19.01.2015 Views

Innovative Imaging Probes - Encite

Innovative Imaging Probes - Encite

Innovative Imaging Probes - Encite

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The European Network for Cell <strong>Imaging</strong> Traking Expertise<br />

ENCITE Teaching File<br />

Chemistry Department,<br />

University of Turin, Italy<br />

Contribution of Prof. Silvio Aime,<br />

edited by Simona Baroni<br />

For more information pleae visit: www.encite.org or contact EIBIR (office@eibir.org).<br />

ENCITE is co-funded by the European Commision within the 7° Framework Programme and co-ordinated<br />

by the European Institute for Bio-medical <strong>Imaging</strong> Research (EIBR).<br />

<strong>Innovative</strong> <strong>Imaging</strong> <strong>Probes</strong><br />

CEST agents<br />

Hyperpolarized molecules<br />

1


CEST (Chemical Exchange Saturation Transfer) agents<br />

Dw (rad . Hz) = w WAT - w CEST<br />

If Dw > k ex then….<br />

CEST<br />

Agent<br />

w CEST<br />

w WAT<br />

water<br />

molecule<br />

CEST agent<br />

mobile protons<br />

-40 -30 -20 -10 0 10 20 30 40<br />

Dw<br />

KHz<br />

The MR-CEST experiment<br />

Aqueous solution of<br />

a CEST agent<br />

ON resonance<br />

irradiation<br />

I S<br />

rf field<br />

Bulk<br />

water<br />

I WAT = 16.9 a.u.<br />

I S = 7.8 a.u.<br />

-40 -30 -20 -10 0 10 20 30 40<br />

KHz<br />

CEST agent<br />

-40 -30 -20 -10 0 10 20 30 40<br />

KHz<br />

Dw Dw<br />

Drawback: the irradiation may decrease I WAT even<br />

in the absence of the CEST agent<br />

- direct saturation of bulk water signal<br />

- presence of immobilized mobile protons (in<br />

biological samples, ca. 100 KHz broad)<br />

Both these effects only depend on the absolute<br />

value of the irradiation frequency<br />

2


ST %<br />

The MR-CEST experiment<br />

Aqueous solution of<br />

a CEST agent<br />

ON resonance<br />

irradiation<br />

I S<br />

rf field<br />

Bulk<br />

water<br />

I WAT = 16.9 a.u.<br />

rf field<br />

I S = 7.8 a.u.<br />

-40 -30 -20 -10 0 10 20 30 40<br />

KHz<br />

I 0<br />

CEST agent<br />

-40 -30 -20 -10 0 10 20 30 40<br />

KHz<br />

Dw Dw<br />

OFF resonance<br />

irradiation<br />

I 0 = 14.5 a.u.<br />

-40 -30 -20 -10 0 10 20 30 40<br />

KHz<br />

ON-OFF<br />

difference image<br />

ST % = (1-I S /I 0 )*100<br />

46.2 %<br />

ST-weighted<br />

image<br />

CEST agents: the sensitivity issue<br />

The ST efficiency is proportional to the number of mobile protons<br />

100<br />

Simulated profiles* at 7 T<br />

Dw = 50 ppm<br />

80<br />

60<br />

k ex = 3300 s -1<br />

B 1 = 11.75 mT<br />

40<br />

20<br />

0<br />

0 50 100 150 200 250<br />

[mobile protons] - mM<br />

A ST of 10% requires a total concentration of mobile protons of few mM<br />

[CEST] agent =<br />

[mobile protons]<br />

number of mobile protons per molecule<br />

3


How to increase the number of mobile protons <br />

Use of nanoparticles<br />

Liposomes<br />

- well-known biocompatible systems<br />

- a liposome with 200 nm of diameter contains<br />

k ex<br />

about 2.410 8 mobile water protons!<br />

- k ex values cover a wide range (10-10 6 s -1 )<br />

depending on the chemical composition of<br />

the liposome membrane<br />

In order to act as CEST agent, the resonance frequency of<br />

the water protons inside the liposome must be shifted<br />

LIPOCEST agents: a new entry for highly-sensitive CEST probes<br />

The encapsulation of a paramagnetic shift reagent (SR) in liposomes<br />

affects the resonance frequency of the water protons inside the vesicle<br />

bulk<br />

water<br />

k ex<br />

SR<br />

Ln<br />

<br />

d wat-lip<br />

water<br />

inside lipos.<br />

40 30 20 10 0 -10 -20 -30 -40<br />

KHz<br />

d wat-lip depends on the type and concentration of SR<br />

k ex depends on the membrane composition and liposome size<br />

4


ST%<br />

SR<br />

LIPOCEST agents<br />

Hydration<br />

Vortexing<br />

MLV<br />

Extrusion<br />

SUV<br />

Dialysis<br />

55 °C<br />

55 °C<br />

Lipidic film<br />

SR unit<br />

Tm<br />

Water protons<br />

inside liposomes<br />

Bulk water<br />

1<br />

H-NMR spectrum (7 T, 298 K)<br />

[TmDOTMA] -<br />

0.12 M inside liposomes<br />

DPPC/DPPG 95/5 (w/w) liposomes<br />

LIPOCEST agents: sensitivity<br />

POPC/DPPG/Chol (55/5/40 w/w) liposomes<br />

312 K - [TmDOTMA] - 0.1 M – d WAT-LIP 3.2 ppm<br />

MR-CEST images<br />

(7 T - 312K - B 1 field 12 mT)<br />

60<br />

on-image<br />

off-image<br />

50<br />

40<br />

30<br />

20<br />

10<br />

1 8 0 3 6 0<br />

7 2 0<br />

90<br />

2 2 . 5<br />

1 4 4 0<br />

45<br />

0<br />

0 1000 2000 3000<br />

[liposome] - pM<br />

2 8 8 0<br />

on-off<br />

difference image<br />

The sensitivity is augmented to ca. 100 pM !<br />

5


LIPOCEST agents: passive tumor targeting in mice<br />

Liposomes can passively target tumors by exploiting the increased<br />

vascular permeability and the lack of an efficient lymphatic drainage<br />

But in order to prevent opsonisation processes and prolong blood lifetimes<br />

liposomes must be protected<br />

use of STEALTH Liposomes<br />

STEALTH Liposomes<br />

Liposome coated by PEG chains<br />

(t 1/2 in blood up to 3 days)<br />

Experimental set-up<br />

Animal model: Neuro 2A cells (murine neuroblastoma) inoculated<br />

subcutaneously to mice<br />

STEALTH LIPOCEST: POPC/Chol/DSPE-PEG (55/40/5) liposomes<br />

SR = [TmDOTMA] - - d WAT-LIP = 2.6 ppm<br />

diameter 110 nm<br />

LIPOCEST agents: passive tumor targeting in mice<br />

i.v administration of STEALTH LIPOCEST (dose: 0.04 mmol SR/kg)<br />

MR images at 7 T overlaid with ST-effects<br />

Pre-administration<br />

Tumoral region<br />

3 min post 30 min post<br />

24 h post<br />

6


<strong>Innovative</strong> <strong>Imaging</strong> <strong>Probes</strong><br />

