17.02.2015 Views

Revealing the Mechanism of HSP104 Transcription Initiation in the ...

Revealing the Mechanism of HSP104 Transcription Initiation in the ...

Revealing the Mechanism of HSP104 Transcription Initiation in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Reveal<strong>in</strong>g</strong> <strong>the</strong> <strong>Mechanism</strong> <strong>of</strong> <strong>HSP104</strong> <strong>Transcription</strong> <strong>Initiation</strong> <strong>in</strong><br />

<strong>the</strong> Yeast S.cerevisiae<br />

Thesis submitted for <strong>the</strong> degree <strong>of</strong><br />

“Doctor <strong>of</strong> Philosophy”<br />

By<br />

Melanie R. Grably<br />

318013778<br />

Submitted to <strong>the</strong> Senate <strong>of</strong> <strong>the</strong> Hebrew University<br />

March 2008


This work was carried out under <strong>the</strong> supervision <strong>of</strong>:<br />

Pr<strong>of</strong>essor David Engelberg


This <strong>the</strong>sis is dedicated to my family for <strong>the</strong>ir support.<br />

To <strong>the</strong> wonderful people I had <strong>the</strong> chance to work with throughout <strong>the</strong> years.<br />

To Irith for her endless (mo<strong>the</strong>rly) advice friendship and lov<strong>in</strong>g support.<br />

F<strong>in</strong>ally to Dudi, for his endless PATIENCE, understand<strong>in</strong>g, motivation, belief <strong>in</strong> this<br />

project, and last but def<strong>in</strong>itely not least his friendship.<br />

Thank you.


Summary<br />

All liv<strong>in</strong>g organisms are cont<strong>in</strong>uously exposed to sub-optimal growth conditions and<br />

have <strong>the</strong>refore developed appropriate responses <strong>in</strong> order to survive. The response to<br />

many <strong>of</strong> <strong>the</strong>se stressful conditions is mostly regulated at <strong>the</strong> level <strong>of</strong> transcription, lead<strong>in</strong>g<br />

to up-regulation <strong>of</strong> <strong>the</strong> expression <strong>of</strong> many stress-related genes. Many genes are upregulated<br />

<strong>in</strong> response to any given stress (<strong>the</strong> ‘general stress response’) and some <strong>of</strong> <strong>the</strong>se<br />

genes are <strong>in</strong>duced most strongly <strong>in</strong> response to a specific stress (<strong>the</strong> ‘specific stress<br />

response’). Important aspects <strong>of</strong> <strong>the</strong> co-regulation <strong>of</strong> many genes by <strong>the</strong> general response<br />

and <strong>of</strong> specific regulation by <strong>the</strong> specific stress responses have been revealed. Yet, <strong>the</strong><br />

relationship between <strong>the</strong>se two responses is not understood. In this <strong>the</strong>sis we study <strong>the</strong><br />

transcriptional regulation <strong>of</strong> <strong>HSP104</strong> <strong>of</strong> <strong>the</strong> yeast S.cerevisiae, a gene highly expressed <strong>in</strong><br />

response to heat shock. An early analysis <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter region, through its<br />

analysis via 5’deletion, mutagenesis and heterologous studies, showed that two different<br />

families <strong>of</strong> transcriptional activators regulate <strong>the</strong> expression <strong>of</strong> this gene. i) Hsf1, which<br />

upon activation by heat shock b<strong>in</strong>ds Heat Shock Elements (HSEs). ii) Msn2/4, which<br />

upon activation by a broad range <strong>of</strong> stresses, b<strong>in</strong>d STress Response Elements (STREs)<br />

and are negatively regulated by <strong>the</strong> Ras/cAMP/PKA pathway. This analysis also showed<br />

that <strong>the</strong> promoter displays a highly flexible mode <strong>of</strong> activation. It is maximally activated<br />

<strong>in</strong> <strong>the</strong> presence <strong>of</strong> both sets <strong>of</strong> transcriptional activators but can also be activated by ei<strong>the</strong>r<br />

one alone. We were also able to map <strong>the</strong> elements <strong>in</strong> <strong>the</strong> promoter responsible for basal<br />

activity (<strong>the</strong> sequence between -334 to -300) and those essential for heat shock-regulated<br />

activity (47). These results were obta<strong>in</strong>ed primarily dur<strong>in</strong>g <strong>the</strong> course <strong>of</strong> my M.Sc.<br />

studies.<br />

In this <strong>the</strong>sis, I describe <strong>the</strong> cont<strong>in</strong>uation <strong>of</strong> <strong>the</strong> effort to reveal <strong>the</strong> mechanism <strong>of</strong><br />

transcriptional activation <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter. I describe four experimental routes.<br />

One, cont<strong>in</strong>u<strong>in</strong>g <strong>the</strong> approach used <strong>in</strong> <strong>the</strong> studies described above, we proceeded with<br />

additional 5’ deletions <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter (particularly <strong>the</strong> fragment between -334<br />

and -300) attempt<strong>in</strong>g to obta<strong>in</strong> a f<strong>in</strong>ely tuned map <strong>of</strong> <strong>the</strong> sequence(s) responsible for <strong>the</strong><br />

basal activity <strong>of</strong> <strong>HSP104</strong> and for o<strong>the</strong>r unexpected properties <strong>of</strong> <strong>the</strong> sequence between -<br />

334 to -300. Two, us<strong>in</strong>g chromat<strong>in</strong> immunoprecipitation (ChIP), we monitored some <strong>of</strong><br />

<strong>the</strong> major changes occurr<strong>in</strong>g <strong>in</strong> vivo on <strong>the</strong> promoter follow<strong>in</strong>g stress. Three, us<strong>in</strong>g a<br />

i


genetic approach, we identified components <strong>of</strong> <strong>the</strong> basal transcription mach<strong>in</strong>ery that are<br />

important for <strong>HSP104</strong> promoter activity. Four, us<strong>in</strong>g a comb<strong>in</strong>ation <strong>of</strong> ChIP experiments<br />

and a genetic approach, we sought possible regulators <strong>of</strong> Hsf1.<br />

Through <strong>the</strong> deletion analysis, we found that important part <strong>of</strong> <strong>the</strong> properties <strong>of</strong> <strong>the</strong><br />

34bp between -334 and -300 could be accounted for by a short HSE-like sequence<br />

resid<strong>in</strong>g <strong>in</strong> -305. Us<strong>in</strong>g ChIP assays we show that under optimal growth conditions<br />

nucleosomes on <strong>the</strong> <strong>HSP104</strong> promoter conta<strong>in</strong> mostly acetylated H3 and H4. However,<br />

follow<strong>in</strong>g heat shock <strong>the</strong>re is a rapid, but transient, decrease <strong>in</strong> <strong>the</strong> concentration <strong>of</strong><br />

acetylated histones on <strong>the</strong> promoter which seems to be partly mediated by Msn2/4.<br />

Namely, <strong>the</strong> Ras/PKA pathway controls H3 and H4 acetylation state via Msn2/4, <strong>the</strong>reby<br />

govern<strong>in</strong>g <strong>in</strong>duction <strong>of</strong> <strong>the</strong> promoter. We fur<strong>the</strong>r show that <strong>the</strong> decrease <strong>in</strong> acetylated H3<br />

and H4 on <strong>the</strong> promoter occurs via two dist<strong>in</strong>ct mechanisms. F<strong>in</strong>ally, we show that Hsf1<br />

b<strong>in</strong>d<strong>in</strong>g to <strong>the</strong> promoter is constitutive regardless <strong>of</strong> stress conditions, but is reduced <strong>in</strong><br />

ras2Δ cells. Us<strong>in</strong>g <strong>the</strong> genetic approach, we found that Rpb4, components <strong>of</strong> <strong>the</strong><br />

