20.01.2015 Views

Interpreting SrœNd isotopic data from magmatic and metamorphic ...

Interpreting SrœNd isotopic data from magmatic and metamorphic ...

Interpreting SrœNd isotopic data from magmatic and metamorphic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong><br />

<strong>from</strong> <strong>magmatic</strong> <strong>and</strong> <strong>metamorphic</strong><br />

rocks<br />

Numerical recipes <strong>and</strong> exercises<br />

!<br />

Vojtěch Janoušek<br />

Czech Geological Survey, Prague<br />

“Where chaos begins, classical science stops”<br />

James Gleick, Chaos<br />

– 1 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

IMPORTANT CONSTANTS<br />

Rb decay constant λ Rb = 1.42 × 10 -11 y —1 [Steiger & Jäger, 1977]<br />

Sm decay constant λ Sm = 6.54 × 10 -12 y —1 [Lugmair & Marti, 1978]<br />

e e = 2.7182818<br />

Sr <strong>isotopic</strong> ratios<br />

Rb <strong>isotopic</strong> ratio<br />

Atomic weights of Sr<br />

86 Sr/ 88 Sr = 0.11940<br />

84 Sr/ 86 Sr = 0.056584 [Steiger & Jäger, 1977]<br />

85 Rb/ 87 Rb = 2.59265 [Steiger & Jäger, 1977]<br />

88 Sr: 87.9056 amu<br />

87 Sr: 86.9088 amu<br />

86 Sr: 85.9092 amu<br />

84 Sr: 83.9134 amu [Faure, 1986]<br />

Atomic weight of Rb 85.46776 amu [Faure, 1986]<br />

Atomic weight of Sm 150.4 amu [Faure, 1986]<br />

Atomic weight of Nd 144.24 amu [Faure, 1986]<br />

UR — present-day Sr <strong>isotopic</strong> composition<br />

87 Rb/ 86 Sr = 0.0816<br />

87 Sr/ 86 Sr = 0.7045 [Faure, 1986]<br />

CHUR — present-day Nd <strong>isotopic</strong> composition<br />

147 Sm/ 144 Nd = 0.1967 [Jacobsen & Wasserburg, 1980]<br />

143 Nd/ 144 Nd = 0.512638 [Wasserburg et al., 1981]<br />

DM — present-day Nd <strong>isotopic</strong> composition<br />

147 Sm/ 144 Nd = 0.222<br />

143 Nd/ 144 Nd = 0.513114 [Michard et al., 1985]<br />

Two-stage DM Nd model ages<br />

⎛143 Nd⎞ 0<br />

⎜ ⎟<br />

⎝144 Nd ⎠DM = 0.513151 ⎝ ⎜⎛ 147 Sm<br />

144 ⎠ ⎟⎞ 0<br />

Nd DM = 0.219 ⎝ ⎜⎛ 147 Sm<br />

144 ⎠ ⎟⎞ 0<br />

Nd CC = 0.12<br />

[Liew & Hofmann, 1988]<br />

Note that all Nd <strong>isotopic</strong> <strong>data</strong> are based on normalization to 146 Nd/ 144 Nd = 0.7219<br />

– 2 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

AIM<br />

The primary objective of this short text written for a PG level <strong>isotopic</strong> workshop at the Charles<br />

University is to explain basic numerical approaches used in interpreting Sr–Nd <strong>isotopic</strong> <strong>data</strong> in<br />

igneous <strong>and</strong> <strong>metamorphic</strong> geochemistry. To demonstrate the usability of the theoretical principles <strong>and</strong><br />

numerical recipes given, exercises are presented that are based on real as well as artificial <strong>data</strong>.<br />

A floppy disc with the <strong>data</strong> <strong>and</strong> software needed for the exercises accompanies this h<strong>and</strong>out.<br />

Enjoy!<br />

Vojtěch Janoušek<br />

Prague, April 1999<br />

CONVENTIONS<br />

Notation (employed to make the formulae “simpler looking”)<br />

I = 87 Sr/ 86 Sr or 143 Nd/ 144 Nd<br />

R = 87 Rb/ 86 Sr or 147 Sm/ 144 Nd<br />

All the constants needed for the exercises are given on the previous page<br />

Most important formulae are shown in bold type<br />

Pictographs used:<br />

Exercise<br />

Hints to the exercise<br />

Associated <strong>data</strong> file<br />

Important notice<br />

– 3 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

1. RECALCULATION OF ELEMENTAL TO ISOTOPIC RATIOS<br />

87<br />

86<br />

Rb<br />

Sr<br />

87<br />

⎛ Rb ⎞⎡<br />

Sr ⎤<br />

= 0 .28535⎜<br />

⎟⎢9.43174<br />

+ ⎥<br />

[1.1]<br />

86<br />

⎝ Sr ⎠⎣<br />

Sr ⎦<br />

147<br />

144<br />

Sm<br />

Nd<br />

⎛<br />

= ⎜<br />

⎝<br />

Sm<br />

Nd<br />

143<br />

⎞⎡<br />

Nd ⎤<br />

⎟⎢0 .53151+<br />

0.14252<br />

144 ⎥<br />

[1.2]<br />

⎠⎣<br />

Nd ⎦<br />

Exercise 1-1<br />

In the Central Bohemian Pluton, Czech Republic, occur numerous Hercynian granitoid intrusions, all of<br />

comparable age (~ 350 Ma). The detailed Sr–Nd <strong>isotopic</strong> study (Janoušek et al., 1995) has shown that most<br />

of the individual intrusions had distinct sources. This fact, together with the influence of other processes (mostly<br />

beyond the scope of this text) accounts for their observed geochemical variability.<br />

