integrated circuit<br />

(IC) with a synchr<strong>on</strong>ous <str<strong>on</strong>g>voltage</str<strong>on</strong>g>-<str<strong>on</strong>g>to</str<strong>on</strong>g>-<str<strong>on</strong>g>frequency</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g> (SVFC). It is a powerful building block<br />

for precisi<strong>on</strong> <strong>analog</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> digital c<strong>on</strong>versi<strong>on</strong>, offering typical n<strong>on</strong> linearity of 0.002% (0.005%<br />

maximum) at a 100 kHz output <str<strong>on</strong>g>frequency</str<strong>on</strong>g>. The final stability and drift will depend <strong>on</strong> <strong>the</strong><br />

external clock source.<br />

This circuit can be used <str<strong>on</strong>g>to</str<strong>on</strong>g> measure <strong>the</strong> power at <strong>the</strong> output of a <str<strong>on</strong>g>to</str<strong>on</strong>g>tal power<br />

(c<strong>on</strong>tinuum) detec<str<strong>on</strong>g>to</str<strong>on</strong>g>r. The DC level produced by <strong>the</strong> power detec<str<strong>on</strong>g>to</str<strong>on</strong>g>r is c<strong>on</strong>verted <str<strong>on</strong>g>to</str<strong>on</strong>g> an output<br />

<str<strong>on</strong>g>frequency</str<strong>on</strong>g>. This <str<strong>on</strong>g>frequency</str<strong>on</strong>g> will be measured later by counting pulses gated <str<strong>on</strong>g>to</str<strong>on</strong>g> a signal derived<br />

from <strong>the</strong> clock that feeds <strong>the</strong> AD652. The resulting system would be a high resoluti<strong>on</strong> A/D<br />

<str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g>. For example, if a 4 MHz clock <str<strong>on</strong>g>frequency</str<strong>on</strong>g> is c<strong>on</strong>sidered <strong>the</strong> maximum output<br />

<str<strong>on</strong>g>frequency</str<strong>on</strong>g> of <strong>the</strong> SVFC will be 2 MHz, and if <strong>the</strong> time gate is 4096 us, a maximum count of 8192<br />

pulses will be measured, resulting in a 13 bit resoluti<strong>on</strong> <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g>, since 2 13 = 8192.<br />

2. Descripti<strong>on</strong> of <strong>the</strong> circuit<br />

Figure 1 shows <strong>the</strong> AD652 c<strong>on</strong>necti<strong>on</strong> scheme for <strong>the</strong> traditi<strong>on</strong>al dual supply, positive<br />

input mode of operati<strong>on</strong> where <strong>the</strong> ±V S value is ±15 V.<br />

Figure 1: Standard V/f c<strong>on</strong>necti<strong>on</strong> for positive input <str<strong>on</strong>g>voltage</str<strong>on</strong>g> with dual supply<br />

The circuit shown in figure 1 has been completed with <strong>the</strong> corresp<strong>on</strong>ding NFE61P EMI<br />

filters and bypass capaci<str<strong>on</strong>g>to</str<strong>on</strong>g>rs in <strong>the</strong> power supply lines. In additi<strong>on</strong>, a 20 KΩ variable resis<str<strong>on</strong>g>to</str<strong>on</strong>g>r<br />

and a 250 KΩ resis<str<strong>on</strong>g>to</str<strong>on</strong>g>r have been placed between +V S and <strong>the</strong> pins 2 and 3 of <strong>the</strong> AD652 chip in<br />

order <str<strong>on</strong>g>to</str<strong>on</strong>g> perform <strong>the</strong> offset calibrati<strong>on</strong>, as shown in figure 2.<br />

2


1 3<br />

2<br />

2<br />

2<br />

Figure 2: Scheme for offset calibrati<strong>on</strong><br />

The offset of <strong>the</strong> op amp may be trimmed <str<strong>on</strong>g>to</str<strong>on</strong>g> zero with <strong>the</strong> trim scheme shown in<br />

figure 2. One way of trimming <strong>the</strong> offset is by grounding Pin 7 of <strong>the</strong> device and observing <strong>the</strong><br />

waveform at pin 4. As it will be shown later, a test point has been included <strong>on</strong> <strong>the</strong> circuit <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

simplify this measurement. If <strong>the</strong> offset <str<strong>on</strong>g>voltage</str<strong>on</strong>g> of <strong>the</strong> op amp is positive, <strong>the</strong> integra<str<strong>on</strong>g>to</str<strong>on</strong>g>r has<br />