SRB/MED coactivator complex, or <strong>of</strong> <strong>the</strong> SAGA and SWI/SNF complexes are critical for<br />

proper <strong>HSP104</strong> transcription. We also identified components <strong>of</strong> <strong>the</strong> basal transcription<br />

mach<strong>in</strong>ery (primarily <strong>of</strong> <strong>the</strong> SAGA complex) that are critical for Hsf1 activity.<br />

These four approaches comb<strong>in</strong>ed allow <strong>the</strong> establishment <strong>of</strong> a model describ<strong>in</strong>g<br />

<strong>the</strong> series <strong>of</strong> molecular events occurr<strong>in</strong>g on <strong>the</strong> <strong>HSP104</strong> promoter before and after heat<br />

shock.<br />

ii


Contents<br />

Summary………………………………………………………………....................i-ii<br />

Introduction<br />

The cellular stress response………………………………………………………… 2-3<br />

General mechanisms lead<strong>in</strong>g to transcription <strong>in</strong>itiation……………………………..3-5<br />

<strong>Transcription</strong> under stress <strong>in</strong> S.cerevisiae…………………………………………...6-7<br />

The HSE/Hsf1 system……………………………………………………………….7-8<br />

The STRE/Msn2/Msn4 system……………………………………………………..8-9<br />

Hsf1 and Msn2/4 can exclusively or cooperatively activate <strong>the</strong> yeast <strong>HSP104</strong> gene. 10<br />

<strong>HSP104</strong> promoter analysis…………………………………..................................10-18<br />

Goals <strong>of</strong> Study…………………………………………………………………...18-19<br />

Experimental Procedures<br />

Yeast stra<strong>in</strong>s, plasmids and media………………………………………..............19-20<br />

Chromat<strong>in</strong> immunoprecipitation………………………………………………….20-21<br />

RNA preparation and S1 analysis……………………………………………………21<br />

Preparation <strong>of</strong> cell lysates and western blot analysis……………………...................21<br />

β-Galactosidase assay……………………………………………………..................22<br />

Results<br />

The upstream 34bp fragment <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter possesses unusual modular<br />

properties………………………………………………………………………….22-28<br />

In response to heat shock, acetylated H3 histones dissociate from <strong>the</strong> promoter<br />

whereas acetylated H4 histones undergo deacetylation…………………………..29-32<br />

No specific HDAC is responsible for <strong>the</strong> deacetylation <strong>of</strong> H4 on <strong>the</strong> <strong>HSP104</strong><br />

promoter……………………………………………………………………………...33<br />

Hsf1 constitutively b<strong>in</strong>ds <strong>the</strong> <strong>HSP104</strong> promoter…………………………………34-36<br />

SAGA, SRB/MED and SWI/SNF are important for <strong>HSP104</strong> promoter activity....36-43<br />

Regulation <strong>of</strong> Hsf1…………………………………………………………..........44-47<br />

Discussion………………………………………………………………………...47-52<br />

References………………………………………………………………………..52-61


INTRODUCTION<br />

The cellular stress response<br />

Cells are cont<strong>in</strong>uously exposed to suboptimal growth conditions, generally<br />

termed cellular stresses. They have developed <strong>the</strong>refore various strategies <strong>in</strong> order to<br />

survive and even fur<strong>the</strong>r proliferate and function under <strong>the</strong>se stresses. At <strong>the</strong><br />

molecular level <strong>the</strong>se strategies <strong>in</strong>clude <strong>the</strong> activation <strong>of</strong> several biochemical<br />

mach<strong>in</strong>eries. First, <strong>the</strong> mach<strong>in</strong>ery that imposes growth arrest (3, 54, 76, 101, 106,<br />

111, 130) <strong>in</strong> order to prevent DNA syn<strong>the</strong>sis and proliferation under stress and<br />

damag<strong>in</strong>g conditions. Second, <strong>the</strong> <strong>in</strong>duction (primarily at <strong>the</strong> transcriptional level) <strong>of</strong><br />

a small number <strong>of</strong> genes whose prote<strong>in</strong> products are <strong>in</strong>volved <strong>in</strong> combat<strong>in</strong>g <strong>the</strong> stress<br />

and <strong>in</strong> repair<strong>in</strong>g <strong>the</strong> damage <strong>in</strong>flicted (16, 20, 44, 51, 69). Cell cycle arrest could be<br />

relieved when repair activity is completed and protective systems are active. Third,<br />

<strong>the</strong> activation <strong>of</strong> cell death systems, that occurs if <strong>the</strong> damage is not repairable (5, 11).<br />

This <strong>the</strong>sis focuses on <strong>the</strong> mechanisms responsible for <strong>the</strong> <strong>in</strong>duction <strong>of</strong> gene<br />

expression <strong>in</strong> response to stress. The genes expressed <strong>in</strong> response to stress could be<br />

categorized <strong>in</strong>to two different groups. One group <strong>in</strong>cludes genes whose expression is<br />

required to combat <strong>the</strong> specific stress <strong>in</strong>flicted (<strong>the</strong> “specific stress response”). The<br />

o<strong>the</strong>r group <strong>in</strong>cludes genes that encode repair and protective prote<strong>in</strong>s, but <strong>the</strong>ir<br />

activity is not directly relevant to <strong>the</strong> stress <strong>in</strong>flicted. They probably serve as a “just<br />

<strong>in</strong> case” protective measure (<strong>the</strong> “general stress response”). For example, upon heat<br />

shock, <strong>the</strong>re is specific expression <strong>of</strong> heat shock prote<strong>in</strong> genes (HSPs) (14, 16, 51, 81,<br />

85), most <strong>of</strong> which are chaperones that prevent prote<strong>in</strong> aggregation and ma<strong>in</strong>ta<strong>in</strong><br />

prote<strong>in</strong>s <strong>in</strong> <strong>the</strong>ir soluble and active form. However, <strong>in</strong> parallel to <strong>the</strong> <strong>in</strong>duction <strong>of</strong><br />

HSPs, <strong>the</strong> cell also <strong>in</strong>duces expression <strong>of</strong> genes whose products are responsible for<br />

deal<strong>in</strong>g with oxidative stress and/or DNA damage (20, 44, 51, 85). Similarly, when<br />

cells are exposed to DNA damag<strong>in</strong>g agents, some HSPs are <strong>in</strong>duced <strong>in</strong> parallel to <strong>the</strong><br />

<strong>in</strong>duction <strong>of</strong> DNA repair systems. The <strong>in</strong>duction <strong>of</strong> many stress-related genes,<br />

<strong>in</strong>clud<strong>in</strong>g many that are not relevant to <strong>the</strong> specific stress <strong>in</strong>flicted, renders <strong>the</strong> cell<br />

resistant to o<strong>the</strong>r stresses or to more severe stresses, a phenomenon known as crossprotection<br />

and <strong>the</strong>rmotolerance (81, 107, 108).<br />

Although revealed to a certa<strong>in</strong> level <strong>in</strong> prokaryotes, many aspects <strong>of</strong> <strong>the</strong><br />

molecular basis <strong>of</strong> <strong>the</strong> cellular stress response <strong>in</strong> eukaryotes are still enigmatic. It is<br />

not understood, for example, how cells sense stresses such as heat shock (what<br />

