12.02.2015 Views

Testing 1 - UCSB SoC Design and Test Lab

Testing 1 - UCSB SoC Design and Test Lab

Testing 1 - UCSB SoC Design and Test Lab

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

© K.-T. Cheng, component.ppt, v1.0<br />

1<br />

Outline - Overview<br />

Overview of IC <strong><strong>Test</strong>ing</strong><br />

• Types of <strong><strong>Test</strong>ing</strong> at IC level<br />

• IC Production <strong>Test</strong> Process<br />

• Burn-in<br />

• Board, System <strong>and</strong> Field <strong><strong>Test</strong>ing</strong><br />

• Costs of <strong><strong>Test</strong>ing</strong><br />

• The <strong><strong>Test</strong>ing</strong> Problems<br />

© K.-T. Cheng, component.ppt, v1.0<br />

2


VLSI Realization Process<br />

Customer’s need<br />

Determine requirements<br />

Write specifications<br />

<strong>Design</strong> synthesis <strong>and</strong> Verification<br />

<strong>Test</strong> development<br />

Fabrication<br />

Manufacturing test<br />

*from M. Bushnell/V. Agrawal<br />

Chips to customer<br />

© K.-T. Cheng, component.ppt, v1.0<br />

3<br />

Verification vs. <strong>Test</strong><br />

! Verifies correctness of design.<br />

! Performed by simulation,<br />

hardware emulation, or formal<br />

methods.<br />

! Performed once prior to<br />

manufacturing.<br />

! Responsible for quality of<br />

design.<br />

! Verifies correctness of manufactured<br />

hardware.<br />

! Two-part process:<br />

– 1. <strong>Test</strong> generation: software process<br />

executed once during design<br />

– 2. <strong>Test</strong> application: electrical tests applied<br />

to hardware<br />

! <strong>Test</strong> application performed on every<br />

manufactured device.<br />

! Responsible for quality of devices.<br />

*from M. Bushnell/V. Agrawal<br />

© K.-T. Cheng, component.ppt, v1.0<br />

4


Errors And Faults<br />

! <strong>Design</strong> errors<br />

– violations of design rules<br />

– incorrect mapping between different levels of design<br />

– incomplete or inconsistent specification<br />

! Fabrication errors - caused by human errors<br />

– incorrect wiring<br />

– shorts caused by improper soldering<br />

! Fabrication defects - caused by imperfect<br />

manufacturing process<br />

– mask alignment errors<br />

– improper doping profiles<br />

© K.-T. Cheng, component.ppt, v1.0<br />

5<br />

! Physical failures - due to component wear-out<br />

<strong>and</strong>/or environmental factors<br />

– connectors may break due to electronmigration<br />

or corrosion<br />

– temperature, humidity <strong>and</strong> vibrations<br />

accelerate the aging of components<br />

– infancy failures<br />

© K.-T. Cheng, component.ppt, v1.0<br />

6


Problems of Ideal <strong>Test</strong>s<br />

! Ideal tests detect all defects produced in the<br />

manufacturing process.<br />

! Ideal tests pass all functionally good devices.<br />

! Very large numbers <strong>and</strong> varieties of possible defects<br />