Using the <strong>data</strong> given below, calculate the 87 Rb/ 86 Sr <strong>and</strong> 147 Sm/ 144 Nd ratios for selected<br />

granitoids <strong>from</strong> the Central Bohemian Pluton <strong>and</strong> their country rocks.<br />

Sample Intrusion Rb<br />

(ppm)<br />

Sr<br />

(ppm)<br />

87 Sr/ 86 Sr Sm<br />

(ppm)<br />

Nd<br />

(ppm)<br />

143 Nd/ 144 Nd<br />

Sa-1 Sázava 76 555.8 0.70700 4.57 24.2 0.512476<br />

Koz-2 Kozárovice 164.1 486.9 0.71258 5.91 31.7 0.512210<br />

Bl-2 Blatná 185 439.1 0.71434 6.85 43.8 0.512101<br />

Se-9 Sedlčany 308.1 307.8 0.72620 8.17 40.2 0.512080<br />

Ri-1 Říčany 310.7 374.1 0.72154 4.06 24.1 0.512053<br />

CR-1 shale 110 80.4 0.72596 3.3 17.3 0.512061<br />

CR-5 paragneiss 160 86.4 0.74670 9.4 50.6 0.511880<br />

[cbp.xls]<br />

2. INITIAL RATIOS, AGES<br />

I = I<br />

I<br />

i<br />

i<br />

+ R<br />

= I − R<br />

λt<br />

( e −1)<br />

λt<br />

( e −1)<br />

1 ⎛ I − I<br />

i ⎞<br />

t = ln⎜<br />

+ 1⎟<br />

λ ⎝ R ⎠<br />

[2.1]<br />

[2.2]<br />

[2.3]<br />

– 4 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

Exercise 2-1<br />

Calculate initial Sr <strong>isotopic</strong> ratios ( 87 Sr/ 86 Sr i ) of the samples <strong>from</strong> the previous<br />

exercise for ages 350 <strong>and</strong> 300 Ma. Calculate the age of the Kozárovice granodiorite<br />

(Koz-2) assuming 87 Sr/ 86 Sr i = 0.705.<br />

[cbp.xls]<br />

3. ISOCHRON AGES<br />

For calculation of ages (cf. eq. 2.3), initial ratios are obtained using:<br />

• a mineral without the parent<br />

(radioactive) element<br />

(apatite — virtually no Rb),<br />

• a mineral with very high<br />

contents of the radioactive<br />

element<br />

(lepidolite — Rb-rich),<br />

• the isochron method.<br />

Samples plot onto an isochron, if:<br />

• they are cogenetic (identical<br />

source ⇒ the same initial<br />

ratio),<br />

• they are of the same age,<br />

• represented a closed <strong>isotopic</strong><br />

system throughout their<br />

subsequent history.<br />

In fact [2.1]<br />

I = I<br />

i<br />

+ R e<br />

λt<br />

( −1)<br />

is an equation of a straight line in the<br />

form:<br />

y = a + bx [3.1]<br />

Where: a = intercept, b = slope.<br />

Figure 3-1: Rb–Sr <strong>data</strong> for the Agua Branca adamellite, Brazil,<br />

plotted (a) on a conventional isochron diagram; <strong>and</strong> (b) on an<br />

„improved“ isochron diagram after Provost (1990)<br />

– 5 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

It is apparent <strong>from</strong> [2.1] <strong>and</strong> Fig. 3–1 that a corresponds to the initial ratio of the whole cogenetic suite<br />

<strong>and</strong> the slope b of the isochron is expressed as:<br />

Giving a formula for isochron age:<br />

The isochrons are usually fitted using<br />

software given in Tab. 3–1. The<br />

algorithm utilizes weighted linear<br />

regression <strong>and</strong> follows York (1969).<br />

λt<br />

( e −1)<br />

b = tgα =<br />

[3.2]<br />

1<br />

t = ln b +<br />

λ<br />

( 1)<br />

Isochron<br />

Provost (1990) France Pascal<br />

IsoPlot Ludwig (1993) USA QuickBasic<br />

[3.3]<br />

Exercise 3-1<br />

Table 3-1: Software used for geochronological calculations<br />

[ISOCHRON.EXE]<br />

The Rb–Sr <strong>isotopic</strong> composition of the Serra do Acari granite <strong>from</strong> Pará, Brazil, was determined by Xafi da<br />

