08.02.2015 Views

The Particle in a Box [and in a Circular Box]

The Particle in a Box [and in a Circular Box]

The Particle in a Box [and in a Circular Box]

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Department of Chemistry<br />

Chemistry Education Materials<br />

University of Connecticut Year 2006<br />

<strong>The</strong> <strong>Particle</strong> <strong>in</strong> a <strong>Box</strong> (<strong>and</strong> <strong>in</strong> a <strong>Circular</strong><br />

<strong>Box</strong>)<br />

Carl W. David<br />

University of Connecticut, Carl.David@uconn.edu<br />

This paper is posted at DigitalCommons@UConn.<br />

http://digitalcommons.uconn.edu/chem educ/12


<strong>The</strong> <strong>Particle</strong> <strong>in</strong> a <strong>Box</strong> (<strong>and</strong> <strong>in</strong> a <strong>Circular</strong> <strong>Box</strong>)<br />

C. W. David<br />

Department of Chemistry<br />

University of Connecticut<br />

Storrs, Connecticut 06269-3060<br />

(Dated: June 27, 2006)<br />

<strong>and</strong>, tak<strong>in</strong>g the second derivative, we have<br />

I. SYNOPSIS<br />

where A, B, <strong>and</strong> ω are unknown (to be determ<strong>in</strong>ed) constants.<br />

Tak<strong>in</strong>g the first derivative of this solution, we holds. Formally,<br />

And we can change 1 to 17, <strong>and</strong> 2 to 43, <strong>and</strong> the same<br />

have<br />

∫ L<br />

dψ(x)<br />

dx = −Aω s<strong>in</strong>(ωx) + Bω cos(ωx) ψ n (x)ψ m (x)dx = 0<br />

0<br />

<strong>The</strong> particle <strong>in</strong> a box is the simplest problem <strong>in</strong> elementary<br />

quantum mechanics, <strong>and</strong> as such is useful <strong>in</strong> more<br />

dx 2 = −Aω 2 cos(ωx) − Bω 2 s<strong>in</strong>(ωx)<br />

d 2 ψ(x)<br />

places than one can easily enumerate. For <strong>in</strong>stance, the<br />

molecular orbital theory is expla<strong>in</strong>ed easily <strong>in</strong> terms of<br />

which is, of course,<br />

particle <strong>in</strong> a box wavefunctions, easier than us<strong>in</strong>g st<strong>and</strong>ard<br />

atomic orbitals. Hence, the attention to this particular<br />

−ω 2 ψ(x)<br />

problem.<br />

II. INTRODUCTION<br />

This means that<br />

− ¯h2 (<br />

−ω 2 ψ(x) ) = Eψ(x)<br />

2m<br />

We start with a choice of coord<strong>in</strong>ate systems, which, by<br />

the way, <strong>in</strong>fluences the form of the solutions we are go<strong>in</strong>g<br />

or, said <strong>in</strong> the most straightforward manner, E is related<br />

to ω i.e.,<br />

to get, but not the substance. Here, we choose to use<br />

0


2<br />

if n≠m. Of course, when n=m, we have the normalization<br />

<strong>in</strong>tegral<br />

∫ L<br />

0<br />

ψ 2 n(x)dx ≠ 0<br />

i.e., someth<strong>in</strong>g other than zero. This last condition is<br />

used to choose the (so far) arbitrary constant, A, to force<br />

the <strong>in</strong>tegral to have a value of 1, <strong>in</strong> accord with the probabilistic<br />