2


cellular receptor is responsible for sens<strong>in</strong>g elevated temperature?), pH, or high<br />

concentrations <strong>of</strong> free radicals. It is also far from understood how <strong>the</strong> stress signal is<br />

transmitted to <strong>the</strong> nucleus and affects <strong>the</strong> relevant transcriptional activator(s). F<strong>in</strong>ally,<br />

it is not known how <strong>the</strong> transcriptional mach<strong>in</strong>ery functions under conditions <strong>in</strong> which<br />

many prote<strong>in</strong>s are denatured or <strong>in</strong>activated. Does <strong>the</strong> same basal transcriptional<br />

system function under optimal conditions and under stress?<br />

This study approaches some <strong>of</strong> <strong>the</strong>se unresolved matters by address<strong>in</strong>g <strong>the</strong><br />

mechanism <strong>of</strong> transcription <strong>in</strong>itiation under stress <strong>of</strong> one s<strong>in</strong>gle gene, <strong>HSP104</strong> <strong>of</strong> <strong>the</strong><br />

yeast Saccharomyces cerevisiae. It beg<strong>in</strong>s by a comprehensive analysis <strong>of</strong> <strong>the</strong><br />

<strong>HSP104</strong> promoter aimed at identify<strong>in</strong>g <strong>the</strong> major cis-elements <strong>in</strong>volved (most <strong>of</strong> this<br />

work was carried out <strong>in</strong> my M.Sc. studies and is <strong>the</strong>refore presented primarily <strong>in</strong> <strong>the</strong><br />

"Introduction" section). It cont<strong>in</strong>ues by measur<strong>in</strong>g changes <strong>in</strong> chromat<strong>in</strong> organization<br />

that occur on <strong>the</strong> promoter <strong>in</strong> response to stress and fur<strong>the</strong>r cont<strong>in</strong>ues to <strong>the</strong><br />

identification <strong>of</strong> components <strong>of</strong> <strong>the</strong> basal transcription mach<strong>in</strong>ery, specifically critical<br />

for <strong>HSP104</strong> transcription.<br />

Prior to focus<strong>in</strong>g on what was known about <strong>HSP104</strong> transcription when this<br />

<strong>the</strong>sis was <strong>in</strong>itiated (see page 10), I shall describe our current understand<strong>in</strong>g <strong>of</strong><br />

transcription regulation <strong>in</strong> general, and our current knowledge <strong>of</strong> stress signal<strong>in</strong>g and<br />

stress-activated transcription factors <strong>in</strong> yeast.<br />

General mechanisms lead<strong>in</strong>g to transcription <strong>in</strong>itiation<br />

<strong>Transcription</strong> <strong>in</strong>itiation <strong>in</strong> eukaryotes is a complex reaction <strong>in</strong>volv<strong>in</strong>g dozens<br />

<strong>of</strong> prote<strong>in</strong>s. The complexity <strong>of</strong> <strong>the</strong> reaction is fur<strong>the</strong>r <strong>in</strong>creased by <strong>the</strong> fact that many<br />

aspects <strong>of</strong> it could be specific for some groups <strong>of</strong> genes and even for any given gene.<br />

Yet, <strong>the</strong>re are several major common <strong>the</strong>mes <strong>in</strong> transcription <strong>in</strong>itiation <strong>of</strong> all genes<br />

transcribed by RNA PolII. It is clear that transcription <strong>in</strong>itiation <strong>of</strong> all <strong>the</strong>se genes<br />

requires <strong>the</strong> presence <strong>of</strong> <strong>the</strong> core RNA PolII (12 subunits <strong>in</strong> yeast) along with prote<strong>in</strong>s<br />

form<strong>in</strong>g <strong>the</strong> so called pre<strong>in</strong>itiation complex [(PIC), also known as basal transcriptional<br />

complex, reviewed <strong>in</strong> (28, 78)]. There are still debates whe<strong>the</strong>r this complex is<br />

actually preformed or whe<strong>the</strong>r <strong>the</strong> components form<strong>in</strong>g PIC are sequentially recruited<br />

to promoters upon activation. Included <strong>in</strong> this basal transcriptional complex is <strong>the</strong><br />

TATA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (TBP). TBP is found <strong>in</strong> a multiprote<strong>in</strong> complex called TFIID<br />

which <strong>in</strong>cludes <strong>the</strong> TBP <strong>in</strong> addition to 14 prote<strong>in</strong>s known as TBP associated factors<br />

(TAFs). Curiously, although most genes require <strong>the</strong> presence <strong>of</strong> one or more TAFs<br />

3


for <strong>the</strong>ir transcription, some 16% <strong>of</strong> <strong>the</strong> genes <strong>of</strong> S.cerevisiae do not need TAFs for<br />

<strong>the</strong>ir transcription (59, 71, 113). However, <strong>the</strong> majority <strong>of</strong> TAFs are essential for<br />

viability [reviewed <strong>in</strong> (48)], as are 10 <strong>of</strong> <strong>the</strong> twelve subunits <strong>of</strong> RNA PolII (23, 24).<br />

Follow<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> TFIID, more prote<strong>in</strong> complexes are recruited to <strong>the</strong> promoter,<br />

i.e., <strong>the</strong> TFIIB complex, which assists RNA PolII <strong>in</strong> select<strong>in</strong>g <strong>the</strong> transcription start<br />

site. Then, <strong>the</strong> RNA PolII holoenzyme along with TFIIF, TFIIE, and TFIIH associate<br />

with <strong>the</strong> promoter and form <strong>the</strong> PIC. Follow<strong>in</strong>g establishment <strong>of</strong> PIC, promoter<br />

melt<strong>in</strong>g and transcription <strong>in</strong>itiation occur and are followed by hyperphoshorylation <strong>of</strong><br />

<strong>the</strong> C-term<strong>in</strong>al doma<strong>in</strong> (CTD) <strong>of</strong> <strong>the</strong> RNA polymerase through <strong>the</strong> TFIIH k<strong>in</strong>ase<br />

activity. This leads to promoter clearance and elongation <strong>of</strong> transcription [reviewed<br />

<strong>in</strong> (28)].<br />

All <strong>of</strong> <strong>the</strong> above events do not occur automatically s<strong>in</strong>ce <strong>in</strong>active promoters<br />

(such as promoters <strong>of</strong> heat shock genes <strong>in</strong> cells not exposed to stress) are not<br />

accessible to TBP and <strong>the</strong> subsequent complexes. Such promoters are part <strong>of</strong> DNA<br />

that is wrapped around histone prote<strong>in</strong>s (two H2A-H2B heterodimers and a H3-H4<br />

tetramer) which form nucleosomal structures. These nucleosomal structures are<br />

fur<strong>the</strong>r compacted <strong>in</strong>to tightly super-coiled structures called chromat<strong>in</strong>. Therefore,<br />

<strong>the</strong> b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> <strong>the</strong> basal transcription mach<strong>in</strong>ery and <strong>the</strong> formation <strong>of</strong> PIC are<br />

h<strong>in</strong>dered by <strong>the</strong>se nucleosomes that have to be remodeled to enable transcription<br />