Silva et al. (1985). We will use this granite as a case study showing how isochrons are plotted, as well as how<br />

isochron ages <strong>and</strong> initial ratios are obtained.<br />

Calculate the age <strong>and</strong> Sr initial ratio for the Acari granite using simple linear<br />

regression (MS Excel). Then calculate the same parameters using weighted linear<br />

regression implemented by Provost (1990) <strong>and</strong> produce both conventional <strong>and</strong><br />

improved isochron plots. Compare results obtained in both cases. Which sample controls the<br />

regression <strong>and</strong> why<br />

Sample<br />

87 Rb/ 86 Sr 1σ<br />

87 Sr/ 86 Sr 1σ<br />

AT-R-173 5.743 0.062 0.858993 0.000034<br />

AT-R-167 22.290 0.280 1.290200 0.000050<br />

AT-R-157 42.170 0.530 1.760370 0.000069<br />

AT-R-165 61.230 0.980 2.248950 0.000140<br />

AT-R-158 99.000 1.800 3.182530 0.000170<br />

AT-R-169 232.000 3.300 6.548880 0.000470<br />

[acari.xls, acari.sr]<br />

Hints:<br />

! Plot a diagram analogous to Figure 3–1a (if you dare, you can even plot error bars),<br />

! Fit the <strong>data</strong> by linear regression,<br />

! Intercept of the regression line equals to the sought initial ratio,<br />

! Age can be calculated <strong>from</strong> the slope using eq. [3.3],<br />

! Start ISOCHRON.EXE, import the <strong>data</strong> file provided on the floppy (acari.sr),<br />

! Note the format of the *.SR <strong>data</strong> file: first line is ignored <strong>and</strong> is intended for<br />

comments, the following lines contain: sample_number, 87 Rb/ 86 Sr, 1σ, 87 Sr/ 86 Sr <strong>and</strong><br />

1σ with several spaces in between,<br />

! If in doubt, just press ENTER to accept the defaults offered by the program.<br />

– 6 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

4. EPSILON ND VALUES<br />

The <strong>isotopic</strong> evolution of Nd in the Earth is described<br />

in terms of a model, called CHUR (Chondritic<br />

Uniform Reservoir: DePaolo, 1988), which is<br />

assumed to have Sm/Nd ratio equal to that of<br />

chondrites. This model is widely used for comparison<br />

of initial <strong>isotopic</strong> composition of a studied (usually<br />

igneous) rock with that of primitive mantle at the time<br />

of its generation. This is done by means of the ε-<br />

notation:<br />

⎛<br />

λt<br />

( e −1)<br />

λ<br />

( e −1)<br />

0 0<br />

t<br />

SA SA<br />

4<br />

ε = ⎜<br />

−1<br />

× 10<br />

0<br />

0<br />

⎟<br />

CHUR<br />

[4.1]<br />

t<br />

I<br />

CHUR<br />

− RCHUR<br />

⎝<br />

I<br />

− R<br />

Where:<br />

t refers to the time of the intrusion,<br />

0 to the present,<br />

SA = sample,<br />

present-day composition of CHUR is:<br />

147 Sm/ 144 Nd = 0.1967<br />

143 Nd/ 144 Nd = 0.512638<br />

(Jacobsen & Wasserburg, 1980).<br />

⎞<br />

⎠<br />

Partial melting<br />

CHUR<br />

Residual solid (DM)<br />

CHUR<br />

Partial melt<br />

T 0<br />

Time<br />

Figure 4-1: Isotopic evolution of Nd in a chondritic<br />

uniform reservoir (CHUR), igneous rock formed by<br />

its partial melting <strong>and</strong> the residual solid (after<br />

Faure, 1986)<br />

Partial melting of CHUR would produce<br />

melts with Sm/Nd ratios lower than<br />

CHUR (as Nd is more incompatible than<br />

Sm). On the other h<strong>and</strong>, the residue will<br />

be relatively enriched in Sm <strong>and</strong> have a<br />

higher Sm/Nd ratio (Fig. 4–1). This<br />

means that old igneous rocks formed by<br />

CHUR-like mantle melting should have<br />

present-day 143 Nd/ 144 Nd generally lower<br />

than CHUR <strong>and</strong> mantle domains depleted<br />

in melt will, with time, develop<br />

143 Nd/ 144 Nd ratios higher than CHUR.<br />

In general, if the ε Nd value is<br />

negative, the rock is thought to having<br />

been derived <strong>from</strong> (or assimilated a great<br />

proportion of) a material with Sm/Nd<br />

ratio lower than CHUR (e.g. old crustal<br />

rocks — Fig. 4–2). If, in turn, the ε Nd<br />

value is positive, then the rock came<br />

<strong>from</strong> a source with high time-integrated<br />

Sm/Nd ratio, such as residual mantle<br />

domains depleted in incompatible<br />

elements during a previous partial<br />

melting event (so-called Depleted<br />

Mantle, DM — DePaolo, 1988).<br />

Figure 4-2: Tentative Sr–Nd correlation diagram showing<br />

the approximate compositions of the most common crustal<br />

<strong>and</strong> mantle rocks (after Rollinson, 1993)<br />

– 7 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

Exercise 4-1<br />

Calculate initial ε Nd values for the granitoid samples <strong>from</strong> the Central Bohemian<br />

