29.01.2015 Views

Growth, Yield and Oil components of thymus vulgaris - Ozean ...

Growth, Yield and Oil components of thymus vulgaris - Ozean ...

Growth, Yield and Oil components of thymus vulgaris - Ozean ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Ozean</strong> Journal <strong>of</strong> Applied Sciences 3(2), 2010<br />

<strong>Ozean</strong> Journal <strong>of</strong> Applied Sciences 3(2), 2010<br />

ISSN 1943-2429<br />

© 2010 <strong>Ozean</strong> Publication<br />

PRODUCTIVITY AND OIL QUALITY OF THYMUS VULGARIS L. UNDER ORGANIC<br />

FERTILIZATION CONDITIONS<br />

S.F. Hendawy, Azza A*. Ezz El-Din, Eman E. Aziz <strong>and</strong> E.A. Omer<br />

Cultivation <strong>and</strong> Production <strong>of</strong> Medicinal <strong>and</strong> Aromatic Plants Dep., National Research Centre, Dokki,<br />

12622, Giza, Egypt.<br />

*E-mail address for correspondence: azzaamin2001@hotmail.com<br />

__________________________________________________________________________________<br />

Abstract: In two successive seasons, the influence <strong>of</strong> different types <strong>of</strong> organic fertilizers on growth,<br />

yield <strong>and</strong> oil constituents <strong>of</strong> thyme plants was studied. Results revealed that 20m 3 compost fed -1<br />

combined with 10 L fed -1 <strong>of</strong> compost tea <strong>and</strong> /or (feldspar, rock phosphate at the level <strong>of</strong> 150 kg fed -1 )<br />

were superior in most cases <strong>of</strong> growth characters, yield <strong>and</strong> oil percentage <strong>of</strong> Thymus <strong>vulgaris</strong>. The<br />

main <strong>components</strong> <strong>of</strong> thyme plants were thymol, -cymene <strong>and</strong> myrecene. The highest value <strong>of</strong><br />

oxygenated compounds (59.90%) was obtained from plants received compost 20L.fed -1 + rock<br />

phosphate 150 kg fed -1 compared with control treatment (54.21%).<br />

Key words: Thymus <strong>vulgaris</strong> L., organic fertilization, rock phosphate, feldspar, cattle manure, sheep<br />

manure, compost <strong>and</strong> compost tea, essential oil, GLC.<br />

_________________________________________________________________________________<br />

INTRODUCTION<br />

Medicinal plants have an important value in the socio-cultural, spiritual <strong>and</strong> medicinal use in rural <strong>and</strong><br />

tribal lives <strong>of</strong> the developing countries (Shinwari, 2005). Thyme (Thymus <strong>vulgaris</strong> L.) is a pleasant<br />

smelling perennial shrub, which grows in several regions in the world (Davis, 1982). It is native to the<br />

Western Mediterranean region <strong>and</strong> southern Italy. It is commonly known that the composition <strong>of</strong> the<br />

essential oils determines the specific aroma <strong>of</strong> plants <strong>and</strong> flavor <strong>of</strong> condiments (Martins et al, 1999).<br />

As a valuable medicinal plant, Thymus <strong>vulgaris</strong> possesses antispasmodic, antiseptic, expectorant,<br />

carminative <strong>and</strong> antioxidative properties (Omidbaigi <strong>and</strong> Nejad 2000 <strong>and</strong> Dapkevicius et al, 2002). The<br />

main constituents <strong>of</strong> thyme include thymol, carvacrol <strong>and</strong> flavonoids <strong>of</strong>ten though to have antibacterial,<br />

anti-flatulent <strong>and</strong> anti-worm characteristic (Barnes et al, 2002).<br />

Thymol has anti-fungal activity against number <strong>of</strong> species including Cryptococcus ne<strong>of</strong>ormans<br />

Aspergillus, Sapralegnia <strong>and</strong> Zygorohynchus sp. (WHO, 1999, <strong>and</strong> Zambonelli et al, 2004).<br />

Characteristic compounds <strong>of</strong> T.<strong>vulgaris</strong> essential oil have been established, namely: Thymol (44.4 –<br />

58.1 %), ρ -cymene (9.1-28.5%), γ-terpinene (6.9 – 18.9%) <strong>and</strong> carvacrol (2.4-4.2%) (Baranauaskiene<br />

et al, 2003 Eissa et al, 2005, Aziz et al, 2008 <strong>and</strong> Ezz El-Din et al, 2009).<br />

Recently, a great attention was paid towards the application <strong>of</strong> bio-organic farming to avoid the heavy<br />

use <strong>of</strong> agrochemical that resulted in numerous <strong>of</strong> environmental troubles (Lampkin, 1999). The<br />

coincident application <strong>of</strong> organic manures <strong>and</strong> bi<strong>of</strong>ertilizers is frequently recommended for improving<br />

soil properties <strong>and</strong> obtaining clean agricultural products (Gomaa, 1995).<br />

203


Proponents <strong>of</strong> organic agriculture have asserted that plant grown with biological sources <strong>of</strong> nutrients<br />

such as manure <strong>and</strong> composted organic waste are less susceptible to insects than conventionally grown<br />

plants (Lotter, 2003). Moreover, organic matter plays an important role in the chemical behavior <strong>of</strong><br />

several metals in soils throughout its active group (flavonic <strong>and</strong> humic acids) which have the ability to<br />

retain the metal in complex <strong>and</strong> chelate forms (Abou El-Magd et al, 2006).<br />

Phosphorus (P) enhances seed germination, bud set, aids in seed formation <strong>and</strong> hastens maturity<br />

(Espinosa et al, 1999). It is added to cultivated soil in different forms as mineral phosphate fertilizer or<br />

organic manure. The soluble P in these fertilizers is quickly turns into unavailable form for plant<br />

nutrition <strong>and</strong> this problem is well known in Egyptian soils specially those rich in calcium carbonate<br />

(El-Gamal, 1996).<br />

Potassium is a key essential plant nutrient. It plays an important role in growth, yield <strong>and</strong> quality <strong>of</strong><br />

crops. Potassium acts as catalyst for many enzymatic processes, regulates water use in the plant<br />

(osmoregulation), which maintains high daily cell turgor pressure <strong>and</strong> controls the opening <strong>and</strong> closing<br />

