30.01.2015 Views

Introduction to data assimilation in meteorology - ForOT Optical ...

Introduction to data assimilation in meteorology - ForOT Optical ...

Introduction to data assimilation in meteorology - ForOT Optical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Introduction</strong> <strong>to</strong> <strong>data</strong><br />

<strong>assimilation</strong> <strong>in</strong><br />

<strong>meteorology</strong><br />

Pierre Brousseau, Ludovic Auger<br />

ATMO 08,Alghero,<br />

15-18 september 2008


<strong>Introduction</strong><br />

Numerical weather-prediction systems provide <strong>in</strong>formative<br />

forecast of atmospheric variables.<br />

The accuracy of these forecasts depend on, among other<br />

th<strong>in</strong>gs, the <strong>in</strong>itial conditions used.<br />

Initial state at t 0<br />

state at t 0 +applet<br />

Model <strong>in</strong>tegration


<strong>Introduction</strong><br />

The ma<strong>in</strong> goal of a meteorological <strong>data</strong> <strong>assimilation</strong><br />

system is <strong>to</strong> produce an accurate image of the true<br />

state of the atmosphere at a given time, called<br />

analysis.<br />

This analysis could also be used as a comprehensive and<br />

self-consistent diagnostic of the atmosphere ( reanalysis).


Outl<strong>in</strong>es<br />

General ideas on <strong>data</strong> <strong>assimilation</strong><br />

Some k<strong>in</strong>ds of observation<br />

A new meso-scale <strong>data</strong> <strong>assimilation</strong> system<br />

Assimilation experiments


Assimilated <strong>in</strong>formation : observations<br />

Observation : a measurement of an atmospheric physical<br />

parameter.<br />

Exemple :<br />

Surface pressure measurements, 10 september 2008, 00 UTC


Assimilated <strong>in</strong>formation : background<br />

Problems :<br />

– Lack of observation <strong>in</strong> some part of the atmosphere.<br />

– Observation<br />

number<br />

smaller than the numerical state dimension (for AROME 10 4 VS 10 7 ‏.(‏ Need of an other<br />

<strong>in</strong>f<br />

ormation Background source : a previous x b forecast of the atmospheric state.<br />

Observations y o Analysis at t 0


General ideas : <strong>assimilation</strong> cycle<br />

Numerical model<br />

<strong>in</strong>tegration<br />

Background x b<br />

Analysis x a<br />

Observations y o<br />

6 hr forecast<br />

TIME<br />

6 hr <strong>assimilation</strong> w<strong>in</strong>dow


A simple case : estimation of the room temperature<br />

<strong>in</strong>formation : 2 measurements T 1 et T 2<br />

Best<br />

L<strong>in</strong>ear<br />

Unbiased<br />

Estimate<br />

M<strong>in</strong>imise the objective function<br />

8


Generalisation <strong>in</strong> <strong>meteorology</strong><br />

The Best L<strong>in</strong>ear Unbiased Estimate :<br />

x a = x b + applex<br />

= x b + ((‏ BH T (HBH T +R) -1 (y o – H (x b<br />

, d : difference between<br />

optimal weight<strong>in</strong>g<br />

observations and<br />

background<br />

With :<br />

B and R<br />

resp<br />

ectively background errors and observations errors covariance matrices<br />

H : observation opera<strong>to</strong>r and H l<strong>in</strong>ear observation opera<strong>to</strong>r<br />

Variational formulation : m<strong>in</strong>imisation of the cost function<br />

,<br />

J(applex) = J b (applex) + J o (applex)<br />

(‏applex = applex T B -1 applex + (d-Happlex) T R -1 (d-H


Background error statistics<br />

Background-error statistics determ<strong>in</strong>e how observations modify the<br />

background <strong>to</strong> produce the analysis, filter<strong>in</strong>g and propagat<strong>in</strong>g<br />