<strong>in</strong>itiation to occur. Thus, many preced<strong>in</strong>g steps should take place <strong>in</strong> order to allow <strong>the</strong><br />

formation <strong>of</strong> PIC and transcription <strong>in</strong>itiation. There is no general mechanism(s)<br />

lead<strong>in</strong>g to chromat<strong>in</strong> remodel<strong>in</strong>g and transcription <strong>in</strong>itiation <strong>of</strong> all genes and each<br />

promoter is activated <strong>in</strong> its own unique and specific way (2, 29, 42). Never<strong>the</strong>less, a<br />

general mechanism lead<strong>in</strong>g to gene activation is believed to be <strong>the</strong> follow<strong>in</strong>g. Upon<br />

an activat<strong>in</strong>g signal <strong>the</strong>re is b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> prote<strong>in</strong>s known as transcriptional activators to<br />

enhancer elements (also called upstream activat<strong>in</strong>g sequences) <strong>in</strong> <strong>the</strong> relevant<br />

promoter and unb<strong>in</strong>d<strong>in</strong>g (where applicable) <strong>of</strong> transcriptional repressors. When<br />

bound to enhancers, transcriptional activators recruit chromat<strong>in</strong> modify<strong>in</strong>g complexes.<br />

The ma<strong>in</strong> purpose <strong>of</strong> <strong>the</strong>se chromat<strong>in</strong> modifications is to <strong>in</strong>duce “melt<strong>in</strong>g” <strong>of</strong><br />

nucleosomal structures <strong>in</strong> order to reduce <strong>the</strong> histone-DNA <strong>in</strong>teraction which enables<br />

<strong>the</strong> assembly <strong>of</strong> PIC. Chromat<strong>in</strong> modify<strong>in</strong>g complexes could be divided <strong>in</strong>to two<br />

general groups: i) Factors that, through <strong>the</strong> hydrolysis <strong>of</strong> ATP molecules, <strong>in</strong>duce<br />

conformational and spatial changes <strong>of</strong> nucleosomes (1, 43). ii) Factors that covalently<br />

modify histones by ei<strong>the</strong>r acetylation, phosphorylation, sumoylation, or methylation<br />

4


(70, 73, 79, 122). It is believed that one <strong>of</strong> <strong>the</strong> major events lead<strong>in</strong>g to <strong>the</strong> "open<strong>in</strong>g"<br />

<strong>of</strong> chromat<strong>in</strong> is <strong>the</strong> acetylation <strong>of</strong> histones on conserved lys<strong>in</strong>e residues. This<br />

acetylation probably reduces <strong>in</strong>teractions between histones and DNA. Acetylated<br />

histones (generally H3 and H4) <strong>the</strong>n facilitate access <strong>of</strong> o<strong>the</strong>r chromat<strong>in</strong> remodel<strong>in</strong>g<br />

factors which impose additional spatial changes on chromat<strong>in</strong>, followed by <strong>the</strong><br />

recruitment <strong>of</strong> basal transcription factors and RNA PolII [reviewed <strong>in</strong> (28, 78)].<br />

These modifications are actually critical for proper gene activation. The above<br />

concept is supported by numerous studies (2, 13, 21, 36, 64, 100, 103), but recent<br />

studies reported that on some promoters it is not histone acetylation, but ra<strong>the</strong>r histone<br />

deacetylation, that is related to <strong>the</strong> activation <strong>of</strong> <strong>the</strong>se promoters. Particularly,<br />

Deckert and Struhl showed that <strong>in</strong> yeast, histones H3 and H4 undergo deacetylation<br />

on some stress-activated and galactose-<strong>in</strong>duced promoters (31). They fur<strong>the</strong>r showed<br />

that, depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>ducer, one s<strong>in</strong>gle promoter can undergo different chromat<strong>in</strong><br />

modifications. For example, an <strong>in</strong>crease <strong>in</strong> histone acetylation <strong>in</strong> response to one<br />

stress and a decrease <strong>in</strong> histone acetylation <strong>in</strong> response to ano<strong>the</strong>r stimulus (31).<br />

Follow<strong>in</strong>g chromat<strong>in</strong> remodel<strong>in</strong>g and establishment <strong>of</strong> <strong>the</strong> pre<strong>in</strong>itiation<br />

complex on <strong>the</strong> promoter, transcription <strong>in</strong>itiation could be fur<strong>the</strong>r enhanced by coactivator<br />

complexes such as SRB/MED (8, 53, 63, 125). It should be appreciated that<br />

a plethora <strong>of</strong> factors could jo<strong>in</strong> any <strong>of</strong> <strong>the</strong>se multi-prote<strong>in</strong> complexes chang<strong>in</strong>g <strong>the</strong>ir<br />

composition and catalytic properties from one promoter to ano<strong>the</strong>r. The<br />

transcriptional activators responsible for <strong>in</strong>itiat<strong>in</strong>g <strong>the</strong> cascade <strong>of</strong> events lead<strong>in</strong>g to<br />

transcription <strong>in</strong>itiation are even more specific, usually <strong>in</strong>volved <strong>in</strong> activation <strong>of</strong> a<br />

limited number <strong>of</strong> genes. Many different transcriptional activators are expressed <strong>in</strong><br />

<strong>the</strong> cell, each respond<strong>in</strong>g to a narrow subset <strong>of</strong> signals, and some to a s<strong>in</strong>gle signal<br />

(i.e., hormones, growth factors). The different modifications occurr<strong>in</strong>g on <strong>the</strong><br />

chromat<strong>in</strong> and <strong>the</strong> enzymes <strong>in</strong>volved <strong>in</strong> <strong>the</strong>se modifications are also different from<br />

promoter to promoter. Similarly, components compos<strong>in</strong>g <strong>the</strong> co-activator complex<br />

SRB/MED could also vary on promoters [reviewed <strong>in</strong> (8, 10)] and even components<br />

mak<strong>in</strong>g up <strong>the</strong> RNA PolII holoenzyme could differ accord<strong>in</strong>g to cellular conditions<br />

and <strong>the</strong> particular promoter. In fact, even one subunit <strong>of</strong> RNA PolII, Rpb4, is<br />

dispensable for cell proliferation and seems to be required only under stress<br />

conditions (23, 89, 97, 98).<br />

5


<strong>Transcription</strong> under stress <strong>in</strong> S.cerevisiae<br />

Although several signal transduction pathways and some stress-<strong>in</strong>duced<br />

transcriptional activators have been identified (37, 38, 41, 87, 92, 96, 102, 133), we<br />

have only partial answers to some <strong>of</strong> <strong>the</strong> major questions raised above with respect to<br />

sens<strong>in</strong>g <strong>the</strong> stress and <strong>in</strong> turn activat<strong>in</strong>g transcription. This issue is never<strong>the</strong>less better<br />

understood <strong>in</strong> S.cerevisiae than <strong>in</strong> any o<strong>the</strong>r experimental system. A large number <strong>of</strong><br />

stress responsive systems have been discovered <strong>in</strong> this organism <strong>in</strong>clud<strong>in</strong>g several<br />

transcriptional activators whose activity is <strong>in</strong>duced by specific stresses (e.g. yAP1,<br />

Gcn4, Gln3) (41, 84, 88, 92). Ano<strong>the</strong>r activator, Hsf1, that is <strong>in</strong>duced ma<strong>in</strong>ly by<br />

elevated temperature, but also by o<strong>the</strong>r stresses [(52, 83, 90, 133) and see below] and<br />

yet two more activators, Msn2 and Msn4 that are activated <strong>in</strong> response to any stress<br />