<strong>of</strong> stomata (Somida, 2002).<br />

However, due to the economic considerations, the cost <strong>of</strong> applying phosphate <strong>and</strong> potassium fertilizers<br />

is becoming more expensive. Thus, the use <strong>of</strong> alternative materials such as rock phosphate as a source<br />

<strong>of</strong> phosphorus fertilizer <strong>and</strong> feldspar as a source <strong>of</strong> potassium is more important than dependency on<br />

costly commercial fertilizers. On the other h<strong>and</strong>, rock phosphate has a low grade <strong>of</strong> P content, also<br />

feldspar is not available for direct application as plant nutrient (Styriakova et al, 2003 <strong>and</strong> Basak <strong>and</strong><br />

Biswas, 2009).<br />

The objective <strong>of</strong> this study was to determine the growth, yield <strong>and</strong> chemical composition <strong>of</strong> Thymus<br />

<strong>vulgaris</strong> plant as influenced by the application <strong>of</strong> different sources <strong>of</strong> organic fertilization in order to<br />

improve the yield <strong>of</strong> herb <strong>and</strong> essential oil content.<br />

MATERIALS AND METHODS<br />

Two field experiments were carried out at the Experimental Farm <strong>of</strong> National Research Centre (NRC),<br />

Cairo, Egypt during two successive seasons (2006/2007 <strong>and</strong> 2007/2008) to study the influence <strong>of</strong><br />

different types <strong>of</strong> organic fertilizers on growth, yield <strong>and</strong> oil constituents <strong>of</strong> thyme plants. The<br />

individual <strong>and</strong> interactions <strong>of</strong> applied treatments were as follows:<br />

1) Control.<br />

2) Rock phosphate at the rate <strong>of</strong> 150 kg fed. -1 (feddan =4200m 2 )<br />

3) Feldspar at the rate <strong>of</strong> 150 kg/fed.<br />

4) Cattle manure at the rate <strong>of</strong> 10m 3 /fed.<br />

5) Cattle manure + rock phosphate.<br />

6) Cattle manure + feldspar.<br />

7) Sheep manure at the rate <strong>of</strong> 10m 3 /fed.<br />

8) Sheep manure + rock phosphate<br />

9) Sheep manure + feldspar.<br />

10) Compost at the dose <strong>of</strong> 20m 3 /fed.<br />

11) Compost + rock phosphate.<br />

12) Compost + feldspar.<br />

13) Compost + compost tea (20 L./fed.).<br />

14) Compost + compost tea + feldspar.<br />

Table(1) shows the chemical analysis <strong>of</strong> used compost. Table(2) shows the soluble macro <strong>and</strong> micronutrients<br />

<strong>of</strong> used compost tea. Microbial population <strong>of</strong> organic compost tea were presented in Table<br />

(3). Chemical <strong>components</strong> <strong>of</strong> used sheep manure are shown in Table (4). Table (5) shows the<br />

physiochemical characters <strong>of</strong> cattle manure applied to thyme plants.<br />

204


Seeds <strong>of</strong> thyme were kindly provided by "SEKEM" company <strong>and</strong> planted in the nursery on 15 th <strong>of</strong><br />

January. The seedlings <strong>of</strong> thyme plants were transplanted from the nursery to the permanent soil in<br />

March.<br />

All treatments under investigation were arranged in a complete R<strong>and</strong>omized Blook Design (CRBD)<br />

with four replicates. The experimental unit (plot area) was 10m 2 . The amount <strong>of</strong> the different types <strong>of</strong><br />

organic fertilizers was divided into two portions, the first one before transplanting except compost tea<br />

which added after a month from sowing. Thyme plants received the second portion after 3 months from<br />

the first addition.<br />

The plants were harvested in two separated cuts (in June <strong>and</strong> November) in both seasons. At each cut,<br />

plant height (cm), number <strong>of</strong> branches, fresh <strong>and</strong> dry weight <strong>of</strong> herb <strong>and</strong> oil% were recorded. The<br />

statistical analysis <strong>of</strong> the obtained data was carried out according to Snedecor <strong>and</strong> Cochran (1990)<br />

using L.S.D. at 5% level.<br />

Quantitative determination <strong>of</strong> thyme essential oil <strong>of</strong> the different treatments was achieved by Hydrodistillation<br />

according to (Guenther, 1961). Hundred grams <strong>of</strong> the fresh herb <strong>of</strong> each treatment was<br />

subjected to hydrodistillation for 3 hours after water boiling till no further increase in the oil was<br />

observed. Essential oil percentage was calculated (v/w) <strong>and</strong> the obtained essential oil was dehydrated<br />

over anhydrous sodium sulfate, then kept at the refrigerator till GLC analysis.<br />

GLC analysis <strong>of</strong> the volatile oil <strong>of</strong> each treatment was performed separately with a Hewlett-Packard<br />

model 5890, a fused silica capillary column (Carbowax 20M measuring 20 m x 0.32 mm internal<br />

diameter, thickness <strong>of</strong> 0.17 μm) was used. The temperature program adopted was maintained at 75 o C<br />

for 5 min. with an increase <strong>of</strong> 4 o C min -1 until 220 o C (10min). The carrier gas was Helium <strong>and</strong> the<br />

working flow rate was 1.0ml/min, with a detector <strong>of</strong> 9144 HP. The identification <strong>of</strong> the compounds <strong>of</strong><br />

the essential oil was achieved by matching their retention times with those <strong>of</strong> authentic samples<br />

injected under the same conditions.<br />

205


Table (1): Chemical Analysis <strong>of</strong> Compost<br />

Constituent<br />

Value<br />

Bulk Density kg/m 3 510<br />

Moisture Content % 18.2<br />

Electrical conductivity ds/m 9.65<br />

pH 7.6<br />

Total Organic Carbon % 24.6<br />

Total Organic Matter % 42.41<br />

Total Nitrogen % 1.35<br />

C/N Ratio 18.22<br />

NH4-N (mg/kg) 880<br />

NH3-N (mg/kg) 450<br />

Total Phosphorus % 1.6<br />

Available Phosphorus (mg/kg) 410<br />

Total Potassium % 2.3<br />

Available potassium (mg/kg) 620<br />

Fe (ppm) 960<br />

Zn (ppm) 280<br />

Mn (ppm) 320<br />

Cu (ppm) 140<br />

Nematodes<br />

Weeds Germination<br />

Parasites<br />

Radish Germination test 98%<br />

Pathogenic<br />

nil<br />

nil<br />

nil<br />

nil<br />

Table (2): Soluble macro <strong>and</strong> micro-nutrients <strong>of</strong> used compost tea.<br />