Pluton (see exercises 1–1 <strong>and</strong> 2–1) assuming that their age is 350 Ma. Plot the initial<br />

87 Sr/ 86 Sr ratios <strong>and</strong> ε Nd values into a diagram similar to Fig. 4–2 <strong>and</strong> briefly discuss the<br />

possible sources of individual granitoid bodies, provided no assimilation, magma mixing or later<br />

disturbance of the Sr–Nd <strong>isotopic</strong> system has taken place.<br />

[cbp.xls]<br />

Hints:<br />

! Epsilon values are calculated using eq. [4.1],<br />

! Note that the intersection of both axes will be in ε Nd = 0 <strong>and</strong> the 87 Sr/ 86 Sr composition<br />

of UR 350 Ma ago (see Page 2 for constants),<br />

! Having trouble with interpretation See Figure 4–2.<br />

5. ND MODEL AGES<br />

Single-stage ages<br />

The single-stage Nd model ages provide an estimate<br />

of the time that a rock unit has had a different Sm/Nd<br />

ratio <strong>from</strong> that of the Earth’s mantle (represented by a<br />

model reservoir, typically either DM or CHUR:<br />

Fig. 5–1). The equation<br />

I = ( 143 Nd/ 144 Nd)<br />

SA Sample<br />

DM Depleted mantle<br />

I 0 DM<br />

I 0 SA<br />

I = I<br />

[5.1]<br />

T<br />

SA<br />

T<br />

DM<br />

SAMPLE<br />

is solved for T (the so-called model age):<br />

I T = I T<br />

DM SA<br />

I<br />

0<br />

SA<br />

− R<br />

0<br />

SA<br />

λT<br />

0 0 λT<br />

( e −1) = I − R ( e −1)<br />

DM<br />

DM<br />

[5.2]<br />

DM<br />

Partial melting<br />

T 0<br />

T<br />

Nd<br />

DM<br />

0 0<br />

1 ⎛ I ⎞<br />

SA<br />

− I<br />

DM<br />

= ln<br />

⎜ + 1<br />

⎟<br />

0 0<br />

λ ⎝ RSA<br />

− RDM<br />

⎠<br />

[5.3]<br />

Time<br />

Figure 5-1: Theoretical concept of a single-stage<br />

Nd model age. Model age is the time in the past,<br />

when mantle evolution line (here is assumed<br />

depleted mantle) intersects with that for the given<br />

sample.<br />

– 8 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

Two-stage ages<br />

The Nd model ages can be also calculated using the<br />

two-stage model of Liew <strong>and</strong> Hofmann (1988) which<br />

accounts for the fact that a great deal of rocks contain<br />

a significant proportion of a crustally-derived<br />

material. In the following formulae, the indexes DM,<br />

CC, SA refer to depleted mantle, average crustal<br />

reservoir <strong>and</strong> the sample, respectively. T = two-stage<br />

Nd model age, t = crystallization age of the sample,<br />

0 refers to the present day (Fig. 5–2). As:<br />

I<br />

0<br />

CC<br />

− R<br />

0<br />

CC<br />

I = I<br />

[5.4]<br />

T<br />

CC<br />

T<br />

DM<br />

λT<br />

0 0 λT<br />

( e −1) = I − R ( e −1)<br />

DM<br />

DM<br />

0 0<br />

1 ⎛ I<br />

⎞<br />

CC<br />

− I<br />

DM<br />

T = ln<br />

⎜ + 1<br />

⎟<br />

0 0<br />

λ ⎝ RCC<br />

− RDM<br />

⎠<br />

For the crustal <strong>and</strong> sample evolution lines:<br />

t<br />

I = I<br />

<strong>and</strong> because:<br />

I<br />

0<br />

CC<br />

CC<br />

I<br />

t<br />

SA<br />

= I<br />

= I<br />

0<br />

SA<br />

0<br />

CC<br />

0<br />

SA<br />

t<br />

CC<br />

[5.5]<br />

[5.6]<br />

− R<br />

− R<br />

0<br />

CC<br />

0<br />

SA<br />

I = I<br />

−<br />

λt<br />

( e −1)<br />

λt<br />

( e −1)<br />

t<br />

SA<br />

λt<br />

0 0<br />

( e − )( R − R )<br />

1<br />

SA CC<br />

From [5.6] <strong>and</strong> [5.10]) we finally get :<br />

0 λt<br />

0 0 0<br />

Nd 1 ⎛ I − ( −1)( − ) −<br />

( ) ⎟ ⎞<br />

SA<br />

e RSA<br />

RCC<br />

I<br />

DM<br />

T = ln<br />

⎜<br />

DM<br />

+ 1<br />

0 0<br />

λ ⎝ RCC<br />

− RDM<br />

⎠<br />

Where:<br />

I t = I t<br />

SA CC<br />

I T = I T<br />

DM CC<br />

I = ( 143 Nd/ 144 Nd)<br />

⎛143 Nd⎞ 0<br />

⎜ ⎟<br />