[(17, 87, 110) and see below]. As promoters are usually complex, conta<strong>in</strong><strong>in</strong>g several<br />

enhancer elements, it is most probable that none <strong>of</strong> <strong>the</strong>se activators is act<strong>in</strong>g alone on<br />

target promoters, but cooperate with one <strong>of</strong> <strong>the</strong> o<strong>the</strong>r stress-<strong>in</strong>duced activators (4, 29,<br />

47), or with o<strong>the</strong>r activators, not necessarily <strong>in</strong>duced by stress (39, 53, 65, 72, 80, 93,<br />

123). It is still unclear how two or more activators co-act on <strong>the</strong> same promoter.<br />

Recent studies addressed <strong>the</strong> changes <strong>in</strong> <strong>the</strong> organization <strong>of</strong> chromat<strong>in</strong> that<br />

occur on stress responsive promoters upon activation (21, 36, 128, 135, 136). It was<br />

found that many promoters undergo extensive chromat<strong>in</strong> remodel<strong>in</strong>g (i.e.,<br />

nucleosomal disassembly follow<strong>in</strong>g histone acetylation) upon activation and that <strong>the</strong><br />

complexes responsible for this modification are <strong>in</strong> fact recruited by transcriptional<br />

activators (21, 36, 128, 135, 136). It should be noted that most studies address <strong>the</strong><br />

question at <strong>the</strong> whole genome level and <strong>the</strong>ir conclusions are <strong>the</strong>refore grossly<br />

general. The epistatic relationships between recruitment <strong>of</strong> transcriptional activators<br />

and changes <strong>in</strong> chromat<strong>in</strong> structure are not well established <strong>in</strong> many cases. Also, it is<br />

also not fully understood how RNA PolII and <strong>the</strong> factors <strong>of</strong> <strong>the</strong> basal transcription<br />

mach<strong>in</strong>ery function under stresses such as heat shock, when many prote<strong>in</strong>s are<br />

denatured. One <strong>of</strong> <strong>the</strong> RNA PolII subunits, Rpb4, is essential only under stress, and<br />

seems to be <strong>in</strong>volved <strong>in</strong> <strong>the</strong> <strong>in</strong>duction <strong>of</strong> some stress related genes (23, 89, 97, 98). It<br />

may also function as a stabilizer <strong>of</strong> RNA PolII under stress (23, 104). It is not clear<br />

whe<strong>the</strong>r o<strong>the</strong>r components <strong>of</strong> <strong>the</strong> PIC are specifically important for transcription<br />

under stress.<br />

In an attempt to understand <strong>the</strong>se aspects <strong>of</strong> <strong>the</strong> mechanisms <strong>of</strong> transcriptional<br />

activation under stress, we have been focus<strong>in</strong>g on <strong>the</strong> <strong>HSP104</strong> promoter. This<br />

6


promoter manifests some activity under non-stressed conditions that is dramatically<br />

<strong>in</strong>creased under stress [see Fig. 2 and (4, 16, 47, 121)]. In <strong>the</strong> first stage <strong>of</strong> <strong>the</strong> study,<br />

we cloned and mapped <strong>the</strong> cis-elements responsible for basal promoter activity and<br />

those for stress <strong>in</strong>duced activity [see details below and <strong>in</strong> (47)]. We found that stress<br />

responsive activity resides between -300 and -120, a fragment that conta<strong>in</strong>s b<strong>in</strong>d<strong>in</strong>g<br />

sites for <strong>the</strong> transcriptional activators Hsf1 and Msn2/4 [see details <strong>of</strong> promoter<br />

analysis <strong>in</strong> (47) and below <strong>in</strong> page 10 under “Hsf1 and Msn2/4 can exclusively or<br />

cooperatively activate <strong>the</strong> yeast <strong>HSP104</strong> gene”]. The mechanisms by which Hsf1 and<br />

Msn2/4 modulate <strong>the</strong> promoter and render it active are not known.<br />

The HSE/Hsf1 system<br />

Hsf1 b<strong>in</strong>ds <strong>the</strong> Heat Shock Element (HSE: a repeat <strong>of</strong> <strong>the</strong> pentanucleotide 5'-<br />

nGAAnnTTCn-3') present <strong>in</strong> <strong>the</strong> enhancer region <strong>of</strong> promoters <strong>of</strong> many genes<br />

encod<strong>in</strong>g heat shock prote<strong>in</strong>s as well as a few o<strong>the</strong>r promoters (81, 82, 85, 109).<br />

There is a cluster <strong>of</strong> four HSEs <strong>in</strong> <strong>the</strong> <strong>HSP104</strong> promoter (Fig. 1). The HSE/Hsf1<br />

system was reported <strong>in</strong> all eukaryotes studied. In S.cerevisiae HSF1 is essential for<br />

viability (119).<br />

It is not known how Hsf1 is regulated <strong>in</strong> lower or <strong>in</strong> higher organisms, but<br />

phosphorylation (25, 26, 55, 58, 66, 67, 83, 90, 119, 133), oxidation (77, 94, 137)<br />

and/or sumoylation (6, 56, 57, 60) may be <strong>in</strong>volved. Yet, none <strong>of</strong> <strong>the</strong>se modifications<br />

play a crucial role <strong>in</strong> Hsf1 activation (99). They are probably <strong>in</strong>volved <strong>in</strong> just f<strong>in</strong>e<br />

tun<strong>in</strong>g Hsf1’s activity. Thus, signal transduction cascades controll<strong>in</strong>g Hsf1 <strong>in</strong> yeast or<br />

mammals are not well def<strong>in</strong>ed (25, 26, 30, 40, 52, 66, 94, 105, 120). Recently,<br />

however, HSR1, an RNA molecule, has been shown to be essential for <strong>the</strong> activity <strong>of</strong><br />

Hsf1 <strong>in</strong> mammalian cells, rais<strong>in</strong>g a novel and attractive way for regulat<strong>in</strong>g<br />

transcriptional activators (112). In yeast, regulation <strong>of</strong> Hsf1 may also <strong>in</strong>volve<br />

phosphorylation (119), but as <strong>in</strong> mammalian cells, <strong>the</strong> k<strong>in</strong>ase(s) <strong>in</strong>volved and <strong>the</strong><br />

effect <strong>of</strong> phosphorylation on Hsf1 activity are not known. Also, it was recently<br />

reported that <strong>in</strong> S.cerevisiae, trehalose, a disaccharide known to function as a<br />

chemical chaperone <strong>in</strong> yeast cells, also regulates Hsf1’s activity <strong>in</strong> response to heat<br />

shock (27). In addition, it was suggested that PKA is responsible for Hsf1 regulation<br />

(40), but many o<strong>the</strong>r studies showed that PKA has just a m<strong>in</strong>or effect on Hsf1 [see<br />

more details below under “Hsf1 and Msn2/4 can exclusively or cooperatively activate<br />

<strong>the</strong> yeast <strong>HSP104</strong> gene” and <strong>in</strong> (35, 47)].<br />

7


In mammalian cells, Hsf1 is a monomeric cytoplasmic prote<strong>in</strong>, that <strong>in</strong><br />

response to stress is recruited to <strong>the</strong> nucleus, trimerized and b<strong>in</strong>ds DNA (45, 90, 118,<br />

133, 134). By contrast, <strong>in</strong> yeast, Hsf1 was shown to be constitutively homotrimerized<br />

and to constitutively b<strong>in</strong>d HSEs (61, 117). However, a more detailed study, that<br />

analyzed Hsf1 b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> vivo us<strong>in</strong>g ChIP asays, suggested that some promoters b<strong>in</strong>d<br />