Turned Compost Tea<br />

E.C<br />

Macro <strong>and</strong> micro-nutrients (ppm)<br />

pH<br />

ds/m<br />

N P K Ca Mg Fe Zn<br />

0.89 6.5 250 8 206 87 116 66 7<br />

Table (3): Microbial population <strong>of</strong> organic compost tea.<br />

Bacterial Plate count (CFU/ml) 7.1 x 10 7<br />

*<br />

Bacterial Direct count (cell/ml) 6.4 x 10 8<br />

Spore forming bacteria (CFU/ml) 7 x 10 4<br />

Total fungi (CFU/ml) 1.1 x 10 4<br />

Actinomycetes (CFU/ml) 2.8 X 10 5<br />

(CFU) = Colony Forming Unit<br />

206


Contents<br />

Sheep<br />

Manure<br />

O.M<br />

%<br />

pH<br />

Table (4) : Chemical analysis <strong>of</strong> sheep manure.<br />

EC<br />

(m.mohs)<br />

N<br />

%<br />

P<br />

%<br />

K<br />

%<br />

Fe<br />

ppm<br />

Mn<br />

ppm<br />

Zn<br />

ppm<br />

Cu<br />

ppm<br />

Pb<br />

ppm<br />

Ni<br />

ppm<br />

33 7.1 4.6 1.78 0.62 1.9 280 247 88 10 31.48 17.11<br />

Contents<br />

Cattle<br />

Manure<br />

Bulk%<br />

density<br />

Table (5) : Physiochemical characters <strong>of</strong> cattle manure.<br />

Moisture<br />

%<br />

E.C.<br />

ds/m<br />

pH<br />

O.C%<br />

O.M<br />

%<br />

Ash%<br />

T.N%<br />

C/N<br />

ratio<br />

62.7 52.3 4.2 8.6 19.7 34.0 66.0 1.37 14.4<br />

RESULTS AND DISCUSSION<br />

The effect <strong>of</strong> different organic fertilization treatments on growth parameters <strong>and</strong> essential oil <strong>of</strong> thyme<br />

for the two cuts <strong>of</strong> the first season (2007) is shown in Table (6). All parameters under investigation<br />

significantly responded to all <strong>of</strong> the applied treatments except plant height <strong>and</strong> dry weight <strong>of</strong> both<br />

cuttings. In the first cut, the differences between rock phosphate <strong>and</strong> feldspar added alone were<br />

insignificant except for essential oil percentage. In the second cut, these differences were significant<br />

except number <strong>of</strong> branches.<br />

Although potassium is the only essential plant element that is not a constituent <strong>of</strong> any plant part, it is a<br />

key nutrient for plant growth. It acts as catalyst for many enzymatic processes. It also controls the<br />

opening <strong>and</strong> closing <strong>of</strong> stomata which affects transpirational cooling <strong>and</strong> carbon dioxide uptake for<br />

photosynthesis (Mikkelsen, 2008).<br />

The efficiency <strong>of</strong> rock phosphate <strong>and</strong> feldspar together was mentioned by (Shafeek et al 2005) on pea<br />

plants. They found that all growth values had their peaks with addition <strong>of</strong> mixture <strong>of</strong> natural rock<br />

phosphate (7.5% P 2 O 5 ) <strong>and</strong> potassium (Feldspar 11% K 2 O) compared with either alone.<br />

The differences resulted from the application <strong>of</strong> cattle manure <strong>and</strong> sheep manure had reached the 5%<br />

level <strong>of</strong> significancy for plant height <strong>and</strong> essential oil% in the first cut <strong>and</strong> all parameters in the second<br />

one.<br />

207


<strong>Ozean</strong> Journal <strong>of</strong> Applied Sciences 3(2), 2010<br />

Treatment<br />

Table (6) Effect <strong>of</strong> different types <strong>of</strong> organic fertilization on the growth <strong>and</strong> essential oil% <strong>of</strong> Thymus <strong>vulgaris</strong> in first season<br />

Plant<br />

height<br />

(cm)<br />

Branches<br />

number<br />

First cut Second Cut Total<br />

Dry<br />

Fresh Dry<br />

Fresh<br />

Essential Plant height Branches<br />

Essential<br />

weight<br />

weight weight<br />

weight<br />

oil% (cm) number<br />

oil %<br />

(g/plant)<br />

(g/plant) (g/plant)<br />

(g/plant)<br />

Fresh<br />

weight<br />

(g/plant)<br />

(2007)<br />

Dry<br />

weight<br />

(g/plant)<br />

Control 18.75 10.00 29.51 10.83 1.44 21.50 14.75 40.45 14.86 1.48 69.96 25.69<br />

Rock P. 19.00 14.25 34.63 11.37 1.64 20.50 21.50 45.61 15.28 1.67 80.24 26.65<br />

Feldspar 19.75 14.25 37.09 12.21 1.58 22.50 20.25 62.72 21.45 1.56 99.81 33.66<br />

Cattle manure 20.00 15.00 51.93 17.00 1.78 19.50 20.75 40.71 13.85 1.77 92.63 30.85<br />

Cattle m.+ Rock P. 20.50 16.00 51.00 16.65 1.93 18.00 25.00 57.61 19.03 1.96 108.61 35.68<br />

Cattle m.+ Felds. 25.25 16.00 58.03 19.54 1.86 26.75 19.75 62.95 21.23 1.88 120.98 40.77<br />

Sheep manure 23.50 16.25 50.20 17.13 1.88 22.00 27.00 51.58 17.78 1.94 101.78 34.91<br />

Sheep m.+ Rock P. 24.00 15.50 60.79 21.02 1.95 22.00 20.25 81.58 27.67 1.97 142.37 48.69<br />

Sheep m.+ Felds 24.50 16.75 60.12 20.61 1.92 26.50 22.25 66.66 22.92 1.90 126.78 43.53<br />

Compost 23.75 15.25 76.25 26.59 1.94 21.25 19.25 69.78 24.07 1.97 146.03 50.66<br />

Compost + Rock P. 26.50 16.25 70.05 24.42 2.05 24.25 21.00 84.66 29.05 2.07 154.71 53.48<br />

