28.01.2015 Views

Chapter 8 Scattering Theory - Particle Physics Group

Chapter 8 Scattering Theory - Particle Physics Group

Chapter 8 Scattering Theory - Particle Physics Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 8. SCATTERING THEORY 144<br />

where<br />

and<br />

A l (k) = [B 2 l (k) + C 2 l (k)] 1/2 (8.60)<br />

δ l (k) = − tan −1 [C l (k)/B l (k)]. (8.61)<br />

The δ l (k) are called phase shifts. We will see that they are real functions of k and completely<br />

characterize the strength of the scattering of the lth partial wave by the potential U(r) at the<br />

energy E = 2 k 2 /2m. In order to relate the phase shifts to the scattering amplitude we now<br />

insert the asymptotic form of the expansion (8.52) of the plane wave<br />

e i⃗ k⃗x<br />

=<br />

→<br />

∞∑<br />

(2l + 1)i l j l (kr)P l (cos θ). (8.62)<br />

l=0<br />

∞∑<br />

(2l + 1)i l (kr) −1 sin<br />

l=0<br />

(<br />

kr − lπ )<br />

P l (cos θ). (8.63)<br />

2<br />

into the scattering ansatz (8.20)<br />

u as<br />

⃗ k<br />

(r,θ) → e i⃗ k⃗x + f(k,θ) eikr<br />

r . (8.64)<br />

With sin x = (e ix −e −ix )/(2i) and the partial wave expansions (8.26)–(8.27) of u(⃗x) and f(θ,ϕ)<br />

we can write the radial function R l (k,r), i.e. the coefficient of P l (cos θ), asymptotically as<br />

(<br />

Rl as (k,r) = (2l + 1)i l (kr) −1 sin kr − lπ )<br />

+ 2l + 1 e ikr f l (k) (8.65)<br />

2 r<br />

= 2l + 1 ( ) )<br />

e<br />

(i l ikr<br />

− e−ikr<br />

+ 2ike ikr f<br />

2ikr i l (−i) l l (8.66)<br />

Rewriting (8.59) in terms of exponentials<br />

Rl as (k,r) = A (<br />

l e<br />

i(kr+δ l<br />

)<br />

)<br />

− e−i(kr+δ l)<br />

2ikr i l (−i) l<br />

(8.67)<br />

comparison of the coefficients of e −ikr implies<br />

A l (k) = (2l + 1)i l e iδ l(k) . (8.68)<br />

The coefficients of e ikr /(2ikr) are (2l + 1)(1 + 2ikf l ) and A l e iδ l /i l , respectively. Hence<br />

f l (k) = e2iδ l(k) − 1<br />

2ik<br />

= 1 k eiδ l<br />

sin δ l . (8.69)<br />

The scattering amplitude<br />

f(k,θ) =<br />

∞∑<br />

l=0<br />

(2l + 1)f l (k)P l (cos θ) = 1<br />

2ik<br />

∞∑<br />

(2l + 1)(e 2iδ l<br />

− 1)P l (cos θ) (8.70)<br />

l=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!