⎝144 Nd ⎠DM = 0.513151 ⎝ ⎜⎛ 147 Sm<br />

144 ⎠ ⎟⎞ 0<br />

Nd DM = 0.219 ⎝ ⎜⎛ 147 Sm<br />

144 ⎠ ⎟⎞ 0<br />

Nd CC = 0.12<br />

DM<br />

CC<br />

SA<br />

DM<br />

Depleted mantle<br />

Average crust<br />

Sample<br />

CC<br />

SAMPLE<br />

T t 0<br />

Time<br />

Partial melting<br />

Figure 5-2: Theoretical concept of a two-stage Nd<br />

model age. An intermediate reservoir with Sm/Nd<br />

ratio of typical crustal rocks (CC) is assumed.<br />

I 0 DM<br />

I 0 CC<br />

I 0 SA<br />

[5.7]<br />

[5.8]<br />

[5.9]<br />

[5.10]<br />

[5.11]<br />

Exercise 5-1<br />

Calculate single-stage T Nd <strong>and</strong> two-stage TNd model ages for the granitoid samples<br />

CHUR DM<br />

<strong>from</strong> the Central Bohemian Pluton, in the second case assuming the intrusion age of<br />

350 Ma.<br />

Hints:<br />

[cbp.xls]<br />

! Necessary parameters of both models are given on Page 2,<br />

! Single-stage CHUR Nd model ages are obtained using eq. [5.3],<br />

! Two-stage DM Nd model ages are calculated by eq. [5.11].<br />

– 9 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

6. BINARY MIXING<br />

A. Major <strong>and</strong> trace elements<br />

Mixing of two components, A, B. For fraction f of the<br />

component A:<br />

f<br />

A<br />

=<br />

A+<br />

B<br />

Concentration of any element in the mixture is:<br />

M<br />

A<br />

B<br />

A<br />

B<br />

B<br />

[6.1]<br />

c = c f + c ( 1−<br />

f ) = f ( c − c ) + c [6.2]<br />

For two elements, X <strong>and</strong> Y (Faure, 1986):<br />

Y<br />

M<br />

=<br />

X<br />

M<br />

( YA<br />

− YB)<br />

Y X<br />

+<br />

( X − X ) X<br />

A<br />

B<br />

− Y X<br />

− X<br />

B A A B<br />

which is an equation of a straight line on the X–Y plot.<br />

A<br />

B<br />

[6.3]<br />

A1 Major-element based mixing test<br />

Equation [6.2] corresponds to a straight line in the<br />

diagram of c A –c B versus c M –c B with the slope being<br />

equivalent to the proportion of the component A (mixing<br />

test sensu Fourcade <strong>and</strong> Allègre, 1981 — see Fig. 6–1a).<br />

20<br />

10<br />

-10<br />

3<br />

2<br />

1<br />

0<br />

0<br />

c -c<br />

M B<br />

Na<br />

K Al<br />

Ti<br />

Mn<br />

Fe 2+ Fe3+<br />

Ca<br />

Mg<br />

cA-cB<br />

-10 0 10<br />

20<br />

HYBRID/ BASIC<br />

Ba Rb Sr Zr Hf La Ce Y Ni Co<br />

Si<br />

b<br />

a<br />

Cr<br />

A2 Trace-element based mixing test<br />

Castro et al. (1990) used the theoretical proportions<br />

obtained <strong>from</strong> the major-element based mixing test for<br />

calculation of theoretical contents of trace-elements in<br />

the suspected hybrid. Then they compared the calculated<br />

<strong>and</strong> observed trace-element contents (see Fig. 6–1b).<br />

Although eq.[6.2] should also work for the trace<br />

elements, it must be borne in the mind that the<br />

fractionation following the magma-mixing could<br />

Figure 6-1: Mixing test for the Kozárovice<br />

quartz monzonite (Janoušek et al. – in<br />

print; presumed end-members Kozárovice<br />

granodiorite <strong>and</strong> associated monzogabbro).<br />

The trace–element diagram (b) compares<br />

the actual composition of the hybrid (filled<br />

symbols) with calculated composition<br />

(empty symbols) using proportions <strong>from</strong> the<br />

mixing test for the major elements (see<br />

Exercise 6–1).<br />

have dramatically altered the original trace–element contents. Therefore incompatible<br />

elements should be preferably used for this purpose.<br />

Exercise 6-1<br />

In the Central Bohemian Pluton, associated with the Kozárovice granodiorite are K-rich pyroxene- <strong>and</strong><br />

amphibole-bearing monzonitic rocks (e.g. Lučkovice melamonzonite–monzogabbro). In a quarry SE of<br />

