14.11.2012 Views

NAND Flash Architecture and Specification Trends - Micron

NAND Flash Architecture and Specification Trends - Micron

NAND Flash Architecture and Specification Trends - Micron

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>NAND</strong> <strong>Flash</strong> <strong>Architecture</strong> <strong>and</strong><br />

<strong>Specification</strong> <strong>Trends</strong><br />

Michael Abraham<br />

Applications Engineering Manager<br />

<strong>Micron</strong> Technology, Inc.<br />

(mabraham@micron.com)<br />

Santa Clara, CA USA<br />

August 2009 1


Abstract<br />

� As <strong>NAND</strong> <strong>Flash</strong> continues to shrink, page sizes, block<br />

sizes, <strong>and</strong> ECC requirements are increasing while data<br />

retention, endurance, <strong>and</strong> performance are decreasing<br />

� These changes impact systems like r<strong>and</strong>om write<br />

performance <strong>and</strong> more<br />

� Learn how to prepare for these changes <strong>and</strong> counteract<br />

some of them through improved block management<br />

techniques <strong>and</strong> system design<br />

� This presentation also discusses some of the tradeoff<br />

myths – for example, the myth that you can directly trade<br />

ECC for endurance<br />

Santa Clara, CA USA<br />

August 2009 2


Resolution (nm)<br />

200<br />

100<br />

80<br />

60<br />

40<br />

<strong>NAND</strong> <strong>Flash</strong>:<br />

Shrinking Faster Than Moore’s Law<br />

Logic<br />

DRAM<br />

<strong>NAND</strong><br />

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012<br />

Semiconductor International, 1/1/2007<br />

<strong>Micron</strong> 32Gb <strong>NAND</strong><br />

(34nm)<br />

Santa Clara, CA USA<br />

August 2009 3


Memory Organization <strong>Trends</strong><br />

Over time, <strong>NAND</strong> block size is increasing<br />

� Larger page sizes increase sequential throughput<br />

� More pages per block reduce die size<br />

4,194,304<br />

1,048,576<br />

262,144<br />

65,536<br />

16,384<br />

4,096<br />

1,024<br />

256<br />

64<br />

16<br />

Block size (B) Data Bytes per Page Pages per Block<br />

Santa Clara, CA USA<br />

August 2009 4


Consumer-Grade <strong>NAND</strong> <strong>Flash</strong>:<br />

Endurance <strong>and</strong> ECC <strong>Trends</strong><br />

� Process shrinks lead to less electrons per floating gate<br />

� ECC used to improve data retention <strong>and</strong> endurance<br />

� To adjust for increasing RBERs, ECC is increasing exponentially to achieve<br />

equivalent UBERs<br />

� For consumer applications, endurance becomes less important as density<br />

increases<br />

Endurance (Cycles)<br />

100,000<br />

10,000<br />

1,000<br />

2005 Future<br />

SLC Endurance MLC-2 Endurance<br />

MLC-2 ECC SLC ECC<br />

Santa Clara, CA USA<br />

August 2009 5<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

ECC (bits)


Myth: More ECC Extends Block<br />

Endurance<br />

� Block endurance is how long a block is usable before program<br />

or erase status failures occur<br />

� Applying more ECC than required does not automatically extend<br />

the block endurance<br />

� <strong>NAND</strong> devices are configured to trigger program <strong>and</strong> erase<br />

status failures for a specific, fixed ECC value predetermined at<br />

the factory to meet qualification requirements<br />

� Applying extra ECC does not change these predetermined<br />

thresholds, which means that program <strong>and</strong> erase status failures<br />

begin to occur at the same cycling intervals regardless of the<br />

amount of ECC applied<br />

Santa Clara, CA USA<br />

August 2009 6


80<br />

60<br />

40<br />

20<br />

0<br />

Larger Page Sizes Improve<br />

Sequential Write Performance<br />

� For a fixed page size, write throughput decreases as<br />

<strong>NAND</strong> process shrinks<br />

� <strong>NAND</strong> vendors increase the page size to compensate<br />

for slowing array performance<br />

� Write throughput decreases with more bits per cell<br />

SLC MLC-2 MLC-3<br />

512 2048 4096 8192 2048 4096 8192 4096 8192<br />

Data Bytes per Page<br />

Sequential Programming Throughput (MB/s)<br />

Santa Clara, CA USA<br />

August 2009 7


More Pages Per Block Affect<br />

R<strong>and</strong>om Write Performance<br />

� The block copy time is the largest limiting factor for r<strong>and</strong>om write<br />

performance<br />

� As block copy time increases, r<strong>and</strong>om performance decreases<br />