CEST agents<br />

Hyperpolarized molecules<br />

What does “hyperpolarization” mean<br />

Normal Polarization:<br />

b<br />

a<br />

DN/N <br />

10 -5<br />

Low<br />

NMR<br />

sensitivity<br />

No field B 0<br />

Hyperpolarization:<br />

b<br />

a<br />

10 5<br />

enhancement<br />

in sensitivity<br />

No field B 0<br />

7


Routes to hyperpolarization<br />

Laser excitation ( 3 He or 129 Xe)<br />

“Brute Force”<br />

Dynamic Nuclear Polarization (DNP)<br />

Para-hydrogen Induced Polarization (PHIP)<br />

Laser-Polarized 3 He and 129 Xe<br />

h n<br />

Rb<br />

Rb<br />

Rb<br />

Rb<br />

Rb<br />

Rb<br />

Hyperpolarization<br />

of Rb atoms<br />

The radiation is circularly polarized;<br />

the Rb D1 line is used (corresponding<br />

to the 5s 1 -/ 25p transition)<br />

1 / 2<br />

Collisions between<br />

Rb and Xe<br />

Rb<br />

Xe<br />

(Van der Waals molecule)<br />

Polarization transfer to Xe atoms<br />

via “spin exchange”<br />

Xe<br />

Xe<br />

Xe<br />

8


Dynamic Nuclear Polarization (DNP)<br />

Solid material doped with unpaired<br />

electrons in a ratio of ~1:1000<br />

13<br />

C<br />

13<br />

13<br />

13<br />

C<br />

C<br />

C<br />

13 13<br />

C<br />

13<br />

13<br />

13<br />

C C<br />

C<br />

C<br />

13<br />

C e -<br />

13<br />

C<br />

13<br />

C<br />

13 13<br />

13<br />

13<br />

C<br />

C<br />

C C<br />

13<br />

13 C<br />

13<br />

C<br />

C<br />

13 13<br />

C<br />

13<br />

13 C<br />

C<br />

13<br />

C<br />

C<br />

13<br />

13<br />

C<br />

13 13<br />

C<br />

C<br />

C<br />

e -<br />

13<br />

C<br />

e -<br />

13<br />

C<br />

13<br />

C<br />

13<br />

13 13<br />

C<br />

C<br />

13<br />

C<br />

13 C<br />

13 C<br />

13<br />

C<br />

C<br />

13<br />

13<br />

C<br />

13 13 C<br />

C C<br />

13<br />

13 C<br />

13<br />

13 C<br />

C<br />

C<br />

13<br />

C<br />

13<br />

C<br />

P e = 94% and P C = 0.086%<br />

3.35 T and ~1.2K Microwaves transfer polarization<br />

from electrons to nuclei<br />

NMR and its Holy Grail<br />

PNAS 100, 10158-10163 (September 2003)<br />

< 1s<br />

65 h<br />

9


NMR and its Holy Grail<br />

<strong>Imaging</strong> 13 C-labelled urea in a rat<br />

Metabolic imaging of a rat tumor<br />

with hyperpolarized 13 C-pyruvate<br />

R3230AC,<br />

mammary<br />

adenocarcinoma<br />

1<br />

H-reference<br />

pyruvate<br />

alanine<br />

lactate<br />

10


Equilibrium p-H 2 percentage<br />

Para-hydrogen Induced Polarization<br />

(PHIP)<br />

What Para-Hydrogen is<br />

bb<br />

c(ab+ba)<br />

Triplet (ortho)<br />

aa<br />

c(ab-ba)<br />

Singlet (para)<br />

100<br />

80<br />

60<br />

Normal Hydrogen =<br />

75% ortho + 25% para<br />

40<br />

20<br />

0 100 200 300 400 500<br />

Temperature (K)<br />

Para-Hydrogen Induced Polarization<br />

(PHIP)<br />

D<br />

D<br />

H H<br />

D D<br />