Kozárovice small bodies of biotite–amphibole quartz monzonite occur, whose hybrid origin is strongly<br />

supported by both the field evidence <strong>and</strong> presence of disequlibriun textures on a mineral scale.<br />

– 10 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

Using major-element compositions given below, test whether the quartz monzonite<br />

could have originated by magma mixing between Kozárovice granodiorite <strong>and</strong><br />

Lučkovice monzogabbro. Given that the granodiorite contains 1154 ppm <strong>and</strong> the<br />

monzogabbro 2329 ppm Ba, calculate the expected Ba concentration in the quartz monzonite.<br />

A: Kozárovice<br />

granodiorite<br />

M: Quartz monzonite B: Lučkovice<br />

monzogabbro<br />

SiO 2 64.60 59.58 49.21<br />

TiO 2 0.57 0.72 1.02<br />

Al 2 O 3 14.99 14.8 13.69<br />

FeO 2.79 4.08 6.96<br />

Fe 2 O 3 1.27 1.69 2.47<br />

MnO 0.08 0.14 0.15<br />

MgO 2.37 4.11 8.53<br />

CaO 3.44 5.33 9.74<br />

Na 2 O 3.12 2.84 1.89<br />

K 2 O 4.34 4.19 3.61<br />

[koza.xls]<br />

Hints:<br />

! Plot a diagram analogous to Figure 6–1a,<br />

! Fit the <strong>data</strong> by linear regression (forcing the intercept to zero),<br />

! The quality of the fit is shown by the correlation coefficient,<br />

! Slope of the regression line gives the proportion of the acid end-member,<br />

! For this value of f, calculate the Ba contents in the mixture using eq. 6.2.<br />

B. Radiogenic isotopes (after Faure, 1986)<br />

B1 Using a single <strong>isotopic</strong> ratio<br />

The mixing equation for the <strong>isotopic</strong> ratios is:<br />

I<br />

M<br />

= I<br />

A<br />

⎛ c<br />

⎜<br />

⎝ c<br />

A<br />

M<br />

f ⎞<br />

⎟ + I<br />

⎠<br />

B<br />

⎛ c<br />

⎜<br />

⎝<br />

B<br />

(1 −<br />

c<br />

Eqs [6.2] <strong>and</strong> [6.4] can be, after eliminating f, developed into:<br />

M<br />

f ) ⎞<br />

⎟<br />

⎠<br />

[6.4]<br />

I<br />

M<br />

c c<br />

c<br />

B<br />

( I<br />

B<br />

− I<br />

A<br />

) c<br />

AI<br />

A<br />

− cB<br />

+<br />

( c<br />

A<br />

− cB<br />

) c<br />

A<br />

− cB<br />

A<br />

B<br />

= [6.5]<br />

M<br />

I<br />

<strong>and</strong> this is an equation of a hyperbola in the c–I (e.g. Sr– 87 Sr/ 86 Sr) space.<br />

In the isotope-based modelling of the binary mixing are frequently used plots such as 1/Sr–( 87 Sr/ 86 Sr) i<br />

(i.e. age-corrected Sr <strong>isotopic</strong> ratios), where the mixing hyperbola changes into a straight line. For<br />

suite of co-genetic rocks, a non-zero slope of this line implies that some sort of open process has<br />

played a role, such as magma mixing or wall-rock contamination. On the other h<strong>and</strong>, samples that<br />

– 11 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

originated <strong>from</strong> the same magma by various degrees of fractional crystallization only preserve<br />

identical initial <strong>isotopic</strong> ratios (forming horizontal lines).<br />

Eqs [6.2] <strong>and</strong> [6.4] can be, after eliminating c M , combined into a formula for f. The parameter f can<br />

be calculated if the <strong>isotopic</strong> compositions <strong>and</strong> element concentrations for both end-members as well as<br />

the <strong>isotopic</strong> composition of the presumed hybrid are known:<br />

f<br />

=<br />

I<br />

M<br />

( c<br />

A<br />

cB<br />

− c<br />

( I − I )<br />

B<br />

B<br />

) − I<br />

A<br />

M<br />

c<br />

A<br />

+ I<br />

B<br />

c<br />

B<br />

[6.6]<br />

Exercise 6–2<br />

Plot the theoretical mixing hyperbola between granite <strong>and</strong> basalt, whose compositions<br />

are given below. Calculate the 87 Sr/ 86 Sr ratio of a mixture, containing 50 % of the<br />

granite. Calculate proportion of the granite in a mixture that has 87 Sr/ 86 Sr = 0.71200.<br />

A: granite B: basalt<br />

Sr 160 ppm 318 ppm<br />

87 Sr/ 86 Sr 0.73691 0.70362<br />

Hints:<br />

! Calculate the Sr concentrations (eq. [6.2]) <strong>and</strong> <strong>isotopic</strong> composition (eq. [6.4]) of the hybrid<br />

for various proportions of the granite (f = 0–1)<br />

! Plot the results in the Sr– 87 Sr/ 86 Sr diagram<br />

! Check the results in the 1/ Sr– 87 Sr/ 86 Sr plot — they should form a straight line<br />