saturated and <strong>the</strong> <str<strong>on</strong>g>voltage</str<strong>on</strong>g> is at <strong>the</strong> positive rail. If <strong>the</strong> offset <str<strong>on</strong>g>voltage</str<strong>on</strong>g> is negative, <strong>the</strong>re is a small<br />

effective input current that causes <strong>the</strong> AD652 <str<strong>on</strong>g>to</str<strong>on</strong>g> oscillate; a saw<str<strong>on</strong>g>to</str<strong>on</strong>g>oth waveform is observed at<br />

pin 4. The variable resis<str<strong>on</strong>g>to</str<strong>on</strong>g>r should be adjusted until <strong>the</strong> downward slope of this saw<str<strong>on</strong>g>to</str<strong>on</strong>g>oth<br />

becomes very slow, down <str<strong>on</strong>g>to</str<strong>on</strong>g> a <str<strong>on</strong>g>frequency</str<strong>on</strong>g> of 1 Hz or less, according <str<strong>on</strong>g>to</str<strong>on</strong>g> <strong>the</strong> AD652 datasheet.<br />

Figure 3 shows <strong>the</strong> block diagram of <strong>the</strong> <str<strong>on</strong>g>voltage</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>frequency</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g>, with its<br />

auxiliary comp<strong>on</strong>ents for proper operati<strong>on</strong>, which have been developed.<br />

+15V<br />

R8<br />

250k<br />

TP1<br />

1<br />

J4<br />

2<br />

TEST POINT<br />

1<br />

Signal Source +<br />

R7<br />

20k<br />

C7<br />

0.02u<br />

1<br />

U1<br />

+Vs COMP REF<br />

16<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

TRIM1<br />

TRIM2<br />

AMP OUT<br />

AMP-<br />

AMP+<br />

10V IN<br />

-Vs<br />

COMP+<br />

COMP-<br />

AN. GND<br />

DIG. GND<br />

FREQ OUT<br />

CLK IN<br />

COS<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

AD652<br />

C2<br />

Open<br />

GND_ANALOG<br />

GND_DIGITAL<br />

R9<br />

Short<br />

C1<br />

Open<br />

R1<br />

680<br />

+5V<br />

J3<br />

1<br />

J2<br />

1<br />

FREQ_OUT<br />

CLK<br />

+15V<br />

L1<br />

EMIFILTER<br />

-15V<br />

+15V<br />

1<br />

3<br />

-15V<br />

C3<br />

100p<br />

L2<br />

EMIFILTER<br />

J1<br />

1<br />

2<br />

3<br />

CON3<br />

+5V<br />

C6<br />

100p<br />

1<br />

L3<br />

EMIFILTER<br />

3<br />

J5<br />

1<br />

2<br />

CON2<br />

1<br />

3<br />

C4<br />

100p<br />

Figure 3: Schematic<br />

3


3. PCB circuit design<br />

The PCB circuit design has been routed and translated <str<strong>on</strong>g>to</str<strong>on</strong>g> <strong>the</strong> LPKF milling machine<br />

code with CircuitCAM 4.0. The board layout can be seen in Figure 5. The board has been<br />

manufactured in CAY’s electr<strong>on</strong>ics labora<str<strong>on</strong>g>to</str<strong>on</strong>g>ry and <strong>the</strong> PCB vias has been metalized in <strong>the</strong> CAY's<br />

chemical lab.<br />

Figure 4: PCB layout (<str<strong>on</strong>g>to</str<strong>on</strong>g>p layer)<br />

Figure 5: PCB layout (bot<str<strong>on</strong>g>to</str<strong>on</strong>g>m layer)<br />

4


Figure 6 shows <strong>the</strong> final look of <strong>the</strong> PCB circuit inside its aluminum box.<br />

Figure 6: Printed circuit board<br />

4. Measurements<br />

The <str<strong>on</strong>g>voltage</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>frequency</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g> has been tested for input <str<strong>on</strong>g>voltage</str<strong>on</strong>g> levels from 1 V <str<strong>on</strong>g>to</str<strong>on</strong>g><br />

10 V in steps of 1 V at four different clock frequencies: 50 KHz, 100 KHz, 500 KHz and 1 MHz.<br />

The measurement of <strong>the</strong> output <str<strong>on</strong>g>frequency</str<strong>on</strong>g> has been carried out using <strong>the</strong> Agilent<br />

53132A universal counter, which was c<strong>on</strong>figured with an integrati<strong>on</strong> time of 2 sec<strong>on</strong>ds. Then,<br />