need to be tested.<br />

! Difficult to generate tests for some real defects. Defectoriented<br />

testing is an open problem.<br />

*from M. Bushnell/V. Agrawal<br />

© K.-T. Cheng, component.ppt, v1.0<br />

7<br />

Real <strong>Test</strong>s<br />

! Based on analyzable fault models, which may<br />

not map on real defects.<br />

! Incomplete coverage of modeled faults due to<br />

high complexity.<br />

! Some good chips are rejected. The fraction (or<br />

percentage) of such chips is called the yield loss.<br />

! Some bad chips pass tests. The fraction (or<br />

percentage) of bad chips among all passing<br />

chips is called the defect level.<br />

© K.-T. Cheng, component.ppt, v1.0<br />

8


<strong><strong>Test</strong>ing</strong> as Filter Process<br />

Good chips<br />

Prob(pass test) = high<br />

Prob(good) = y<br />

Fabricated<br />

chips<br />

Defective chips<br />

Prob(bad) = 1- y<br />

Prob(fail test) = high<br />

Prob(fail<br />

test) = low<br />

Prob(pass test) = low<br />

Mostly<br />

good<br />

chips<br />

Mostly<br />

bad<br />

chips<br />

© K.-T. Cheng, component.ppt, v1.0<br />

9<br />

Types of <strong><strong>Test</strong>ing</strong> - IC Level<br />

! Characterization - determine the device’s characteristics<br />

– AC <strong>and</strong> DC characteristics<br />

– data will be used for final spec.<br />

– data can be used to identify area in which processing can<br />

be helped for increased yield<br />

– test time is not important<br />

! Production testing<br />

– Contact test<br />

– Burn-in testing<br />

– Functional testing<br />

– Parametric testing<br />

© K.-T. Cheng, component.ppt, v1.0<br />

10


Production <strong><strong>Test</strong>ing</strong> for ICs<br />

Contact<strong>Test</strong><br />

Burn-In <strong>Test</strong><br />

To screen out assembly related failures.<br />

To insure that the tester interface is in<br />

contact with the device.<br />

To screen out infant mortalities<br />

Functional <strong>Test</strong><br />

DC Parametric <strong>Test</strong><br />

Steady state tests<br />

AC Parametric <strong>Test</strong><br />

To ensure that state changes<br />

occurattherighttime<br />

© K.-T. Cheng, component.ppt, v1.0<br />

11<br />

DC Parametric <strong><strong>Test</strong>ing</strong><br />

! <strong>Test</strong>s are done by Parametric<br />

Measurement Unit (PMU)<br />

– Leakage test<br />

– Threshold V iL &V iH test<br />

– Output drive current test<br />

– Power consumption test<br />

– Output short current test<br />

© K.-T. Cheng, component.ppt, v1.0<br />

12


AC Parametric <strong><strong>Test</strong>ing</strong><br />

! To ensure that value/state changes occur at the<br />

right time<br />

! Some of AC parametric tests are mainly for<br />

characterization <strong>and</strong> may not be necessary for<br />

production test.<br />

– <strong>Test</strong> for rise <strong>and</strong> fall times of an output signal<br />