! Proportion f of the granite end-member is obtained using eq. [6.6].<br />

B2 Using a pair of different <strong>isotopic</strong> ratios (Sr–Nd)<br />

Taking into account that [6.2]<br />

c = c f + c ( 1−<br />

f )<br />

M<br />

A<br />

B<br />

the equation [6.4] can be rewritten as:<br />

I<br />

Ac<br />

A<br />

f + I<br />

BcB<br />

(1 − f )<br />

I<br />

M<br />

= [6.7]<br />

c f + c (1 − f )<br />

A<br />

Both Sr <strong>and</strong> Nd <strong>isotopic</strong> compositions can be calculated for pre-set values of the parameter f <strong>and</strong> the<br />

corresponding mixing hyperbola plotted in the 87 Sr/ 86 Sr – 143 Nd/ 144 Nd space.<br />

General equation of this mixing hyperbola is derived <strong>from</strong> two equations [6.7], one for Sr <strong>and</strong> one for<br />

Nd, by solving both equations for f <strong>and</strong> equating the results:<br />

B<br />

– 12 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

⎛<br />

A⎜<br />

⎝<br />

87<br />

86<br />

where:<br />

87<br />

Sr ⎞ Sr<br />

⎟ + B<br />

⎛ 86<br />

Sr ⎠ ⎝ ⎜ ⎞<br />

⎟<br />

Sr ⎠<br />

143<br />

143<br />

Nd<br />

Nd<br />

A = ⎛ Nd<br />

BSr<br />

144<br />

A 144<br />

⎝ ⎜ ⎞<br />

⎟ − ⎛<br />

Nd ⎠ ⎝ ⎜ ⎞<br />

⎟<br />

Nd ⎠<br />

B = Nd Sr − Nd Sr<br />

87<br />

87<br />

Sr<br />

Sr<br />

C = ⎛ Nd<br />

BSr<br />

86<br />

A 86<br />

⎝ ⎜ ⎞<br />

⎟ − ⎛<br />

Sr ⎠ ⎝ ⎜ ⎞<br />

⎟<br />

Sr ⎠<br />

143<br />

Nd<br />

D = ⎛ 144<br />

⎝ ⎜ ⎞<br />

⎟ ⎛ Nd ⎠ ⎝ ⎜<br />

143<br />

Nd ⎞ Nd<br />

⎟ + C<br />

⎛ D 0<br />

144<br />

Nd ⎠ ⎝ ⎜ ⎞<br />

⎟ + =<br />

Nd ⎠<br />

144<br />

M M M M<br />

B<br />

A B B A<br />

A<br />

A<br />

87<br />

86<br />

Nd Sr<br />

Nd Sr<br />

143<br />

Sr ⎞<br />

Nd<br />

⎟ Nd<br />

ASrB<br />

− ⎛ 144<br />

Sr ⎠ ⎝ ⎜ ⎞<br />

⎟<br />

Nd ⎠<br />

B<br />

⎛<br />

⎜<br />

⎝<br />

143<br />

B<br />

A<br />

A<br />

A<br />

B<br />

B<br />

B<br />

⎛<br />

⎜<br />

⎝<br />

87<br />

Sr ⎞<br />

⎟<br />

⎠<br />

86 Sr<br />

A<br />

Nd Sr<br />

B<br />

A<br />

[6.8]<br />

Straight line is obtained for a special case when B = 0, i.e.<br />

( Sr / Nd)<br />

( Sr / Nd)<br />

A<br />

B<br />

= 1 [6.9]<br />

Exercise 6-3<br />

Plot the theoretical mixing hyperbola between granite <strong>and</strong> basalt in the 87 Sr/ 86 Sr–<br />

143 Nd/ 144 Nd <strong>isotopic</strong> correlation diagram. Calculate 87 Sr/ 86 Sr <strong>and</strong> 143 Nd/ 144 Nd ratios of a<br />

mixture containing 60 % of the granite. Compositions of the end members are:<br />

A: granite B: basalt<br />

Sr 160 ppm 318 ppm<br />

87 Sr/ 86 Sr 0.73691 0.70362<br />

Nd 31 ppm 18 ppm<br />

143 Nd/ 144 Nd 0.51212 0.51300<br />

Hints:<br />

[mix.xls]<br />

! Likewise in the previous example, calculate Sr <strong>and</strong> Nd <strong>isotopic</strong> compositions of the presumed<br />

hybrid for various proportions of the granite (eq.[6.4]),<br />

! The <strong>isotopic</strong> compositions of the hybrid for various values of f are obtained using eq. [6.7],<br />

! Plot the results in the 87 Sr/ 86 Sr– 143 Nd/ 144 Nd diagram,<br />

! Check the results in the 1/ Nd– 143 Nd/ 144 Nd plot – they should form a straight line.<br />