<strong>in</strong>terpretation of the wave function. S<strong>in</strong>ce these<br />

are, <strong>in</strong> the case of the particle <strong>in</strong> a box, <strong>in</strong>tegrals of products<br />

of s<strong>in</strong>es, we have<br />

∫ L<br />

0<br />

nπ<br />

eı L<br />

(A x nπ −ı<br />

− e<br />

2ı<br />

L x<br />

) 2<br />

dx<br />

√<br />

2<br />

L<br />

which are trivial. A turns out to be if we force the<br />

<strong>in</strong>tegral to be 1. Aga<strong>in</strong>, this is expla<strong>in</strong>ed <strong>in</strong> every text<br />

book. Of course, the orthogonality <strong>in</strong>tegrals may also be<br />

evaluated us<strong>in</strong>g DeMoivre’s theorem. All of this turns<br />

out to be extraord<strong>in</strong>arily elementary.<br />

III.<br />

A RECTANGULAR BOX<br />

When we talk about rectangular <strong>and</strong> square boxes <strong>in</strong><br />

two dimensional particle <strong>in</strong> a box problems, we are gett<strong>in</strong>g<br />

set up to discuss degeneracy. <strong>The</strong> wave equation<br />

itself offers no h<strong>in</strong>t of the complexity that is com<strong>in</strong>g, but<br />

the boundary conditions, which are <strong>in</strong>extricably bound<br />

to the solutions of the Schröd<strong>in</strong>ger Equation, are the key<br />

here.<br />

Assum<strong>in</strong>g we are work<strong>in</strong>g <strong>in</strong> the x-y space (2 dimensions),<br />

so ψ(x, y) is what is be<strong>in</strong>g sought, we have<br />

(<br />

− ¯h2 ∂ 2 )<br />

ψ<br />

2µ ∂x 2 + ∂2 ψ<br />

∂y 2 = Eψ (3.1)<br />

where x <strong>and</strong> y are the st<strong>and</strong>ard Cartesian coord<strong>in</strong>ates.<br />

<strong>The</strong> solution to this variable separable differential equation<br />

is discussed <strong>in</strong> all texts, <strong>and</strong> has the form<br />

X(x)Y (y) = N lx,l y<br />

s<strong>in</strong> n xπx<br />

l x<br />

s<strong>in</strong> n yπy<br />

l y<br />

where n x <strong>and</strong> n y are <strong>in</strong>teger quantum numbers, rang<strong>in</strong>g<br />

from 1 to ∞. <strong>The</strong> box is rectangular if l x ≠ l y . N lx,l y<br />

is<br />

the normalization factor, which has the form<br />

√ √<br />

2 2<br />

N lx,l y<br />

=<br />

l x<br />

Once substituted <strong>in</strong>to the orig<strong>in</strong>al Schröd<strong>in</strong>ger Equation,<br />

the solution suggests that the energy is given by the<br />

formula:<br />

( (nx<br />

E nx,n y<br />

= ¯h2 π 2 ) 2 ( ) ) 2 ny<br />

+<br />

(3.2)<br />

2µ l x l y<br />

l y<br />

(a well known result).<br />

<strong>The</strong> degeneracy appears when we allow the length of<br />

the two sides of the ”box” to become equal. At that<br />

po<strong>in</strong>t, we can factor the common l = l x = l y out of this<br />

formula to obta<strong>in</strong><br />

E nx,n y<br />

= ¯h2 π 2 (<br />

n<br />

2<br />

2µl 2 x + n 2 )<br />

y<br />

It is clear that the sum of two squares can add up to the<br />

same value, e.g., 5 2 +2 2 = 2 2 +5 2 , i.e., n 2 x+n 2 y = reverse.<br />

We are see<strong>in</strong>g a double degeneracy emerg<strong>in</strong>g. (In three<br />

dimensions, we would have a three fold degeneracy develop<strong>in</strong>g,<br />

when the box became cubical.) Notice that when<br />

n x = n y , we have a loss of degeneracy.<br />

IV.<br />

A CIRCULAR BOX<br />

Squares are nice, but we learn more from circles. Consider<br />

a two dimensional particle <strong>in</strong> a circular box. <strong>The</strong><br />

particle is restricted to be with<strong>in</strong> r=R, where R is a<br />

constant. This is a polar coord<strong>in</strong>ate problem, s<strong>in</strong>ce the<br />

boundary condition will be that ψ(R, θ) = 0∀θ, i.e., the<br />

wave function will be required to vanish at the edge of<br />

the disk region.<br />

<strong>The</strong> first th<strong>in</strong>g we have to do is transform the<br />