Comp. + Felds. 21.75 15.75 75.48 26.49 1.99 20.25 23.25 90.45 31.16 2.04 165.93 57.65<br />

Comp. + comp. tea 25.75 17.25 73.98 25.11 2.06 22.75 23.75 89.29 30.93 2.10 163.27 56.04<br />

Comp+ comp. tea + 26.75 19.00 87.18 29.06 2.13 24.75 26.00 85.69 29.06 2.22 172.87 58.12<br />

Rock P.<br />

Comp+ comp. tea +<br />

Felds.<br />

27.25 18.50 84.21 28.07 2.08 27.50 23.75 89.33 30.09 2.18 173.54 58.16<br />

L.S.D. 5% 1.29 1.11 4.05 1.65 0.06 1.35 1.09 4.95 1.54 0.08 6.08 2.36<br />

- 208 -


<strong>Ozean</strong> Journal <strong>of</strong> Applied Sciences 3(2), 2010<br />

Sheep manure analysis showed its macro <strong>and</strong> micro nutrients content which provide thyme plants with<br />

their requirements from these elements. Iron (Fe) is necessary for photosynthesis <strong>and</strong> is present as an<br />

enzyme c<strong>of</strong>actor in plant. Zinc (Zn) plays an essential role in DNA transcription <strong>and</strong> internodal<br />

elongation (stem growth).<br />

The increase in growth parameters resulting by cattle <strong>and</strong> sheep manure may be attributed to enhancing<br />

soil aggregation, soil aeration, increasing water holding capacity <strong>and</strong> <strong>of</strong>fers good environmental<br />

conditions for root system (Abou El-Magd, 2006). Several investigators reported similar promotion<br />

effect <strong>of</strong> cattle <strong>and</strong> sheep manure on various plants, i.e, Van Hiep <strong>and</strong> Preston, 2006 on Ipomoea<br />

aquatica (water spinach), (Ewulo et al, 2007 on peper, Jahan et al, 2008) on Cucurbita pepo<br />

(Schneider squash), <strong>and</strong> Azzaz et al, 2009 on fennel. The combination between compost, compost tea,<br />

rock phosphate <strong>and</strong> feldspar gave the higher values <strong>of</strong> different parameters comparing with other<br />

treatments. The maximum values <strong>of</strong> number <strong>of</strong> branches, fresh <strong>and</strong> dry weights <strong>and</strong> essential oil<br />

percentage in the 1 first. cut were recorded with application <strong>of</strong> compost at the rate <strong>of</strong> 20m 3 fed -1 .+<br />

compost tea (20L. fed -1 .) + rock phosphate at 150kg fed -1 .<br />

Beneficial effect <strong>of</strong> compost tea on plant may due to its direct nutrients supplying <strong>and</strong>/or its microbial<br />

functions (Khalil, 2000, Khalil et al 2002, Edris et al 2003 <strong>and</strong> Hendawy, 2008) Moreover,<br />

phosphorus is an important nutritional element in metabolic processes <strong>and</strong> as a main constituent <strong>of</strong><br />

energy compounds, nucleic acids, phospholipids <strong>and</strong> co-enzymes (Hafez <strong>and</strong> Mahmoud, 2008). This<br />

could be explained the superiority <strong>of</strong> treatment (compost + compost tea + rock phosphate) which<br />

represented both organic fertilizers types affected growth characters <strong>of</strong> thyme plants.<br />

Essential oil percentage tended to increase with application <strong>of</strong> organic fertilizers either cattle manure,<br />

sheep manure or compost. It ranged from 1.44% (control) to 2.13% (compost + compost tea + rock<br />

phosphate) in the first cut <strong>and</strong> from 1.48% (control) to 2.22 % for the same treatment in the second cut.<br />

<strong>Growth</strong> <strong>and</strong> essential oil percentage <strong>of</strong> Thymus <strong>vulgaris</strong> plants <strong>of</strong> two cuts <strong>of</strong> the second season (2008)<br />

as influenced by different types <strong>of</strong> organic fertilization are shown in Table (7). The same trends were<br />

almost observed in both cuttings for plant growth characters which increased significantly with applied<br />

treatments compared with control except plant height in the first cut.<br />

Individual application <strong>of</strong> rock phosphate <strong>and</strong> feldspar were significant in both cuts except number <strong>of</strong><br />

branches in the first. cut. The response <strong>of</strong> growth characters to P <strong>and</strong> K followed the same pattern <strong>of</strong><br />

change as the obtained by many researches (Murugan et al 2002 on chilli, Akintokum et al 2003 on<br />

soybean, <strong>and</strong> Ezzat et al 2005 on lentil).<br />

Cattle <strong>and</strong> sheep manure rates added to thyme plants resulted in significant differences in most <strong>of</strong><br />

parameters except plant height in the first cut. As shown in Tables (4&5), that the content <strong>of</strong> both sheep<br />

<strong>and</strong> cattle manures from organic matter reached 33% <strong>and</strong> 34%, respectively. It acts as a buffer against<br />

pH change, protects plants from heavy metals <strong>and</strong> salt toxicity <strong>and</strong> support micro-organisms that<br />

recycle nutrients <strong>and</strong> soil formation (Varanini <strong>and</strong> pinton 1995). Therefore, the response <strong>of</strong> thyme<br />

plants to sheep <strong>and</strong> cattle would be much superior. The best<br />

- 209 -


<strong>Ozean</strong> Journal <strong>of</strong> Applied Sciences 3(2), 2010<br />

Treatment<br />

Plant<br />

height<br />

(cm)<br />

Table (7) Effect <strong>of</strong> different types <strong>of</strong> organic fertilization on the growth <strong>and</strong> essential oil% <strong>of</strong> Thymus <strong>vulgaris</strong> in second season<br />

Branches<br />

number<br />

First cut Second Cut Total<br />

Dry<br />

Fresh Dry<br />

Fresh<br />

Essential Plant height Branches<br />

Essential<br />

weight<br />

weight weight<br />

weight<br />

oil% (cm) number<br />

oil %<br />

(g/plant)<br />

(g/plant) (g/plant)<br />

(g/plant)<br />

Fresh<br />

weight<br />

(g/plant)<br />

(2008)<br />

Dry<br />

weight<br />

(g/plant)<br />

Control 21 14 41.60 16.00 1.49 18.50 15.20 42.16 15.11 1.52 83.76 31.11<br />

Rock P. 20 20 46.31 15.44 1.68 21.60 20.90 48.50 17.38 1.73 94.81 32.82<br />

Feldspar 22 19 62.22 20.74 1.61 23.10 21.80 60.30 22.75 1.64 122.52 43.49<br />

Cattle manure 20 22 40.35 14.04 1.80 20.80 22.50 45.17 16.19 1.85 85.52 30.32<br />