– 13 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

CITED REFERENCES AND FURTHER READING<br />

Textbooks an monographs in bold, asterisks indicate the (inevitably subjective) importance of the<br />

given reference<br />

** Albarède, F. (1995): Introduction to the Geochemical Modeling. — Cambridge University Press, pp. 1–<br />

543.<br />

** Arndt, N.T.; Goldstein, S.L. (1987): Use <strong>and</strong> abuse of crust-formation ages. Geology 15, 893–895.<br />

* Bowen, R. (1988): Isotopes in Earth Sciences.– Elsevier, London, pp. 1–647.<br />

** DePaolo, D.J. (1988): Neodymium isotope geochemistry.– Springer, Berlin, pp. 1–187.<br />

** Dickin, A.P. (1995): Radiogenic Isotope Geology.– Cambridge University Press, Cambridge, pp. 1–452.<br />

** Faure, G. (1986): Principles of Isotope Geology.– J. Wiley & Sons, Chichester, pp. 1–589.<br />

* Fourcade S, Allègre CJ (1981) Trace elements behavior in granite genesis: a case study. The calc-alkaline<br />

plutonic association <strong>from</strong> the Querigut Complex (Pyrénées, France). Contrib. Mineral. Petrol. 76: 177–<br />

195.<br />

** Geyh, M.A.; Schleicher, H. (1990): Absolute age determination.– Springer Verlag, Berlin, pp. 1–503.<br />

* Hradetzky, H.; Lippolt, H.J. (1993): Generation <strong>and</strong> distortion of Rb–Sr whole-rock isochrons — effects of<br />

metamorphism <strong>and</strong> alteration.– Eur. J. Mineral., 5, 1175–1193.<br />

* Jacobsen, S.B., Wasserburg, G.J. (1980) Sm–Nd evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155.<br />

Janoušek V, Rogers G, Bowes DR (1995) Sr–Nd <strong>isotopic</strong> constraints on the petrogenesis of the Central<br />

Bohemian Pluton, Czech Republic. Geol. Rdsch. 84: 520–534.<br />

** Kullerud, L. (1991): On the calculation of isochrons.– Chem. Geol. (Isotope Geoscience Section), 87, 115–124.<br />

* Liew, T.C.; Hofmann, A.W. (1988): Precambrian crustal components, plutonic associations, plate environment<br />

of the Hercynian Fold Belt of central Europe: indications <strong>from</strong> a Nd <strong>and</strong> Sr <strong>isotopic</strong> study. Contrib.<br />

Mineral. Petrol. 98, 129-138.<br />

** Ludwig, K.R. (1993): Isoplot, a plotting <strong>and</strong> regression program for radiogenic-isotope <strong>data</strong>, version 2.60.– US<br />

Geological Survey Open-File Report 91–445, pp. 1–40.<br />

** Lugmair, G.W.; Marti, K. (1978): Lunar initial 143 Nd/ 144 Nd: differential evolution line of the lunar crust <strong>and</strong><br />

mantle.– Earth Planet. Sci. Lett. 39, 349–357.<br />

* Michard, A., Gurriet, P., Soudant, M.; Albaréde, F. (1985): Nd isotopes in French Phanerozoic shales: external<br />

vs. internal aspects of crustal evolution.– Geochim. Cosmochim. Acta 49, 601–610.<br />

** Provost, A. (1990): An improved diagram for isochron <strong>data</strong>.– Chem. Geol. (Isotope Geoscience Section), 80,<br />

85–99.<br />

** Rollinson, H.R. (1993): Using geochemical <strong>data</strong>: Evaluation, presentation, interpretation. Longman,<br />

London, pp 1–352.<br />

** Steiger, R.H., Jäger, E. (1977): Subcommission on geochronology: convention on the use of decay constants in<br />

geo- <strong>and</strong> cosmochronology. Earth <strong>and</strong> Planetary Science Letters, 36, 359–362.<br />

* Wasserburg, G.J., Jacobsen, S.B., DePaolo, D.J.; McCulloch, M.T.; Wen,T. (1981): Precise determination of<br />

Sm/Nd ratios, Sm <strong>and</strong> Nd <strong>isotopic</strong> abundances in st<strong>and</strong>ard solutions Geochim. Cosmochim. Acta 45,<br />

2311–2324.<br />

** Wilson, M. (1989): Igneous Petrogenesis. Unwin Hyman, London, pp 1-466<br />

Xafi da Silva, J.J., Alberto dos Santos, C., Provost, A. (1986): Granito Serra do Acari: geologia e implacação<br />

metalogenética (folha Rio Mapuera, NW do estado do Pará). Proc. 2nd Symp. on Geology of Amazônia,<br />

Belém, Vol. 2. Soc. Bras. Geol., São Paulo, pp. 93–109.<br />

– 14 –


Vojtěch Janoušek:<br />

<strong>Interpreting</strong> Sr–Nd <strong>isotopic</strong> <strong>data</strong>: numerical recipes<br />

** York, D. (1969): Least-squares fitting of a straight line with correlated errors.– Earth Planet. Sci. Lett. 5,<br />

320–324.<br />

– 15 –

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!