Schröd<strong>in</strong>ger Equation from Cartesian to polar coord<strong>in</strong>ates.<br />

We are go<strong>in</strong>g from (x, y) → (r, θ). <strong>The</strong> transformation<br />

equations are<br />

x = r cos θ<br />

y = r s<strong>in</strong> θ (4.1)<br />

which says, given r <strong>and</strong> θ, we can compute x <strong>and</strong> y. <strong>The</strong><br />

reverse equations are<br />

r = √ x 2 + y 2<br />

θ = tan −1 y x<br />

(4.2)<br />

which says the reverse, i.e., given x <strong>and</strong> y, we can compute<br />

r <strong>and</strong> θ.<br />

First we need to express ∂<br />

∂x<br />

is terms of partial derivatives<br />

with respect to r <strong>and</strong> θ. From the cha<strong>in</strong> rule we<br />

have<br />

( ) ( ) ( ) ( ) ( )<br />

∂ ∂r ∂ ∂θ ∂<br />

=<br />

+<br />

∂x<br />

y<br />

∂x<br />

y<br />

∂r<br />

θ<br />

∂x<br />

y<br />

∂θ<br />

r<br />

where we are carefully attempt<strong>in</strong>g to <strong>in</strong>dicate what is<br />

constant dur<strong>in</strong>g each partial differentiation. We f<strong>in</strong>d that<br />

( ) (<br />

∂r ∂ √ )<br />

x<br />

=<br />

2 + y 2<br />

= 1 2x<br />

∂x<br />

y<br />

∂x 2 r = cos θ<br />

<strong>and</strong><br />

( ) ∂θ<br />

=<br />

∂x<br />

y<br />

y<br />

( ∂ tan<br />

−1 y )<br />

∂x<br />

x<br />

y


3<br />

This latter differential is a little more difficult than the<br />

former one was, <strong>and</strong> we attack it <strong>in</strong> a special manner,<br />

guaranteed to br<strong>in</strong>g a smile of recognition to weary readers.<br />

Specifically, we use implicit differentiation. Thus<br />

so<br />

tan θ = y x<br />

which is<br />

d tan θ = dy x − ydx<br />

x 2<br />

= d s<strong>in</strong> θ<br />

cos θ = dθ + s<strong>in</strong>2 θ<br />

cos 2 θ dθ<br />

so, hold<strong>in</strong>g y constant, one has<br />

( ) 1<br />

cos 2 dθ = − ydx<br />

θ x 2 → dθ<br />

dx = −<br />

dy<br />

x − ydx ( )<br />

x 2 = 1 + s<strong>in</strong>2 θ<br />

cos 2 dθ =<br />

θ<br />

(<br />

y<br />

1<br />

cos 2 θ<br />

( cos 2 θ + s<strong>in</strong> 2 θ<br />

cos 2 θ<br />

) ( ) 1<br />

dθ =<br />

cos 2 dθ<br />

θ<br />

( )<br />

) → −y cos2 θ 1<br />

x<br />

2 x 2 cos 2 dθ = − ydx<br />

θ x 2 → dθ<br />

dx = − (<br />

y<br />

1<br />

cos 2 θ<br />

)<br />

x<br />

2 → −y cos2 θ<br />

x 2<br />

so<br />

dθ<br />

dx = −tan θ cos2 θ<br />

K<br />

( ) dθ<br />

= − tan θ cos2 θ<br />

= − s<strong>in</strong> θ<br />

dx<br />

y<br />

r cos θ r<br />

Go<strong>in</strong>g the other way i.e., hold<strong>in</strong>g x constant, we have<br />