Cattle m.+ Rock P. 18 24 56.40 18.80 1.95 19.00 27.00 80.30 28.78 2.01 136.70 47.58<br />

Cattle m.+ Felds. 25 25 61.35 20.45 1.84 25.30 18.40 66.90 23.98 1.90 128.25 44.43<br />

Sheep manure 21 27 50.30 16.77 1.92 22.60 25.00 55.38 19.85 1.92 105.68 36.62<br />

Sheep m.+ Rock P. 23 21 78.64 26.11 1.94 22.00 21.50 85.46 29.99 1.95 164.10 56.10<br />

Sheep m.+ Felds 25 23 64.21 21.40 1.90 26.70 23.40 68.90 24.70 1.92 133.11 46.10<br />

Compost 20 19 68.73 22.91 1.98 20.16 19.00 74.15 26.58 2.05 142.88 49.49<br />

Compost + Rock P. 25 20 88.30 29.54 2.11 25.31 21.30 85.80 30.75 2.10 174.10 60.29<br />

Comp. + Felds. 20 24 85.32 28.44 2.03 21.22 23.50 89.60 32.11 2.10 174.92 60.55<br />

Comp. + comp. tea 22 25 84.40 28.47 2.05 23.60 23.00 88.40 31.68 2.15 172.80 60.15<br />

Comp+ comp. tea + 26 25 85.11 28.37 2.17 25.12 28.60 83.90 30.07 2.35 169.01 58.44<br />

Rock P.<br />

Comp+ comp. tea +<br />

Felds.<br />

27 24 89.60 29.99 2.08 27.40 24.50 87.60 33.06 2.28 177.20 63.05<br />

L.S.D. 5% 1.24 1.05 3.88 1.42 0.054 1.39 1.01 3.94 1.46 0.043 7.1 2.02<br />

- 210 -


<strong>Ozean</strong> Journal <strong>of</strong> Applied Sciences 3(2), 2010<br />

treatment which gave the highest means <strong>of</strong> recorded characters was the combination <strong>of</strong> compost at the<br />

level <strong>of</strong> 20m 3 fed -1 + (compost tea 20 L.fed -1 . <strong>and</strong> Feldspar at 150kg fed -1 .). Potassium specific role in<br />

plant includes protein synthesis, osmoregulation, photosynthate translocation, internal cation <strong>and</strong> anion<br />

balance <strong>and</strong> enzyme activation (Shafeek et al, 2005).<br />

Generally, application <strong>of</strong> different treatments increased the essential oil percent comparing to untreated<br />

plants. The essential oil% ranged from 1.49% (control) to 2.14% for treated plants with compost +<br />

compost tea + rock phosphate in the first cut <strong>and</strong> from 1.52% to 2.35% for the same treatment in the<br />

second cut.<br />

The effect <strong>of</strong> different fertilization treatments on the main constituents <strong>of</strong> thyme essential oil is shown<br />

in Table (8). The European Pharmacopoeia (EP-2002) has established specifications for some<br />

<strong>components</strong> constituting thyme essential oil <strong>and</strong> mentioned that it should contain 36.0-55.0% thymol,<br />

15.0-28.0% ρ -cymene, 5.0-10.0% terpinene <strong>and</strong> 1.0-4.0%carvacrol. The results obtained in this study<br />

ensured that all types <strong>of</strong> organic fertilization treatments led to an oil composition complied with the EP<br />

specification ranges. Sixteen compounds were detected with GLC in the essential oil <strong>of</strong> all treatments<br />

<strong>and</strong> their total ranged from 92.42 to 97.59 %. The major compound was identified as thymol in all<br />

treatments. Similar findings had been obtained by ( Eissa et al, 2005, Aziz et al, 2008 <strong>and</strong> Ezz El-Din et<br />

al, 2009 on Thymus <strong>vulgaris</strong> L. plants. )<br />

- 211 -


<strong>Ozean</strong> Journal <strong>of</strong> Applied Sciences 3(2), 2010<br />

Compounds<br />

Treat.<br />

Table (8) Effect <strong>of</strong> different types <strong>of</strong> organic fertilization on the main constituents <strong>of</strong> the essential oil% <strong>of</strong> Thymus <strong>vulgaris</strong> during second season (2008).<br />

Control<br />

Rock<br />

P.<br />

Feldspa<br />

r<br />

Cattle<br />

manure<br />

Cattle<br />

m. +<br />

Rock P.<br />

Cattl<br />

e<br />

m.+<br />

Felds<br />

.<br />

Sheep<br />

manure<br />

-Pinene 3.22 2.16 2.85 3.10 3.42 3.66 3.95 1.16 2.12 3.65 3.44 1.04 3.97 3.57 3.89<br />

Myrecen 3.46 2.18 4.18 4.60 4.80 5.30 5.22 5.65 4.44 4.80 4.75 3.75 4.29 3.75 3.56<br />

ρ -cymene 27.34 29.18 26.56 26.12 25.76 23.1 26.15 28.17 29.43 27.65 26.44 30.50 25.10 24.50 26.49<br />

4<br />

-Terpinene 2.60 1.80 1.50 1..94 1.99 1.73 1.60 1.95 2.20 2.60 1.40 2.30 2.54 2.80 2.90<br />

Linalool 4.10 4.30 4.80 3.60 4.50 4.70 4.20 4.40 4.50 2.60 2.5 2.70 2.80 3.10 2.90<br />

Camphor 0.48 0.55 0.54 0.61 0.88 0.69 0.67 0.52 0.75 0.94 0.95 0.87 0.96 1.02 1.08<br />

Boroneol 3.06 3.03 2.95 2.58 2.30 2.77 2.34 2.89 2.37 2.65 2.12 2.14 2.05 2.08 2.22<br />

Terpinol 2.02 2.13 1.35 1.74 0.24 1.12 0.68 0.67 0.54 0.90 0.90 0.90 0.70 0.60 0.30<br />