<strong>in</strong>novations.<br />

B should conta<strong>in</strong> some <strong>in</strong>formation about the uncerta<strong>in</strong>ty of the guess,<br />

which depends on :<br />

– the model<br />

– the doma<strong>in</strong><br />

– the meteorological situation of the day (flow and <strong>in</strong>itial conditions).<br />

To determ<strong>in</strong>ate this uncerta<strong>in</strong>ty is a major problem <strong>in</strong> <strong>data</strong> <strong>assimilation</strong>


Outl<strong>in</strong>es<br />

General ideas on <strong>data</strong> <strong>assimilation</strong><br />

Some k<strong>in</strong>ds of observation<br />

A new meso-scale <strong>data</strong> <strong>assimilation</strong> system<br />

Assimilation experiments


Radiosonde observations<br />

Vertical profile of temperature, w<strong>in</strong>d and humidity :<br />

– very accurate<br />

– but only twice a day with an irregular spatial coverage


Satellite observations<br />

Instruments on :<br />

– geostationnary satellite.<br />

– polar satellite.<br />

Radiance measurements provid<strong>in</strong>g vertical profile of temperature and/<br />

or humidity (stra<strong>to</strong>sphere and high-troposphere).<br />

AMSU-A, 11 september 2008, 00 UTC (six hour <strong>assimilation</strong> w<strong>in</strong>dow)


Satellite observations<br />

Observations not always available on limited doma<strong>in</strong><br />

AMSUB <strong>in</strong>trument, 11 september 2008<br />

12 UTC : measurements<br />

from 2 satellites<br />

00 UTC : no measurement


Surface observations<br />

Surface pressure, 2m temperature and humidity and 10m w<strong>in</strong>d<br />

Very usefull <strong>to</strong> provide <strong>in</strong>formation on the low atmospheric layers<br />

10 september 2008, 00 UTC


Radar observations<br />

Doppler-w<strong>in</strong>d and reflectivity observations<br />

10 september 2008, 00 UTC


Different k<strong>in</strong>ds of observation<br />

Lots of observations which differ <strong>in</strong> :<br />

– Measured parameter<br />

– spatial and temporal coverage<br />

– resolution<br />

Observations <strong>in</strong>formative for<br />

– large-scale model : ex : AMSU-A (Atmospheric sounder) : resolution<br />

of 48 km.<br />

– Meso-scale model : ex : Doppler-w<strong>in</strong>d measurement


Outl<strong>in</strong>es<br />

General ideas on <strong>data</strong> <strong>assimilation</strong><br />

Different k<strong>in</strong>ds of observation<br />

A new meso-scale <strong>data</strong> <strong>assimilation</strong> system<br />

Assimilation experiments


The AROME project<br />

AROME model will complete the french NWP system <strong>in</strong> 2008 :<br />

– ARPEGE : global model (15 km over Europe)<br />

– ALADIN-France : regional model (10km)<br />

– AROME : mesoscale model (2.5km)<br />

<br />

Aim : <strong>to</strong> improve local meteorological forecasts of potentially dangerous<br />

convective events (s<strong>to</strong>rms, unexpected floods, w<strong>in</strong>d bursts...) and lower<br />

tropospheric phenomena (w<strong>in</strong>d, temperature, turbulence, visibility...).<br />

ARPEGE stretched grid<br />

and ALADIN-FRANCE doma<strong>in</strong><br />

AROME France doma<strong>in</strong>


Initial and lateral boundary conditions<br />

Lateral boundary<br />

conditions for Limited<br />

Area Model provided<br />

dur<strong>in</strong>g the forecast by :<br />

– a global model<br />

– a larger LAM<br />

Initial conditions could be<br />

provided by :<br />

– a larger model (dynamical<br />

adaptation)<br />

– A local <strong>data</strong> <strong>assimilation</strong><br />

system.<br />

Local <strong>data</strong> <strong>assimilation</strong><br />

systems for ALADIN and<br />

AROME


AROME <strong>data</strong> <strong>assimilation</strong> system<br />

Use a variational <strong>assimilation</strong> scheme<br />

2 w<strong>in</strong>d components, temperature, specific humidity and surface<br />