Hsf1 only follow<strong>in</strong>g stress, similar to <strong>the</strong> case <strong>in</strong> mammalian cells (51, 135). It was<br />

found that <strong>in</strong> Drosophila, upon activation, Hsf1 b<strong>in</strong>ds HSEs and recruits mediator<br />

complexes to heat shock loci as part <strong>of</strong> a cascade <strong>of</strong> events lead<strong>in</strong>g to transcription<br />

activation. In fact, this recruitment seems to <strong>in</strong>volve direct <strong>in</strong>teraction between Hsf1<br />

and components <strong>of</strong> <strong>the</strong> mediator complex (95). In addition, Hsf1 <strong>of</strong> mammalian cells<br />

has been shown to <strong>in</strong>teract <strong>in</strong> vitro and <strong>in</strong> vivo with <strong>the</strong> chromat<strong>in</strong> remodel<strong>in</strong>g<br />

complex SWI/SNF (123). Chromat<strong>in</strong> remodel<strong>in</strong>g activities on purified nucleosome<br />

templates were also shown to be dependent upon <strong>the</strong>ir recruitment via Hsf1 (123).<br />

These reports <strong>in</strong>deed lead to <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g that <strong>in</strong> yeast, <strong>in</strong>teractions between Hsf1 and<br />

components <strong>of</strong> <strong>the</strong> mediator do exist and that mediator complex can be recruited to<br />

promoters via Hsf1 (39).<br />

The STRE/Msn2/Msn4 system<br />

As is shown <strong>in</strong> Figure 1, <strong>the</strong> promoter <strong>of</strong> <strong>HSP104</strong> conta<strong>in</strong>s several repeats <strong>of</strong><br />

<strong>the</strong> sequence 5’ AGGGG 3’ or 5’ CCCCT 3’. These sequences are known as STress<br />

Response Elements (STREs). STREs were orig<strong>in</strong>ally identified <strong>in</strong> <strong>the</strong> promoters <strong>of</strong><br />

CTT1 and DDR2 genes [encod<strong>in</strong>g <strong>the</strong> cytoplasmic catalase and DNA damage<br />

response prote<strong>in</strong>s respectively (68, 132)] whose transcription are highly <strong>in</strong>duced<br />

under oxidative stress and exposure to DNA damag<strong>in</strong>g agents respectively.<br />

Unexpectedly, it was found that CTT1 transcription was also elevated <strong>in</strong> response to<br />

heat shock, although it does not conta<strong>in</strong> any HSE (132). Fur<strong>the</strong>rmore, it has been<br />

shown that DDR2 can be transcriptionally activated not only by DNA damag<strong>in</strong>g<br />

agents, but also by thirteen o<strong>the</strong>r stresses <strong>in</strong>clud<strong>in</strong>g osmotic shock, nitrogen starvation<br />

oxidative stress and stationary phase (126). Promoter analysis <strong>of</strong> CTT1 and DDR2<br />

revealed that transcription activation <strong>in</strong> response to all <strong>the</strong>se stresses is dependent on<br />

short sequences that were termed STREs (68, 86). STREs were <strong>the</strong>n identified <strong>in</strong> <strong>the</strong><br />

promoters <strong>of</strong> hundreds <strong>of</strong> stress related genes (17, 91). The promoter <strong>of</strong> <strong>HSP104</strong><br />

conta<strong>in</strong>s three classical STREs positioned at -172, -220 and -252bp from <strong>the</strong> ATG<br />

[Fig. 1 and ref. (47)].<br />

8


Given that STREs are activated by many stresses and <strong>in</strong> turn <strong>in</strong>duce <strong>the</strong><br />

transcription <strong>of</strong> hundreds <strong>of</strong> genes, many <strong>of</strong> <strong>the</strong>m not to a full extent, <strong>the</strong>y clearly<br />

belong to <strong>the</strong> general, non-specific stress response (81, 107), part <strong>of</strong> <strong>the</strong> “just <strong>in</strong> case”<br />

expression <strong>of</strong> genes, not directly relevant to <strong>the</strong> stress <strong>in</strong>flicted.<br />

STREs serve as b<strong>in</strong>d<strong>in</strong>g sites for two transcriptional activators, conta<strong>in</strong><strong>in</strong>g<br />

Cys 2 His 2 z<strong>in</strong>c f<strong>in</strong>gers, known as Msn2 and Msn4 (87, 110). S<strong>in</strong>ce Msn2/4 are able to<br />

b<strong>in</strong>d STREs, <strong>the</strong>y are activators <strong>of</strong> <strong>the</strong> many STRE conta<strong>in</strong><strong>in</strong>g genes (e.g., CTT1,<br />

DDR2, HSP12). Their transcriptional activity is stimulated by a broad range <strong>of</strong><br />

stresses. Indeed, <strong>the</strong> msn2∆msn4∆ double mutant shows up to ten fold reduction <strong>in</strong><br />

<strong>the</strong> basal and <strong>in</strong>duced expression <strong>of</strong> many stress related genes and similar reduction <strong>in</strong><br />

<strong>the</strong> activity <strong>of</strong> STRE-dependent reporter genes (16, 44, 102, 115, 127). While <strong>the</strong><br />

means by which Msn2/4 are activated rema<strong>in</strong> elusive, it is well established that <strong>the</strong><br />

Ras/cAMP/PKA pathway directly <strong>in</strong>hibits Msn2/4 translocation to <strong>the</strong> nucleus (46).<br />

Therefore, <strong>in</strong> yeast cells deleted for RAS2 or <strong>in</strong> mutants with low cAMP levels [<strong>in</strong><br />

yeast, Ras prote<strong>in</strong>s <strong>in</strong>duce cAMP production and consequently PKA activity (18, 19)],<br />

Msn2/4 are constantly localized to <strong>the</strong> nucleus and <strong>the</strong> cells exhibit high and relatively<br />

constitutive expression <strong>of</strong> many stress related genes (9, 86, 116, 121, 129).<br />

Conversely, cells express<strong>in</strong>g <strong>the</strong> constitutively active mutant <strong>of</strong> Ras2 (RAS2 val19 ) are<br />

hypersensitive to stress and are defective <strong>in</strong> proper expression <strong>of</strong> stress related genes,<br />

because Msn2/4 are constantly cytoplasmic (9, 46, 86, 116, 121, 129). Ano<strong>the</strong>r level<br />

<strong>of</strong> Msn2/4 regulation is probably prote<strong>in</strong> stability. In response to numerous stresses<br />

such as heat shock or ethanol, Msn2 has been shown to be highly unstable (33). The<br />

<strong>in</strong>stability <strong>of</strong> Msn2 is related to its nuclear localization as it is highly degraded <strong>in</strong> an<br />

msn5 mutant [MSN5 encodes a nuclear export<strong>in</strong> <strong>in</strong>volved <strong>in</strong> <strong>the</strong> nuclear export <strong>of</strong><br />

many prote<strong>in</strong>s (12, 32, 62)], demonstrat<strong>in</strong>g that constitutive nuclear localization is<br />

detrimental to Msn2 stability (15, 33, 75). Interest<strong>in</strong>gly, studies have also shown that<br />