Thymol 44.12 48.17 47.36 47.11 48.22 48.5 45.14 48.65 46.61 49.30 50.50 49.30 49.10 52.10 49.70<br />

6<br />

Carvacrol 0.18 0.39 0.64 0.85 0.94 1.12 0.14 0.53 0.22 0.46 1.16 0.35 0.30 0.28 0.27<br />

-Bourb onene 0.04 0.07 0.08 0.11 0.18 0.09 0.06 0.03 0.26 0.31 0.12 0.10 0.09 0.12 0.14<br />

transcaryophyllene<br />

0.65 0.73 0.74 0.65 0.66 0.31 0.42 0.53 0.64 0.68 0.75 0.75 0.80 0.90 1.01<br />

Cadinene 0.52 0.65 0.39 0.46 1.25 1.33 1.49 1.38 1.16 1.12 1.70 1.50 1.20 0.90 0.90<br />

Germacrene-D 0.42 0.45 0.55 0.54 0.63 0.74 0.62 0.35 0.49 0.48 0.39 0.64 0.21 0.47 0.63<br />

Caryophyllen 0.11 0.32 0.36 0.25 0.25 0.28 0.16 0.42 0.43 0.22 0.25 0.25 0.30 0.29 0.27<br />

oxide<br />

Carotol 0.10 0.35 0.25 0.27 0.34 0.24 0.25 0.11 0.15 0.18 0.22 0.29 0.23 0.27 0.26<br />

Non-oxygenated 38.21 37.15 36.77 37.41 38.51 36.2<br />

1<br />

Oxygenated 54.21 59.31 58.33 57.12 57.85 59.5<br />

7<br />

Total 92.42 96.46 95.1 94.53 96.36 95.7<br />

8<br />

Sheep<br />

m.+<br />

Rock<br />

P.<br />

Shee<br />

p m.+<br />

Felds<br />

Compos<br />

t<br />

Compost<br />

+ Rock<br />

P.<br />

Comp.<br />

+<br />

Felds.<br />

Comp.<br />

+<br />

comp.<br />

tea<br />

Comp+<br />

comp.<br />

tea +<br />

Rock P.<br />

Comp+<br />

comp. tea<br />

+ Felds.<br />

39.45 39.19 40.48 40.98 38.87 40.48 38.11 36.89 39.38<br />

53.60 58.22 55.83 57.56 58.72 56.90 56.53 59.86 57.14<br />

93.09 97.41 96.31 95.54 97.59 97.38 94.64 96.75 96.52<br />

- 212 -


It showed its minimum percent (44.12%) in the essential oil <strong>of</strong> plants with no fertilization, while its<br />

maximum percent (52.1%) was recorded in plants fertilized with compost 20m 3 + compost tea 20L.fed -<br />

1 . + rock phosphate 150kg fed -1 . The second main compound was found to be -cymene in all<br />

treatments <strong>and</strong> ranged from 23.14 % with application <strong>of</strong> cattle manure 10m 3 fed -1 . to 30.50 % with<br />

compost 20m 3 fed -1 . + feldspar at the rate <strong>of</strong> 150kg fed -1 . All fertilization treatments increased the<br />

content <strong>of</strong> thymol in the essential oil <strong>of</strong> thyme comparing with plants <strong>of</strong> control.<br />

Myrecene occupied the third position according to the percentage <strong>of</strong> essential oil <strong>components</strong> <strong>of</strong> thyme<br />

plants (5.30%) followed by linalool in a value <strong>of</strong> 4.80%.<br />

The promoting effect <strong>of</strong> organic manure on essential oil % was emphasized by (Abdou <strong>and</strong> Mahamoud,<br />

(2003), Mohamed <strong>and</strong> Ahmed (2003) on fennel <strong>and</strong> Heikal (2005) <strong>and</strong> Edris et al (2009) on thyme<br />

plants.)<br />

The total oxygenated compounds ranged from 52.21% to 59.90 % <strong>of</strong> the identified compounds. The<br />

maximum content <strong>of</strong> oxygenated compounds was found in the essential oil <strong>of</strong> plants received compost<br />

(20m 3 fed -1 .) + compost tea (20L. fed -1 .) + rock phosphate (150kg fed -1 .).<br />

In this connection, (Ateia et al 2009) reported that the highest value <strong>of</strong> oxygenated compounds <strong>of</strong><br />

thyme grown is s<strong>and</strong>y soil was obtained from 30m 3 <strong>of</strong> compost combined with 10m 3 sheep manure<br />

treatment (82.84%) compared with control (42.69%). The non-oxygenated compounds started with<br />

36.21% <strong>and</strong> ended by 40.98%.<br />

We recommend the fertilization <strong>of</strong> thyme with different organic manure fertilizers in the form <strong>of</strong><br />

compost 20m 3 fed. -1 + compost tea 20 L. fed -1 . <strong>and</strong>/or (rock phosphate, feldspar at the level <strong>of</strong> 150kg<br />

fed. -1 "feddan = 4200m 2 ") to give the maximum values <strong>of</strong> growth characters, yield <strong>and</strong> oil percentage<br />

<strong>of</strong> Thymus <strong>vulgaris</strong> plants.<br />

213


REFERENCES<br />

Abdou, M.A. <strong>and</strong> A. H. Mahmoud, 2003. <strong>Growth</strong> <strong>and</strong> oil production <strong>of</strong> Foeniculum vulgare, Mill. 2:<br />

The effect <strong>of</strong> number <strong>of</strong> irrigation <strong>and</strong> organic fertilizers. J. Agric. Sci. Mansoura Univ., 28<br />

(5): 3857-3868.<br />

Abou El-Magd, M.M., A.M., El-Bassiony <strong>and</strong> Z.F. Fawzy, 2006. Effect <strong>of</strong> organic manure with or<br />

without chemical fertilizers on growth, yield <strong>and</strong> quality <strong>of</strong> some varieties <strong>of</strong> Broccoli plants.<br />

J. Appl. Sci. Res. 2(10): 791-798.<br />

Akintokum, O.O., M.T., Adetunji <strong>and</strong> P.O., Akintokun. 2003. Phosphorus availability to soybean from<br />

an indigenous phosphate rock sample in soils from southwest Nigeria. Nutr. Cyclagroeco,<br />