dy<br />

x = dθ<br />

cos 2 θ<br />

cos 2 θ<br />

x<br />

=<br />

( ) ∂θ<br />

∂y<br />

x<br />

cos 2 ( )<br />

θ ∂θ<br />

r cos θ = ∂y<br />

x<br />

cos θ<br />

r<br />

=<br />

( ) ∂θ<br />

∂y<br />

x<br />

so<br />

( ) ( )<br />

∂<br />

∂<br />

= cos θ − s<strong>in</strong> θ ( ) ∂<br />

∂x<br />

y<br />

∂r<br />

θ<br />

r ∂θ<br />

r<br />

( ∂<br />

∂y<br />

)<br />

x<br />

( ) ∂<br />

= s<strong>in</strong> θ + cos θ ( ) ∂<br />

∂r<br />

θ<br />

r ∂θ<br />

r<br />

<strong>The</strong> second partial derivatives then must be<br />

( ∂<br />

2<br />

( ∂<br />

2<br />

∂x 2 )y<br />

∂y 2 )x<br />

= ∂ ( cos θ ( )<br />

∂<br />

∂r θ − ( s<strong>in</strong> θ ∂<br />

) )<br />

r ∂θ r<br />

∂x<br />

= ∂ ( s<strong>in</strong> θ ( )<br />

∂<br />

∂r θ + ∂ ( cos θ ∂<br />

) )<br />

r ∂θ r<br />

∂y<br />

Equation 4.3 exp<strong>and</strong>s to become<br />

(4.3)<br />

(4.4)<br />

( ∂<br />

2<br />

∂x 2 )y<br />

= cos θ<br />

(<br />

∂<br />

(<br />

cos θ<br />

( ∂<br />

∂r<br />

)<br />

− s<strong>in</strong> θ<br />

θ r<br />

∂r<br />

( ∂<br />

) ))<br />

∂θ<br />

r<br />

− s<strong>in</strong> θ<br />

r<br />

(<br />

∂<br />

(<br />

cos θ<br />

( ∂<br />

∂r<br />

)<br />

− s<strong>in</strong> θ<br />

θ r<br />

∂θ<br />

( ∂<br />

) ))<br />

∂θ<br />

r<br />

i.e.,<br />

( ∂<br />

2<br />

∂x 2 )y<br />

+ s<strong>in</strong>2 θ<br />

r<br />

= cos 2 θ ∂2 s<strong>in</strong> θ cos θ<br />

+<br />

∂r2 r 2<br />

∂ s<strong>in</strong> θ cos θ<br />

−<br />

∂r r<br />

∂ 2 s<strong>in</strong> θ cos θ<br />

+<br />

∂r∂θ r 2<br />

∂ s<strong>in</strong> θ cos θ<br />

−<br />

∂θ r<br />

∂ 2<br />

∂r∂θ<br />

∂<br />

∂θ + s<strong>in</strong>2 θ<br />

r 2 ∂ 2<br />

∂θ 2 (4.5)