– <strong>Test</strong>s for setup <strong>and</strong> hold times<br />

– <strong>Test</strong>s for time to tri-state<br />

– <strong>Test</strong>s for measuring delay times<br />

» E.g. tests for memory access time<br />

– Functional at-speed tests (speed sorting)<br />

© K.-T. Cheng, component.ppt, v1.0<br />

13<br />

Functional <strong><strong>Test</strong>ing</strong> for Digital Circuits<br />

<strong>Test</strong><br />

Vectors<br />

…. 01<br />

…. 00<br />

….<br />

…. 01<br />

True<br />

Response<br />

Digital<br />

Circuit<br />

Comparator<br />

….<br />

Circuit<br />

Response<br />

11…. 10….<br />

…<br />

.<br />

01….<br />

<strong>Test</strong><br />

Result<br />

© K.-T. Cheng, component.ppt, v1.0<br />

14


Failure rate<br />

Typical Bathtub Curve of IC’s<br />

Failure Rate<br />

Earlyfailure<br />

period<br />

Useful-life period<br />

Wearout<br />

period<br />

Cumulative operating time<br />

~1,000 hours >10years<br />

© K.-T. Cheng, component.ppt, v1.0<br />

15<br />

Burn-in <strong><strong>Test</strong>ing</strong><br />

! Correlations have been made between life span at room<br />

temperature & life span at elevated temperature.<br />

! Charts of these correlations have been made for each<br />

technology<br />

! Put the device in a furnace for a certain length of time at<br />

an elevated temperature <strong>and</strong> voltage<br />

– By applying high voltage to the IC’s pins, burn-in<br />

accelerates the time-to-failure of oxide defects (weak<br />

oxide, pin holes, uneven layer growth, etc) typically<br />

found in MOS devices<br />

– High temperature accelerates these <strong>and</strong> other defects,<br />

such as ionic contamination <strong>and</strong> silicon defects<br />

© K.-T. Cheng, component.ppt, v1.0<br />

16


High-Voltage Stress <strong>Test</strong>s<br />

! Mainly for memory chips<br />

! Cycling through all addresses using selected memory<br />

data patterns for several seconds, both logic high <strong>and</strong><br />

logic low, with 7.5V forcing function being applied<br />

(for a 5V rated part)<br />

! IC memory suppliers have used this test in lieu of<br />

dynamic burn-in as a means to uncover oxide defects<br />

in MOS IC’s<br />

! Some use it in conjunction with either dynamic burnin<br />

or TDBI<br />

© K.-T. Cheng, component.ppt, v1.0<br />

17<br />

<strong>Test</strong> During Burn-In<br />

! The most comprehensive burn-in technique<br />

! Procedure:<br />

– Devices are operated at 125 ° C <strong>and</strong> elevated voltage (7-7.5V) for<br />

an extended period of time, while all DUT’s are subjected to<br />

functional testing using a complex test<br />

– The DUT’s are operated for a short duration at a lower temp.<br />

70 ° C <strong>and</strong> voltage (5.5V) during which parametric testing is<br />

performed<br />

– Repeat the above two steps for 4-8 hours or longer<br />

! Used primarily for DRAM<br />

– But not for large memories due to the long electrical test times<br />

– Not appropriate for EPROM, microprocessors <strong>and</strong> other VLSI<br />

devices<br />

© K.-T. Cheng, component.ppt, v1.0<br />

18


Board Level <strong><strong>Test</strong>ing</strong><br />

! Shorts testing<br />

! In-circuit testing<br />

– Check devices already mounted on a board<br />

– An external tester applies patterns directly to the<br />

inputs of the device & observe the outputs<br />

– The tester must be capable of electronically isolating<br />

the IC under test from the board environment<br />

! Functional Board <strong><strong>Test</strong>ing</strong><br />

© K.-T. Cheng, component.ppt, v1.0<br />

19<br />

System <strong><strong>Test</strong>ing</strong><br />

! Final test in the manufacturing<br />

process<br />

! Checking the right assembly of<br />

components such as boards,<br />

backplanes, cables <strong>and</strong><br />

peripherals<br />

! It also involves checking of<br />

component interactions <strong>and</strong><br />

HW/SW functionality<br />

! Very long test times required<br />

© K.-T. Cheng, component.ppt, v1.0<br />

20


Field <strong><strong>Test</strong>ing</strong><br />

! Necessary for commissioning <strong>and</strong> faultfinding<br />

the system as a whole in a fieldservice<br />

environment<br />

! Both analog <strong>and</strong> digital test equipment is<br />

needed, issues of<br />

– Portability<br />

– Ease of use<br />

– Range of functions<br />

© K.-T. Cheng, component.ppt, v1.0<br />

21<br />

<strong><strong>Test</strong>ing</strong> Costs are Composed of:<br />

! <strong>Test</strong> equipment costs<br />

– Analog & digital signal <strong>and</strong> measuring instrumentation<br />

– <strong>Test</strong> head (pin electronics, drivers <strong>and</strong> cables)<br />

– <strong>Test</strong> controller (computer & storage)<br />

! <strong>Test</strong> development costs<br />

– <strong>Test</strong> planning, test program development <strong>and</strong><br />

debugging<br />

! <strong><strong>Test</strong>ing</strong>-time costs<br />

– time using the equipment to support testing<br />

! <strong>Test</strong> personnel costs<br />

– training<br />

– working time<br />

© K.-T. Cheng, component.ppt, v1.0<br />

22


Cost Of <strong><strong>Test</strong>ing</strong> - The Rule of Tens<br />

1000<br />

Cost<br />

Per<br />

Fault<br />

(Dollars)<br />

100<br />

10<br />

1<br />

5.0<br />

50<br />

500<br />

0.5<br />

IC<br />

<strong>Test</strong><br />

Board<br />

<strong>Test</strong><br />

System<br />

<strong>Test</strong><br />

Warranty<br />

Repair<br />

© K.-T. Cheng, component.ppt, v1.0<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!