65:35-41.<br />

Ateia, E.M., Y.A.H. Osman <strong>and</strong> A.E.A.H. Meawad. 2009. Effect <strong>of</strong> organic fertilization on yield <strong>and</strong><br />

active constituents <strong>of</strong> Thymus <strong>vulgaris</strong> L. under North Sinai conditions. Res. J. Agric. & Biol.<br />

Sci., 5(4): 555-565.<br />

Aziz, E.E., S.F. Hendawy, A.A. Ezz El-Din <strong>and</strong> E.A. Omer, 2008. Effect <strong>of</strong> soil type <strong>and</strong> irrigation<br />

intervals on plant growth, essential oil yield <strong>and</strong> constituents <strong>of</strong> Thymus <strong>vulgaris</strong> plant. Am.<br />

Euras. J. Agric. & Environ. Sci., 4 (4): 443-450.<br />

Azzaz, N.A., E.A. Hassan <strong>and</strong> E.H. Hamad, 2009. The chemical constituent <strong>and</strong> vegetative <strong>and</strong><br />

yielding characteristics <strong>of</strong> fennel plants treated with organic <strong>and</strong> bio-fertilizer. Aust. J. Basic &<br />

Appl. Sci. 3(2): 579-587.<br />

Baranauskiene, R., P.R. Venskutonis, P. Viskelis <strong>and</strong> E. Dambrauskiene, 2003. Influence <strong>of</strong> nitrogen<br />

fertilizers on the yield <strong>and</strong> composition <strong>of</strong> thyme (Thymus <strong>vulgaris</strong>). J. <strong>of</strong> Agric. <strong>and</strong> Food<br />

Chem., 51 (26): 7751-7758.<br />

Barnes, J., L.A. Anderson <strong>and</strong> J.D. Phillipson, 2002. Herbal Medicines. A Guide for Healthcare Pr<strong>of</strong>e,<br />

Second Edition, London: Pharmaceutical Pres.<br />

Basak, B.B. <strong>and</strong> D.R. Biswas, 2009. Influence <strong>of</strong> potassium solubilizing microorganism (Bacillus<br />

mucilaginosus) <strong>and</strong> waste mica on potassium uptake dynamics by sudan grass (Sorghum<br />

vulgare Pers.) grown under two Alfisols. Plant <strong>and</strong> Soil, 317 (1-2), 235-255.<br />

Dapkevicius, A., V.T. A. Van Beek, G.P. Lelyveld, A. Van Veldhuizen, A. DeGroot, J.P.H. Linssen,<br />

<strong>and</strong> R. Venskutonis, 2002. Isolation <strong>and</strong> structural elucidation <strong>of</strong> radical scavengers from<br />

Thymus <strong>vulgaris</strong> leaves. J. Nat. Prod. 65(6) : 892-896.<br />

Davis, P.H., 1992. Flora <strong>of</strong> Turkey <strong>and</strong> the East Aegean Isl<strong>and</strong>s. vol. 7:320-354 pp. University Pres.<br />

Edinburgh.<br />

Edris, A. E, A. Shalaby <strong>and</strong> H.M. Fadel, 2003. Effect <strong>of</strong> organic agriculture practices on the volatile<br />

aroma <strong>components</strong> <strong>of</strong> some essential oil plants growing in Egypt. II. Sweet marjoram<br />

(Origanum marijorana L.)essential oil. Flavour <strong>and</strong> Fragr J. 18: 345-351.<br />

Eissa, A.M, A. F. Abou-Haddid <strong>and</strong> E.A. Omer, 2005. effect <strong>of</strong> saline water on the dry matter<br />

production, nutritional status <strong>and</strong> essential oil content <strong>of</strong> thyme (Thymus <strong>vulgaris</strong>) grown in<br />

s<strong>and</strong>y soil. Egypt. J. <strong>of</strong> Horti 31(2): 181-193.<br />

El-Gamal, A.M. <strong>and</strong> G. Abdel – Nasser. 1996. Response <strong>of</strong> sweet potato crop to phosphorus <strong>and</strong><br />

potassium fertilization rates. The fourth Arabic Conf. for Hort. Crops, 25-28 March. Minia<br />

Univ., Egypt. Part I, Vegetable Crops, pp. 471-488.<br />

Espinosa, M., B.L. Turner <strong>and</strong> P.M. Haygarth. 1999. Pre-concentration <strong>and</strong> separation <strong>of</strong> trace<br />

phosphorus compounds in soil leachate. J. Environ. Qual., 29:1497-1504.<br />

Ewulo, B.S., K.O. Hassan <strong>and</strong> S.O. Ojeniyl, 2007. Comparative effect <strong>of</strong> cowdung manure on soil <strong>and</strong><br />

leaf nutrient <strong>and</strong> yield <strong>of</strong> pepper. Inter. J. Agric. Res., 21 (12): 1043-1048.<br />

Ezz El-Din, A.A., E.E. Aziz, S.F. Hendawy <strong>and</strong> E.A. Omer, 2009. Response <strong>of</strong> Thymus <strong>vulgaris</strong> L. to<br />

salt stress <strong>and</strong> Alar (B9) in newly reclaimed soil. J. App. Sci. Res., 5 (12): 2165-2170.<br />

Ezzat, Z.M., K.M., Khalil <strong>and</strong> A.A., Khalil, 2005. Effect <strong>of</strong> natural potassium fertilizer on yield , yield<br />

<strong>components</strong> <strong>and</strong> seed composition <strong>of</strong> lentil in old <strong>and</strong> new reclaimed l<strong>and</strong>s. Egypt. J. App.<br />

Sci., 20: 80-92.<br />

214


Gomaa, A.M., 1995. Response <strong>of</strong> certain vegetable crops to bi<strong>of</strong>ertilization. Ph.D. Thesis, Fac. Agric.,<br />

Cairo Univ.<br />

Guenther, E. 1961. "The Essential <strong>Oil</strong>s". Van Nostr<strong>and</strong> Comp. Inc. New York, Vol. III, pp.448.<br />

Hafez, M.A. <strong>and</strong> A.R. Mahmoud, 2009. Effect <strong>of</strong> natural <strong>and</strong> chemical phosphorus fertilization as<br />

individually <strong>and</strong>/or mixed on the productivity <strong>of</strong> eggplant. Res. J. Agric. & Biol. Sci.,<br />