• Number of pages per block is the dominant factor<br />

• Increase of t PROG is the next largest factor<br />

• Increase in I/O transfer time due to increasing page size (effect not shown below)<br />

is also a factor<br />

� Some card interfaces have write timeout specs at 250ms, which means<br />

that block management algorithms manage partial blocks<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

32 /<br />

300<br />

SLC MLC MLC-2 MLC MLC-3<br />

64 /<br />

250<br />

64 /<br />

300<br />

128 /<br />

250<br />

Santa Clara, CA USA<br />

August 2009 8<br />

128 /<br />

600<br />

128 /<br />

900<br />

256 /<br />

900<br />

Pages per Block & t PROG (typ)<br />

Block Copy Time (ms)<br />

256 /<br />

1200<br />

192 /<br />

2000+


<strong>NAND</strong> Interface<br />

� The <strong>NAND</strong> interface is increasing in<br />

throughput<br />

• Enables better utilization of I/O channels – higher<br />

b<strong>and</strong>width<br />

• Immediately useful for single die read<br />

performance<br />

• Modest improvement for write performance with<br />

multiple die<br />

� Important for SSDs, enterprise applications<br />

• Reduces I/O channels<br />

Santa Clara, CA USA<br />

August 2009 9


<strong>NAND</strong> Interface <strong>Trends</strong><br />

Interface St<strong>and</strong>ard (x8)<br />

Max Throughput<br />

(MB/s)<br />

No st<strong>and</strong>ard 40<br />

ONFI 1.0 Async (12/06) 50<br />

ONFI 2.0 Sync (2/08) 133<br />

ONFI 2.1-2.2 Sync (1/09, 9/09) 200<br />

Toggle Mode (not published) 133<br />

ONFI 3.0 Sync 400


MB/s<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

40<br />

80<br />

Async<br />

167<br />

333<br />

The ONFI Advantage<br />

Single Channel Package Dual Channel Package<br />

200<br />

400<br />

Synchronous<br />

Target<br />

800<br />

Target<br />

400<br />

ONFi 1.0 ONFi 2.0 ONFi 2.1 ONFi 3.0<br />

� Supports simultaneous read,<br />

program, <strong>and</strong> erase operations on<br />

multiple die on the same chip<br />

enable since ONFI 1.0<br />

� Only industry-st<strong>and</strong>ard <strong>NAND</strong><br />

interface capable of 200 MB/s data<br />

rate from a single die<br />

� Two independent channels in a<br />

single package (doubles the<br />

b<strong>and</strong>width)<br />

� In volume production today<br />

� Headroom for 400 MB/s <strong>and</strong> beyond<br />

� Work has already begun on ONFI<br />

3.0<br />

Santa Clara, CA USA<br />

August 2009 11


A-Data Afa Technologies Alcor Micro<br />

Aleph One Anobit Tech. Apacer<br />

Arasan Chip Systems ASMedia Technology ATI<br />

Avid Electronics BitMicro Biwin Technology<br />

Chipsbank Cypress DataFab Systems<br />

Data I/O Datalight Denali Software<br />

ENE Technology Entorian FCI<br />

FormFactor Foxconn Fresco Logic<br />

Fusion Media Tech Genesys Logic Hagiwara Sys-Com<br />

HiperSem Hitachi GST Hyperstone<br />

InCOMM Indilinx Inphi<br />

Intelliprop ITE Tech Jinvani Systech<br />

Kingston Technology Lauron Technologies Lotes<br />

LSI Macronix Marvell<br />

Mentor Graphics Metaram Moai Electronics<br />

Molex NVidia Orient Semiconductor<br />

P.A. Semi Powerchip Semi. Power Quotient International<br />

Prolific Technology Qimonda S<strong>and</strong>force<br />

Seagate Shenzhen Netcom Sigmatel<br />

Silicon Integrated Systems Silicon Motion Silicon Storage Tech<br />

Silicon Systems STEC Skymedi<br />

Smart Modular Tech. Solid State System Super Talent Electronics<br />

Synopsys T<strong>and</strong>on Tanisys<br />

Telechips Teradyne, Inc. Testmetrix<br />

Transcend Information Tyco UCA Technology<br />

Santa Clara, CA USA University of York Virident Systems WinBond<br />

August 2009 12<br />

Members


Improving System Performance<br />

� System performance is increased by adding more channels or<br />

more die per channel<br />

� Ignoring effects of ECC <strong>and</strong> block management algorithms, total<br />