4<br />

For the y term we have<br />

( ∂<br />

2<br />

∂y 2 )x<br />

= s<strong>in</strong> θ<br />

( (<br />

∂ s<strong>in</strong> θ<br />

∂<br />

∂r + cos θ<br />

r<br />

∂r<br />

∂<br />

∂θ<br />

))<br />

+ cos θ<br />

r<br />

( (<br />

∂ s<strong>in</strong> θ<br />

∂<br />

∂r + cos θ<br />

r<br />

∂θ<br />

∂<br />

∂θ<br />

))<br />

(4.6)<br />

i.e.,<br />

( ∂<br />

2<br />

+ cos2 θ<br />

r<br />

∂y 2 )x<br />

so, add<strong>in</strong>g the two relevant results we have<br />

( ∂<br />

2<br />

∂y 2 )x<br />

+ s<strong>in</strong>2 θ<br />

r<br />

+ cos2 θ<br />

r<br />

= s<strong>in</strong> 2 θ ∂2 cos θ s<strong>in</strong> θ<br />

−<br />

∂r2 r 2<br />

∂ cos θ s<strong>in</strong> θ<br />

+<br />

∂r r<br />

( ∂<br />

2<br />

+<br />

∂x<br />

)y<br />

2<br />

∂ 2 cos θ s<strong>in</strong> θ<br />

−<br />

∂r∂θ r 2<br />

∂ s<strong>in</strong> θ cos θ<br />

+<br />

∂θ r<br />

∂ 2<br />

∂r∂θ<br />

{ }} {<br />

= ∂2 s<strong>in</strong> θ cos θ ∂ s<strong>in</strong> θ cos θ ∂ 2<br />

+<br />

∂r2 }<br />

r 2 −<br />

{{<br />

∂θ<br />

}<br />

r ∂θ∂r<br />

{ }} {<br />

∂<br />

∂r − s<strong>in</strong> θ cos θ ∂ 2 s<strong>in</strong> θ cos θ ∂<br />

+<br />

r ∂r∂θ r 2 + s<strong>in</strong>2 θ ∂ 2<br />

} {{<br />

∂θ<br />

}<br />

r 2 ∂θ 2<br />

{ }} {<br />

cos θ s<strong>in</strong> θ ∂ s<strong>in</strong> θ cos θ ∂ 2<br />

−<br />

}<br />

r 2 +<br />

{{<br />

∂θ<br />

}<br />

r ∂r∂θ<br />

{ }} {<br />

∂<br />

∂r + cos θ s<strong>in</strong> θ ∂ 2 cos θ s<strong>in</strong> θ ∂<br />

−<br />

r ∂r∂θ<br />

}<br />

r 2<br />

{{<br />

∂θ<br />

}<br />

∂<br />

∂θ + cos2 θ ∂ 2<br />

r 2 ∂θ 2 (4.7)<br />

+ cos2 θ<br />

r 2 ∂ 2<br />

∂θ 2 (4.8)<br />

which becomes<br />

∂ 2<br />

∂r 2 + 1 ∂<br />

r ∂r + 1 ∂ 2<br />

r 2 ∂θ 2<br />

V. NOW, THE QUANTUM MECHANICS<br />

<strong>The</strong> Schröd<strong>in</strong>ger Equation now becomes<br />

(<br />

− ¯h2 ∂ 2 ψ<br />

2m ∂r 2 + 1 ∂ψ<br />

r ∂r + 1 ∂ 2 )<br />

ψ<br />

r 2 ∂θ 2 + zero × ψ = Eψ<br />

(why zero because a particle <strong>in</strong> a box just feels its<br />

boundaries, i.e., the model is of a particle free to roam<br />

(l<strong>in</strong>early) until it hits a wall.) which is go<strong>in</strong>g to be related<br />

to Bessel’s equation. We know this equation is variable<br />

separable, between r <strong>and</strong> θ, so we will write the solution<br />

as<br />

ψ = R ml (r)e ±mellθ<br />

which, when we substitute this <strong>in</strong>to the Schröd<strong>in</strong>ger<br />

Equation, gives us<br />

(<br />

− ¯h2 ∂ 2 R ml (r)<br />

2m ∂r 2 + 1 )<br />

∂R ml (r)<br />

− m2 l<br />

r ∂r r 2 R m l<br />

(r) = ER ml (r)<br />

which is<br />

r 2 R ′′ (r) + rR ′ (r) + (ɛr 2 − 2m<br />

¯h 2 m2 l)R(r) = 0<br />

where ɛ = 2mE/¯h 2 .<br />

This is one of the forms of the Bessel differential equation.<br />

To br<strong>in</strong>g it to st<strong>and</strong>ard form, we change variables<br />

from r to kρ = r, so<br />

so, choos<strong>in</strong>g<br />

we have<br />

<strong>and</strong> we have<br />

∂ρ<br />

∂r<br />

∂<br />

∂ρ = ∂ ∂r = 1 k<br />

k 2 ɛ = 1<br />

√<br />

1<br />

k =<br />

ɛ<br />

∂<br />

∂ρ<br />

ρ 2 R ′′ (ρ) + ρR ′ (ρ) ′ + (ρ 2 − m 2 l)R(ρ) = 0<br />

It is traditional to solve this equation separately for<br />

different values or m, <strong>and</strong> <strong>in</strong> fact, it is rare to see solutions<br />

for m l > 0 anywhere, s<strong>in</strong>ce the problem, from the po<strong>in</strong>t<br />

of view of quantum mechanics, is quote silly.<br />

For m l = 0 we have<br />

ρ 2 R ′′ (ρ) + ρR ′ (ρ) ′ + ρ 2 R(ρ) = 0<br />

<strong>and</strong> we start the solution by assum<strong>in</strong>g an Ansatz<br />