<strong>in</strong> response to heat shock, Msn2 is phosphorylated directly by Srb10 (Srb10 is a<br />

component <strong>of</strong> <strong>the</strong> mediator co-activator complex SRB/MED with <strong>in</strong>tr<strong>in</strong>sic k<strong>in</strong>ase<br />

activity) <strong>the</strong>reby downregulat<strong>in</strong>g its activity. Additional evidence demonstrat<strong>in</strong>g <strong>the</strong><br />

negative effects <strong>of</strong> Srb10 on <strong>the</strong> activity <strong>of</strong> Msn2 is that srb10 mutant cells have high<br />

basal transcript levels <strong>of</strong> many Msn2 target genes (15, 22, 74).<br />

9


Hsf1 and Msn2/4 can exclusively or cooperatively activate <strong>the</strong> yeast <strong>HSP104</strong> gene<br />

The results described <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g paragraph describe <strong>the</strong> first phase <strong>of</strong> my<br />

analysis <strong>of</strong> <strong>HSP104</strong> transcription <strong>in</strong>itiation. As most <strong>of</strong> <strong>the</strong> data obta<strong>in</strong>ed <strong>in</strong> this phase<br />

were achieved dur<strong>in</strong>g <strong>the</strong> course <strong>of</strong> my M.Sc. studies, <strong>the</strong>y are described <strong>in</strong> this<br />

section <strong>of</strong> <strong>the</strong> “Introduction”. It should be appreciated however, that some<br />

experiments were completed dur<strong>in</strong>g <strong>the</strong> course <strong>of</strong> my Ph.D. studies and formed <strong>the</strong><br />

basis for <strong>the</strong> cont<strong>in</strong>uation <strong>of</strong> <strong>the</strong> work described <strong>in</strong> “Results”. These latter<br />

experiments are also described here <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> coherence <strong>of</strong> <strong>the</strong><br />

“Introduction”.<br />

<strong>HSP104</strong> promoter analysis<br />

As <strong>the</strong> first step towards analyz<strong>in</strong>g <strong>the</strong> <strong>HSP104</strong> promoter, we <strong>in</strong>vestigated <strong>the</strong><br />

sequence <strong>of</strong> <strong>the</strong> upstream region <strong>of</strong> <strong>HSP104</strong> as it appears <strong>in</strong> <strong>the</strong> Saccharomyces<br />

Genome Database (SGD website). We identified several putative cis-elements<br />

reach<strong>in</strong>g up to 700bp upstream <strong>of</strong> <strong>the</strong> first AUG codon. These putative elements<br />

<strong>in</strong>cluded various HSEs and STREs (Fig. 1).<br />

-713<br />

-750 AAGGGCACTG CTAGCTCAGC CGGAACCTAA ATTGATTAGA GTTAGCGCTA<br />

-700 GAAACCGTGG ATGTTCAGGA CTAACGTACG ATCTACAATA TATCACCGAG<br />

-641<br />

-650 CCGGGGAAAT TCGATGAGGT AGTAGAACAA GATGGCGTTA AAATTGTCAT<br />

-600 CGATTCAAAG GCGTTATTCA GCATCATTGG AAGTGAAATG GACTGGATCG<br />

-531<br />

-550 ACGACAAGTT GGCCTCTAAG TTTGTCTTCA AGAATCCAAA CTCCAAGGGC<br />

-500<br />

-500 ACATGCGGTT GTGGCGAGAG TTTCATGGTT TAAAAACCTT CTGCACCATT<br />

-450 TTTAGAAAAA AAGAATCTAC CTATTCACTT ATTTATTCAT TTACTTATTT<br />

-400 ATTTACATAT TTATCATACA TATTAACATT GAACCCTCCA TCGTGGTAGT<br />

-334 -305<br />

-350 GTTTGCTGTT CCTAACTTTT CTTTCGTTGT TCTTGTAGAT ATATATTTTT<br />

-300 CCAGAATTTT CTAGAAGGGT TATTAATTAC AATCTTAAAC GTTCCATAAG<br />

-250 GGGCCGCGAT TTTTTTGTTC AATTTTCAAC AGGGGGCCCA TCTCAAAGAA<br />

-200 CTGCAAATTA TATCACAGTA AAAGGCAAAG GGGCGCAAAC TTATGCAACC<br />

-150 TGCCAGATTA TTATATAAGG CATTGTAATC TTGCCTCAAT TCCTTCATAA<br />

-100 TTCGTTCCTT TGTCACTTGT TCCTTTTTAC CCTTGAATCG AATCAGCAAT<br />

-50 AACAAAGAAA AAAGAAATCA ACTACACGTA CCATAAAATA TACAGAATAT<br />

+1 ATGAAC<br />

Legend<br />

STRE<br />

HSE<br />

STRE-like (PDS)<br />

TATA box<br />

<strong>Transcription</strong> <strong>in</strong>itiation region<br />

Figure 1. Sequence correspond<strong>in</strong>g to 750bp <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter region. Letters <strong>in</strong> green<br />

correspond to <strong>the</strong> most 5’nucleotide <strong>in</strong> each <strong>of</strong> <strong>the</strong> deletion constructs used <strong>in</strong> our study. +1 is <strong>the</strong> first<br />

nucleotide <strong>of</strong> <strong>the</strong> cod<strong>in</strong>g sequence. Putative STREs are shown <strong>in</strong> red italics, STRE-like elements <strong>in</strong><br />

p<strong>in</strong>k and HSEs <strong>in</strong> blue; <strong>the</strong> putative TATA box is marked <strong>in</strong> green. The transcription <strong>in</strong>itiation region<br />

is underl<strong>in</strong>ed <strong>in</strong> black.<br />

10


Us<strong>in</strong>g PCR on genomic DNA we cloned a fragment <strong>of</strong> 713bp <strong>of</strong> <strong>the</strong> promoter and<br />

ligated it upstream to a β-galactosidase reporter gene (Fig. 2A). When <strong>in</strong>troduced to<br />

yeast cells, <strong>the</strong> -713LacZ reporter gene manifested basal activity under non heat shock<br />

conditions which was <strong>in</strong>duced 5.5 fold <strong>in</strong> response to heat shock (Fig. 2B). This<br />

reporter activity reflected <strong>the</strong> levels <strong>of</strong> endogenous <strong>HSP104</strong> mRNA that accumulated<br />

thirty m<strong>in</strong>utes after heat shock and dropped after one hour (Fig. 2C). We next<br />

proceeded with 5’-deletions <strong>in</strong> order to determ<strong>in</strong>e <strong>the</strong> m<strong>in</strong>imal promoter sequence<br />

conferr<strong>in</strong>g basal and <strong>in</strong>duced activities. This deletion analysis (Fig. 2A) showed that<br />

a fragment <strong>of</strong> 334bp upstream from <strong>the</strong> first AUG gave rise to reporter activities<br />

similar to <strong>the</strong> full length -713LacZ. A drastic decrease <strong>in</strong> basal (but not <strong>in</strong>duced)<br />

reporter activity was observed upon fur<strong>the</strong>r removal <strong>of</strong> 34bp [-300LacZ (Fig. 2B)].<br />

These results strongly suggested that 334bp <strong>of</strong> <strong>the</strong> promoter are essential and<br />

sufficient for <strong>the</strong> basal activity <strong>of</strong> <strong>HSP104</strong> promoter. 300bp <strong>of</strong> <strong>the</strong> promoter are<br />

essential and sufficient for heat shock-<strong>in</strong>duced activity. Namely, <strong>the</strong> 34bp between -<br />