90 samples, approximately, were acquired for each clock and input <str<strong>on</strong>g>voltage</str<strong>on</strong>g> value.<br />

The average output <str<strong>on</strong>g>frequency</str<strong>on</strong>g> and its typical deviati<strong>on</strong> for each value of <strong>the</strong> input<br />

<str<strong>on</strong>g>voltage</str<strong>on</strong>g> and <strong>the</strong> clock <str<strong>on</strong>g>frequency</str<strong>on</strong>g> are shown in table 1 <str<strong>on</strong>g>to</str<strong>on</strong>g> 4.<br />

Tables from 1 <str<strong>on</strong>g>to</str<strong>on</strong>g> 4 show <strong>the</strong> results for each measurement.<br />

Fclk = 50 KHz<br />

μ (Hz) σ (Hz) σ (%)<br />

1 V 2.472,520380 0,021157 0,000856<br />

2 V 4.941,371706 0,020977 0,000425<br />

3 V 7.412,457115 0,094479 0,001275<br />

4 V 9.882,803730 0,044762 0,000453<br />

5 V 12.351,081666 0,159591 0,001292<br />

6 V 14.823,538823 0,035856 0,000242<br />

7 V 17.293,322921 0,379072 0,002192<br />

8 V 19.762,486610 0,050228 0,000254<br />

9 V 22.233,731276 0,331767 0,001492<br />

10 V 24.702,682013 0,455800 0,001845<br />

5


Table 1: Measurements for Fclk = 50 KHz.<br />

Fclk = 100 KHz<br />

μ (Hz) σ (Hz) σ (%)<br />

1 V 4.945,312495 0,046852 0,000947<br />

2 V 9.883,276584 0,051005 0,000516<br />

3 V 14.824,141852 0,052019 0,000351<br />

4 V 19.763,693212 0,054884 0,000278<br />

5 V 24.703,864712 0,075467 0,000305<br />

6 V 29.643,708572 0,091394 0,000308<br />

7 V 34.583,833306 0,112618 0,000326<br />

8 V 39.526,177079 0,089121 0,000225<br />

9 V 44.469,949680 0,163683 0,000368<br />

10 V 49.407,541852 0,154416 0,000313<br />

Table 2: Measurements for Fclk = 100 KHz.<br />

Fclk = 500 KHz<br />

μ (Hz) σ (Hz) σ (%)<br />

1 V 24.708,746679 0,352983 0,001429<br />

2 V 49.410,350931 0,261193 0,000529<br />

3 V 74.125,445273 0,260054 0,000351<br />

4 V 98.815,652262 0,475083 0,000481<br />

5 V 123.526,501287 0,323329 0,000262<br />

6 V 148.218,502126 0,423951 0,000286<br />

7 V 172.925,924456 0,649278 0,000375<br />

8 V 197.640,685216 0,550368 0,000278<br />

9 V 222.332,860031 0,700676 0,000315<br />

10 V 247.028,106417 0,544355 0,000220<br />

Table 3: Measurements for Fclk = 500 KHz.<br />

Fclk = 1 MHz<br />

μ (Hz) σ (Hz) σ (%)<br />

1 V 49.447,739263 0,467180 0,000945<br />

2 V 98.869,885053 0,683196 0,000691<br />

3 V 148.241,944750 1,169837 0,000789<br />

4 V 197.626,761230 0,846404 0,000428<br />

5 V 247.048,674750 0,593806 0,000240<br />

6 V 296.430,795448 0,857682 0,000289<br />

7 V 345.847,956999 1,165187 0,000337<br />

8 V 395.272,979582 1,177912 0,000298<br />

9 V 444.647,508734 1,160502 0,000261<br />

10 V 494.029,759933 1,522012 0,000308<br />

Table 4: Measurements for Fclk = 1 MHz.<br />

6


It can be observed that <strong>the</strong> results obtained at lower clock’s frequencies have smaller<br />

typical deviati<strong>on</strong> values.<br />

Figure 7 shows <strong>the</strong> graphical representati<strong>on</strong> of all <strong>the</strong>se values.<br />

500000<br />

V/F <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g><br />

Hz<br />

450000<br />

400000<br />

350000<br />

300000<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

Fclk = 50 KHz<br />

Fclk = 100 KHz<br />

Fclk = 500 KHz<br />

Fclk = 1 MHz<br />

0<br />

0 2 4 6 8 10 12<br />

V<br />

Figure 7: V/F <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g> graphical results<br />