R(ρ) = ∑ a i ρ i<br />

i=0


5<br />

leav<strong>in</strong>g the question of the <strong>in</strong>dicial equation to more advanced<br />

study. We then have<br />

so<br />

R ′ (ρ) = ∑ i=1<br />

ia i ρ i−1<br />

<strong>and</strong><br />

R ′′ (ρ) = ∑ i=2<br />

(i)(i − 1)a i ρ i−2<br />

ρ 2 R ′′ (ρ) → ∑ − 1)a i ρ<br />

i=2(i)(i i → 2a 2 ρ 2 + (3)(2)a 3 ρ 3 + (4)(3)a 4 ρ 4 + · · ·<br />

+ρR ′ (ρ) ′ → ∑ ia i ρ i → a 1 ρ + 2a 2 ρ 2 + 3a 3 ρ 3 + · · ·<br />

i=1<br />

+(ρ 2 )R(ρ) → ∑ a i ρ i+2 → a 0 ρ 2 + a 1 ρ 3 + a 2 ρ 4 + · · ·<br />

i=0<br />

= 0<br />

Gather<strong>in</strong>g terms <strong>in</strong> the st<strong>and</strong>ard manner, we have<br />

a 2 = −a 0 /2<br />

((3)(2) + 3)a 3 = a 1<br />

a 0 /2<br />

((4)(3) + 4)a 4 = −a 2 =<br />

((4)(3) + 4)<br />

It is fairly obvious that, contrary to other Frobenius<br />

Schemes <strong>in</strong> st<strong>and</strong>ard Quantum Chemistry, this one does<br />

not lead to quantization through truncation of a power<br />

series <strong>in</strong>to a polynomial.<br />

Instead, this Bessel Function’s expansion never term<strong>in</strong>ates,<br />

is never truncated, i.e., rema<strong>in</strong>s an <strong>in</strong>f<strong>in</strong>ite power<br />

series.<br />

<strong>The</strong> quantization occurs when the boundary condition<br />

that the wave function vanish when we are at the rim of<br />

the enclosure is <strong>in</strong>voked.<br />

<strong>The</strong> requirement that the function be zero at the<br />

boundary (r=R), results <strong>in</strong> requir<strong>in</strong>g that the Bessel<br />

function have a zero, call it ρ 0 . This can be found <strong>in</strong><br />

tables of the Bessel Function.A For <strong>in</strong>stance, the first<br />

root, J 0 (ρ 0 ) occurs at ρ 0 = 2.4048 (<strong>and</strong> 5.5207, 8.6537,<br />

11.7915, etc., E. Kreyszig, ”Advanced Eng<strong>in</strong>eer<strong>in</strong>g Mathematics”,<br />

John Wiley <strong>and</strong> Sons. New York, 1962, page<br />

548). So<br />

i.e.,<br />

or,<br />

ρ 0 = R k =<br />

R √<br />

1<br />

ɛ<br />

( ρ0<br />

) 2 2mE<br />

= ɛ =<br />

R<br />

¯h 2<br />

(<br />

E 0 = ¯h2 ρ0<br />

) ( ) 2 2<br />

E0 = ¯h2 2.4048<br />

2m R 2m R<br />

where you have specified the value of R when sett<strong>in</strong>g up<br />

the problem.<br />

<strong>The</strong> zero’s of the Bessel function act to quantize the<br />

energy via the boundary conditions, <strong>in</strong> a slightly different<br />

mode than what we are used to, but never the less,<br />

we obta<strong>in</strong> a result which is quite comfortable <strong>in</strong>side the<br />

context of st<strong>and</strong>ard quantum mechanical constructs.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!