5(4):344-348.<br />

Heikal, A.M., 2005. Effect <strong>of</strong> organic <strong>and</strong> bio-fertilization on the growth, production <strong>and</strong> composition<br />

<strong>of</strong> thyme (Thymus <strong>vulgaris</strong> L.) plants. M.Sci. Thesis, Fac. Agric., Cairo Univ. Egypt.<br />

Hendawy, S.F., 2008. Comparative study <strong>of</strong> organic <strong>and</strong> mineral fertilization on Plantago arenaria<br />

plant. J. Appl. Sci. Res. 4 (5): 500-506.<br />

Jahan, M., A. Koocheki, M. Nassiri <strong>and</strong> F. Dehghanipur, 2008. The effects <strong>of</strong> different cattle manure<br />

levels <strong>and</strong> branch management methods on organic production <strong>of</strong> Cucubita pepo L., 16 th<br />

IFOAM Organic World Congress, 6-16.<br />

Khalil, M. Y, N.Y. Naguib <strong>and</strong> S.E. El-Sherbeny, 2002. Response <strong>of</strong> Tagetes erecta L. to compost <strong>and</strong><br />

foliar application <strong>of</strong> some microelements. Arab. Univ. J. Agric. Sci., Ain Shams Univ., Cairo<br />

10:939-964.<br />

Khalil, M.Y., 2000. Influence <strong>of</strong> compost <strong>and</strong> foliar fertilization on growth <strong>and</strong> chemical composition<br />

<strong>of</strong> Rosmarinus <strong>of</strong>ficinalis. Egypt. J. Appl. Sci. 17:684-699.<br />

Lampkin, N.H. 1999. Organic farming in the European Union: overview, Policies <strong>and</strong> perspectives.<br />

Invited keynote paper in : Organic Farming in the European Union Perspectives for the 21 st .<br />

Century. Proceedings <strong>of</strong> EU Commission.<br />

Lotter, D.W., 2003. Organic Agriculture. J. <strong>of</strong> sustain. agric. 21: 59-128.<br />

Martins, A.P., L.R., Salgueiro, R., Vila, F., Tomi, S. canigueral, J. Cassanova, A. Proensa Da Cunba<br />

<strong>and</strong> T. Adzet, 1999. Composition <strong>of</strong> the essential oils <strong>of</strong> Ocimum canum, O.gratissimum <strong>and</strong><br />

O.minimum. Planta Med., 65:187-189.<br />

Mikkelsen, R., 2008. Managing potassium for organic crop production. Better Crops 92(2): 26-29.<br />

Mohamed, A.A. <strong>and</strong> M.E. Ahmed, 2003. A comparative study on the effect <strong>of</strong> sugarcane filter mud,<br />

sheep <strong>and</strong> chicken manures used for fertilization <strong>of</strong> sweet fennel (Foeniculum vulgare, L.).<br />

Minia J. Agric. Res. & Dev., 22 (3): 221-234.<br />

Murugan, M., S. Backyiarani, A.J. Kumar <strong>and</strong> A. Subbiah, 2002. <strong>Yield</strong> <strong>and</strong> nutrient content <strong>of</strong> chilli<br />

(Capsicum annuum) in response to sources <strong>of</strong> P <strong>and</strong> levels <strong>of</strong> P <strong>and</strong> N. India. J. <strong>of</strong> Spices <strong>and</strong><br />

Aromatic Crops, 11 (1): 13-17.<br />

Omidbaigi, R. <strong>and</strong> R.A. Nejad, 2000. The influence <strong>of</strong> nitrogen fertilizer <strong>and</strong> harvested time on the<br />

productivity <strong>of</strong> Thymus <strong>vulgaris</strong> L. Inter. J. Horti. Sci., 6 (3): 43-46.<br />

Shafeek, M.R., O.A. H., El-Zeiny <strong>and</strong> M. E., Ahmed, 2005. Effect <strong>of</strong> natural phosphate <strong>and</strong> potassium<br />

fertilizer on growth, yield <strong>and</strong> seed composition <strong>of</strong> pea plant in new reclaimed soil. Asian J.<br />

Plant Sci. 4 (6): 608-612.<br />

Shinwari, Z., 2005. Medicinal plants research in the 21 st . century. International symposium Medicinal<br />

Plants: Linkages beyond national boundaries., (Eds) Shinwari, Z., T. Watanabe <strong>and</strong> M.Ali,<br />

pp.12-16.<br />

Snedecor, G.W. <strong>and</strong> W.G. Cochran, 1990. Statistical Methods. pp:369-375. 11 th . Ed. Iowa State<br />

College Press. Ames, Iowa, U.S.<br />

Somida, E.G. 2002. Effect <strong>of</strong> organic manure nitrogen <strong>and</strong> potassium fertilization on growth, flowering<br />

<strong>and</strong> chemical constituents <strong>of</strong> marigold plants (Tagetes minuta L.). M. Sci. Thesis, <strong>of</strong> Agri.,<br />

Cairo Univ. pp. 156.<br />

Styriakova, I., I. Styriak, I. Galko, D. Hradil <strong>and</strong> P. Bezdicka, 2003. The release <strong>of</strong> iron-bearing<br />

minerals <strong>and</strong> dissolution <strong>of</strong> feldspar by heterotrophic bacteria <strong>of</strong> Bacillus species. Ceramics<br />

silicaty, 47 (1): 20-26.<br />

Van Hiep, N. <strong>and</strong> T.R. Preston, 2006. Effect <strong>of</strong> cattle manure <strong>and</strong> biodigester effluent levels on growth<br />

<strong>and</strong> composition <strong>of</strong> water spinach. Livestock Research for Rural Development, 18 (4): 1-8.<br />

215


Varanini, Z. <strong>and</strong> R. Pinton, 1995. Humic substances <strong>and</strong> plant nutrition. Progress in Botany, (56): 79-<br />

117.<br />

World Health Organization (WHO), 1999. Monographs on Selected Medicinal Plants. WHO, Geneva.<br />

Zambonelli, A, A. Z. D' Aulerio, A. Severi, S. Benvenuti, L. Maggi <strong>and</strong> A. Bianchi, 2004. Chemical<br />

composition <strong>and</strong> fungicidal activity <strong>of</strong> commercial essential oils <strong>of</strong> Thymus <strong>vulgaris</strong> L. J.<br />

Essent. <strong>Oil</strong> Res., 16 (1): 69-74.<br />

216

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!