pressure are analysed at the model resolution (2.5 km).<br />

Use of a Rapid Update Cycle<br />

Forecasts <strong>in</strong>itialized with more recent observations will be<br />

more accurate<br />

Us<strong>in</strong>g high temporal and spatial frequency observations<br />

(RADAR measurements for example) <strong>to</strong> the best possible<br />

advantage


Objective scores : analysis compared <strong>to</strong> radiosonde at<br />

00 UTC<br />

<br />

Analysis from the AROME RUC compared <strong>to</strong> ALADIN analysis show an<br />

important reduction of Root Mean Square Error and Bias for all<br />

parameters all over the troposphere except for the humidity field around<br />

200 hPa<br />

---------- Bias --x---x-- rmse<br />

Temperature w<strong>in</strong>d specific humidity


Objective scores : forecast compared <strong>to</strong> surface<br />

observations<br />

Improvement <strong>in</strong> the first hours of the forecast<br />

Surface pressure<br />

<strong>assimilation</strong><br />

Dynamical<br />

adaptation<br />

2m temperature<br />

---------- Bias<br />

--x---x-- rms


First results<br />

objective scores show that the general benefit of the AROME<br />

analysis appears dur<strong>in</strong>g the first 12-h forecast ranges, then<br />

lateral conditions mostly take over the model solution.<br />

Subjective evaluation confirms many forecast improvement dur<strong>in</strong>g<br />

the first 12-h forecast ranges. In some particular cases, this<br />

benefit can also be observed after this range.


Outl<strong>in</strong>es<br />

General ideas on <strong>data</strong> <strong>assimilation</strong><br />

Different k<strong>in</strong>ds of observation<br />

A new meso-scale <strong>data</strong> <strong>assimilation</strong> system<br />

Assimilation experiments


Precipitat<strong>in</strong>g event, 5 oc<strong>to</strong>ber 2007<br />

RADAR<br />

MEASUREMENT<br />

AROME with<br />

<strong>assimilation</strong><br />

24-h cumulative<br />

ra<strong>in</strong>falls<br />

Better location<br />

of the maximum<br />

of precipitation<br />

AROME <strong>in</strong> dynamical<br />

adaptation<br />

ALADIN<br />

80 mm


Fog event, 7 february 2008<br />

<br />

<br />

AROME low cloud cover at 9-h UTC<br />

Fog is not simulated <strong>in</strong> sp<strong>in</strong>-up mode<br />

<strong>assimilation</strong><br />

Dynamical<br />

adaptation


28<br />

Experiment <strong>in</strong> order <strong>to</strong> evaluate<br />

the <strong>in</strong>fluence of additional<br />

Ground-based GPS observations <strong>in</strong><br />

AROME <strong>data</strong> <strong>assimilation</strong> system.<br />

Use of 194 stations (blue star) +<br />

84 additional stations (green<br />

circle).<br />

Give <strong>in</strong>formation on <strong>in</strong>tegrated<br />

humidity profile


Cumulative ra<strong>in</strong>fall, 18 July 2007 03-15 UTC<br />

29<br />

194 stations<br />

Ra<strong>in</strong>gauges<br />

measurements<br />

194 + 84<br />

stations


Conclusion on <strong>data</strong> <strong>assimilation</strong><br />

Data <strong>assimilation</strong> provide an accurate image of the true state of<br />

the atmosphere at a given time <strong>in</strong> order <strong>to</strong> <strong>in</strong>itialize numerical<br />

weather forecast us<strong>in</strong>g :<br />

– Observations<br />

– A previous forecast of the state of the atmosphere<br />

Observations used are various and numerous and provide large and<br />

small scale <strong>in</strong>formation.<br />

The use of a meso-scale <strong>data</strong> <strong>assimilation</strong> system improve Limited<br />

Area Model forecast accuracy up <strong>to</strong> 18 hours.<br />

This system has been tested for one year and will be put <strong>in</strong><strong>to</strong><br />

operation next month


Thank you for your<br />

attention…

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!