throughput is either array or I/O throughput limited<br />

Controller<br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

<strong>NAND</strong><br />

<strong>Flash</strong><br />

Santa Clara, CA USA<br />

August 2009 13


Performance (MB/s)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

SLC 4KB Two-Plane Throughput<br />

Example: Async vs. Sync Interface<br />

136 160160160<br />

68 80 80 80<br />

34 40 40 40<br />

480<br />

240<br />

120<br />

800 800 800<br />

400 400 400<br />

200 200 200<br />

1<br />

Santa Clara, CA USA<br />

2 4 8<br />

19<br />

1 2 4 8<br />

1 2 4 8<br />

1 2 4 8<br />

1<br />

4<br />

August 2009 14<br />

38 40 40<br />

28 56<br />

# of <strong>NAND</strong> Die per Channel<br />

# of Channels<br />

76<br />

152 160 160<br />

38 76 80 80<br />

448<br />

224<br />

224<br />

400<br />

112<br />

200<br />

112<br />

56 112<br />

800


Performance (MB/s)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

MLC 4KB Two-plane Throughput<br />

Example: Async vs. Sync Interface<br />

120 160160160<br />

60 80 80 80<br />

30 40 40 40<br />

704<br />

800 800<br />

352<br />

400 400<br />

352<br />

176<br />

176 200 200<br />

88<br />

28 56<br />

160<br />

112<br />

14 28<br />

56 80<br />

32 64<br />

128<br />

16 32 64<br />

128<br />

1<br />

Santa Clara, CA USA<br />

2 4 8<br />

1 7<br />

2 4 8<br />

1<br />

14<br />

2<br />

28<br />

4<br />

40<br />

8<br />

8<br />

1<br />

16<br />

2<br />

32<br />

4 8<br />

1<br />

4<br />

August 2009 15<br />

64<br />

# of <strong>NAND</strong> Die per Channel<br />

# of Channels<br />

256


Conclusions<br />

� Larger block sizes to become more difficult to manage<br />

� Page size doubles, increasing sequential performance while reducing<br />

r<strong>and</strong>om performance to compensate for overall slower array throughput<br />

� ECC increases to compensate for data retention <strong>and</strong> endurance; still,<br />

endurance is decreasing for consumer <strong>NAND</strong> memory<br />

� 2 bpc MLC has a lower manufacturing cost per bit as long as it is on a<br />

smaller process node than 3 bpc MLC memory – <strong>and</strong> it fits more<br />

customer applications!<br />

� Pages per block increasing to reduce die size<br />

� Interface performance increasing to open up a whole new market –<br />

enterprise solutions – while helping improve SSD performance<br />

� ONFI provides a proactive, scalable interface for the future with broad<br />

industry support<br />

Santa Clara, CA USA<br />

August 2009 16


Questions?<br />

Santa Clara, CA USA<br />

August 2009 17


About Michael Abraham<br />

� Manager of <strong>Micron</strong>’s <strong>NAND</strong> <strong>Flash</strong><br />

Applications Engineering group<br />

� B.S. in Computer Engineering from<br />

Brigham Young University<br />

� Technical representative for <strong>Micron</strong><br />

in ONFI <strong>and</strong> JEDEC for <strong>NAND</strong> <strong>Flash</strong><br />

� Key role in defining <strong>and</strong> st<strong>and</strong>ardizing the highspeed,<br />

synchronous DDR <strong>NAND</strong> interface within<br />

<strong>Micron</strong> <strong>and</strong> at ONFI<br />

©2007-2009 <strong>Micron</strong> Technology, Inc. All rights reserved. Products are warranted only to meet <strong>Micron</strong>’s production data sheet specifications. Information, products<br />

<strong>and</strong>/or specifications are subject to change without notice. All information is provided on an “AS IS” basis without warranties of any kind. Dates are estimates only.<br />

Drawings not to scale. <strong>Micron</strong> <strong>and</strong> the <strong>Micron</strong> logo are trademarks of <strong>Micron</strong> Technology, Inc. All other trademarks are the property of their respective owners.<br />

Santa Clara, CA USA<br />

August 2009 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!