d 5<br />

D<br />

+ p-H 2<br />

D<br />

d 5<br />

Resulting 1 H NMR spectrum:<br />

Ortho-H 2<br />

I = 0<br />

ab<br />

bb<br />

Para-H 2<br />

I = 0<br />

Para-H 2<br />

aa<br />

AX spin system<br />

ba<br />

Signal enhancement<br />

up to 10 5<br />

11


Para-H2 containing molecules<br />

as hyperpolarized contrast agents<br />

In order to obtain a 13 C image by<br />

using the 13 C polarized signal, it<br />

must be transformed from<br />

anthiphase to in-phase<br />

bbb<br />

bba<br />

FIELD CYCLING (ab+ba)b<br />

(ab+ba)b<br />

Earth magnetic field (50 mT)<br />

Non adiabatic (fast)<br />

Zero magnetic field<br />

(ab+ba)a<br />

(ab+ba)a<br />

aab<br />

aaa<br />

fast<br />

m-Metal<br />


The Nycomed approach: Para-H 2 containing<br />

molecules as hyperpolarized CA<br />

100% 13 C enriched<br />

Sub-second 13 C-angiography<br />

O<br />

O<br />

C C C C<br />

D 3 C O O C D 3<br />

p - H 2<br />

c a t .<br />

O<br />

O<br />

D 3 C O<br />

C<br />

C<br />

H<br />

C<br />

C *<br />

H<br />

O C D 3<br />

T 1 ( 13 C) = 75 s (7.05 T)<br />

normal spin echo (SE) image<br />

( 1 H) ( 13 C)<br />

single shot RARE sequence<br />

Magn. Res. In Med., 2001, 46, 1<br />

Targets for Molecular <strong>Imaging</strong><br />

Apps.gemedicalsystems.com<br />

13


Medical <strong>Imaging</strong> and range of detection<br />

CT/x-ray<br />

US<br />

MRI<br />

PET/NM<br />

Optical<br />

Anatomy Physiology Metabolism Molecular<br />

Gd-chelates<br />

Iron oxide<br />

particles<br />

Hyperpolarized<br />

13<br />

C-molecule<br />

CEST<br />

…a look at the market<br />

S truc tura l Im a ging 1 )<br />

22000<br />

20000 MID CAGR 4.8%<br />

18000 IT<br />

16000 MIA<br />

3200<br />

$ 21.9 bn<br />

3990<br />

1742<br />

Func tiona l/M ole c ula r Im a ging2 )<br />

24000<br />

22000<br />

20000<br />

18000<br />

16000 MID<br />

CAGR 11.5%<br />

$ 21.8 bn<br />

8823<br />

14000<br />

12000<br />

10000<br />

2451<br />

707<br />

1486<br />

16203<br />

14000<br />

12000<br />

10000<br />

IT<br />

MIA<br />

4444<br />

4065<br />

8000<br />

6000<br />

9926<br />

13350<br />

8000<br />

6000<br />

2222<br />

2229<br />

8917<br />

4000<br />

4000<br />

707<br />

5960<br />

2000<br />

2000<br />

3673<br />

0<br />

2000 2002 2004 2006 2008 2010<br />

2001<br />

2007<br />

2012<br />

0<br />

2000 2002 2004 2006 2008 2010<br />

2001<br />

2007<br />

2012<br />

Main drivers<br />

for growth<br />

• Ageing population<br />

(e.g.U.S., Europe, Japan)<br />

• Further penetration of<br />

unsatured markets<br />

(e.g.China, India)<br />

• Ageing population (e.g. U.S., Europe,<br />

Japan)<br />

• Broadening of indications for existing<br />

MIAs<br />

• Market entry of new MIA<br />

generations/categories<br />

• Technological improvement of MID<br />

14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!