Table 5 shows <strong>the</strong> equati<strong>on</strong> fitted <str<strong>on</strong>g>to</str<strong>on</strong>g> <strong>the</strong> data in order <str<strong>on</strong>g>to</str<strong>on</strong>g> obtain <strong>the</strong> transfer functi<strong>on</strong><br />

of <strong>the</strong> SVFC (<str<strong>on</strong>g>frequency</str<strong>on</strong>g> in Hz versus input <str<strong>on</strong>g>voltage</str<strong>on</strong>g> in volts for each value of <strong>the</strong> clock<br />

<str<strong>on</strong>g>frequency</str<strong>on</strong>g>). It can be seen that <strong>the</strong> SVFC transfer functi<strong>on</strong> is linear.<br />

F CLK (Hz)<br />

Equati<strong>on</strong><br />

50 KHz F OUT (Hz) = 2470,1·V + 1,8618<br />

100 KHz F OUT (Hz) = 4940,5·V + 2,5761<br />

500 KHz F OUT (Hz) = 24703·V + 8,9169<br />

1 MHz F OUT (Hz) = 49399·V + 50,319<br />

Table 5: V/F circuit equati<strong>on</strong>s<br />

7


5. C<strong>on</strong>clusi<strong>on</strong>s<br />

A <str<strong>on</strong>g>voltage</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>frequency</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Analog Devices AD652 chip has been<br />

developed <str<strong>on</strong>g>to</str<strong>on</strong>g> obtain <str<strong>on</strong>g>voltage</str<strong>on</strong>g> measurements with a high resoluti<strong>on</strong>.<br />

The circuit has been implemented in a printed circuit board with <strong>the</strong> LPKF milling<br />

machine placed at CAY receiver’s labora<str<strong>on</strong>g>to</str<strong>on</strong>g>ry and works with a dual supply of ±15 V and<br />

positive input <str<strong>on</strong>g>voltage</str<strong>on</strong>g>s.<br />

The <str<strong>on</strong>g>voltage</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>frequency</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g> has been tested and completely characterized at<br />

CAY’s labora<str<strong>on</strong>g>to</str<strong>on</strong>g>ries obtaining <strong>the</strong> results shown in secti<strong>on</strong> 4, which c<strong>on</strong>clude that its transfer<br />

functi<strong>on</strong> is linear.<br />

It is recommended <str<strong>on</strong>g>to</str<strong>on</strong>g> work with low clock frequencies in order <str<strong>on</strong>g>to</str<strong>on</strong>g> increase <strong>the</strong><br />

accuracy and <strong>the</strong> stability of <strong>the</strong> output <str<strong>on</strong>g>frequency</str<strong>on</strong>g>.<br />

6. Acknowledgments<br />

The authors wish <str<strong>on</strong>g>to</str<strong>on</strong>g> thank <strong>the</strong> help provided by Carlos Almendros during <strong>the</strong><br />

labora<str<strong>on</strong>g>to</str<strong>on</strong>g>ry tests, Sergio Henche for <strong>the</strong> assembly of <strong>the</strong> board, José Manuel Hernández for <strong>the</strong><br />

metallizati<strong>on</strong> of <strong>the</strong> vias and chemical finishing of <strong>the</strong> board, Carlos Albo for providing <strong>the</strong><br />

software <str<strong>on</strong>g>to</str<strong>on</strong>g> acquire <strong>the</strong> measurements and José María Yagüe for <strong>the</strong> manufacturing of <strong>the</strong> box<br />

enclosure.<br />

8


Appendix A: Datasheets<br />

The AD8302’s datasheet is available at <strong>the</strong> <strong>analog</strong> <strong>devices</strong> web page:<br />

http://www.<strong>analog</strong>.com/static/imported-files/data_sheets/AD652.pdf<br />

An interesting tu<str<strong>on</strong>g>to</str<strong>on</strong>g>rial <strong>on</strong> Votage-<str<strong>on</strong>g>to</str<strong>on</strong>g>-Frequency <str<strong>on</strong>g>c<strong>on</strong>verter</str<strong>on</strong>g>s is:<br />

W. Kester, J. Bryant: "Voltage-<str<strong>on</strong>g>to</str<strong>on</strong>g>-Frequency C<strong>on</strong>verters". Analog Devices Tu<str<strong>on</strong>g>to</str<strong>on</strong>g>rial MT-<br />

028. Available at: http://www.<strong>analog</strong>.com/static/imported-files/tu<str<strong>on</strong>g>to</str<strong>on</strong>g>rials/MT-028.pdf.<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!