334 and -300 are dispensable for <strong>in</strong>duced activity, but <strong>in</strong>dispensable for <strong>HSP104</strong><br />

transcription under optimal growth conditions. Fur<strong>the</strong>r analysis <strong>of</strong> those 34bp is<br />

described below.<br />

11


A)<br />

5’-XhoI<br />

-713<br />

BamHI-3’<br />

ATG<br />

LacZ cod<strong>in</strong>g seq<br />

-641 ATG<br />

-531 ATG<br />

-500 ATG<br />

-334 ATG<br />

-300 ATG<br />

Legend<br />

HSE<br />

HSE cluster<br />

STRE-like<br />

STRE<br />

100 bp<br />

B) C)<br />

600<br />

500<br />

400<br />

SP1<br />

30 0 C<br />

39 0 C<br />

Time <strong>in</strong> 39 0 C 0’ 15’ 30’ 60’ 5hrs<br />

30 0 C<br />

SP1<br />

<strong>HSP104</strong><br />

ACTIN<br />

300<br />

200<br />

100<br />

0<br />

-713 -641 -530 -500 -334 -300<br />

Figure 2. A 334bp fragment <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter is sufficient and essential for both basal<br />

and <strong>in</strong>duced activities <strong>in</strong> wild-type cells (<strong>the</strong> SP1 stra<strong>in</strong>). A) Schematic view <strong>of</strong> various constructs<br />

fused to LacZ cod<strong>in</strong>g sequence, rang<strong>in</strong>g from -713bp to -300bp <strong>of</strong> <strong>the</strong> promoter. B) β-galactosidase<br />

activity <strong>of</strong> <strong>the</strong> various constructs under optimal growth conditions (30 o C) and follow<strong>in</strong>g heat shock<br />

(39 o C for one hour). C) S1 analysis <strong>of</strong> endogenous <strong>HSP104</strong> mRNA at various time po<strong>in</strong>ts dur<strong>in</strong>g heat<br />

shock treatment or under optimal growth conditions.<br />

In order to search for <strong>the</strong> cis-elements required for <strong>the</strong> heat shock <strong>in</strong>duced<br />

transcription <strong>of</strong> <strong>HSP104</strong>, <strong>the</strong> sequences downstream to -300 were fur<strong>the</strong>r analyzed<br />

through 5’deletions. The results are described <strong>in</strong> detail <strong>in</strong> (47). Briefly, we found that<br />

upon deletion <strong>of</strong> <strong>the</strong> HSE cluster (Fig. 3) between -300 and -286, <strong>the</strong> reporter gene<br />

rema<strong>in</strong>ed responsive to heat shock due to <strong>the</strong> presence <strong>of</strong> <strong>the</strong> STREs <strong>of</strong> <strong>the</strong> promoter<br />

(reflected by <strong>the</strong> -284LacZ construct). Removal <strong>of</strong> <strong>the</strong> first distal STRE positioned at<br />

-252 (<strong>in</strong> <strong>the</strong> -248LacZ construct) almost abolished <strong>the</strong> responsiveness <strong>of</strong> <strong>the</strong> reporter<br />

gene. Only residual activity rema<strong>in</strong>ed that was just slightly <strong>in</strong>duced <strong>in</strong> response to<br />

heat shock. This <strong>in</strong>duced activity <strong>of</strong> -248LacZ is due to <strong>the</strong> presence <strong>of</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

STREs positioned at -220 and -172 because <strong>the</strong>ir deletion completely abolished<br />

reporter activity (Fig. 3B and 3C). As mentioned above, <strong>the</strong> general stress response<br />

via <strong>the</strong> STRE/Msn2/4 system is negatively regulated by <strong>the</strong> Ras/cAMP/PKA pathway<br />

and many stress related genes are upregulated <strong>in</strong> ras2∆ cells (9, 86, 116, 121, 129).<br />

12


1<br />

1<br />

Indeed, as can be seen <strong>in</strong> Figure 4A, activity <strong>of</strong> -334LacZ under non-heat shock<br />

conditions is derepressed and highly active <strong>in</strong> ras2∆ cells. Deletion <strong>of</strong> <strong>the</strong> HSE<br />

cluster (-284LacZ reporter) had no effect on <strong>the</strong> activity <strong>of</strong> <strong>the</strong> promoter <strong>in</strong> ras2∆<br />

cells. A decrease <strong>in</strong> promoter activity was <strong>in</strong> fact measured only follow<strong>in</strong>g deletion <strong>of</strong><br />

sequences correspond<strong>in</strong>g to STREs. These data <strong>in</strong>dicated that <strong>in</strong> ras2∆ cells HSEs<br />

play no role <strong>in</strong> <strong>HSP104</strong> activation and that all STREs present are spontaneously<br />

functional. These conclusions were fur<strong>the</strong>r re<strong>in</strong>forced by mutat<strong>in</strong>g <strong>the</strong> various STREs<br />

(s<strong>in</strong>gly and <strong>in</strong> comb<strong>in</strong>ation) <strong>in</strong> <strong>the</strong> <strong>HSP104</strong> promoter [data not shown; described <strong>in</strong><br />

(47)]. To fur<strong>the</strong>r study <strong>the</strong> functionality <strong>of</strong> <strong>the</strong> STREs on <strong>the</strong> <strong>HSP104</strong> promoter, we<br />

measured <strong>the</strong> activity <strong>of</strong> <strong>the</strong> various reporter genes <strong>in</strong> msn2∆msn4∆ stra<strong>in</strong> (Fig. 5A).<br />

A)<br />

5’-XhoI<br />

BamHI-3’<br />

-334 ATG<br />

-300 ATG<br />

-284 ATG<br />

-280 ATG<br />

-260 ATG<br />

LacZ cod<strong>in</strong>g seq<br />

-230 ATG<br />

-222 ATG<br />

-215<br />

ATG<br />

-200<br />

ATG<br />

-180<br />

ATG<br />

-160<br />

ATG<br />

100 bp<br />

Legend<br />

HSE<br />

HSE cluster<br />

STRE-like<br />

STRE<br />

-248 ATG<br />

B) C)<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

SP1<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0<br />

30 0 C<br />

39 0 C<br />

-248 -222 -200 -160<br />

-230 -215 -180<br />

Fold<br />

Activation<br />

-334 3.6<br />

-300 9.5<br />

-284 9.1<br />

-280 12.3<br />

-260 10.5<br />

-248 2.2<br />

-230 1<br />

100<br />

50<br />

0<br />

-334 -284 -260<br />

-300 -280<br />

Figure 3. A 260bp region <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter is responsible for <strong>the</strong> <strong>in</strong>duced activity <strong>of</strong> <strong>the</strong><br />

promoter <strong>in</strong> SP1 cells. Deletion <strong>of</strong> STRE at -252 reduces overall activity and almost entirely<br />

abolishes response <strong>of</strong> <strong>the</strong> reporter gene to heat shock. A) Schematic view <strong>of</strong> constructs whose<br />

activities are shown <strong>in</strong> B). B) β-galactosidase activity <strong>of</strong> <strong>the</strong> various constructs at 30 o C and follow<strong>in</strong>g<br />

heat shock at 39 o C. The <strong>in</strong>set graph corresponds to <strong>the</strong> activity <strong>of</strong> <strong>the</strong> shorter constructs. Note <strong>the</strong><br />

different scale used. C) Fold <strong>in</strong>duction <strong>of</strong> <strong>the</strong> activities <strong>of</strong> each construct <strong>in</strong> response to heat shock.<br />

13


1<br />

We first noticed that <strong>the</strong> activity <strong>of</strong> <strong>the</strong> full length -334LacZ was decreased<br />

when compared to wild type, <strong>in</strong>dicat<strong>in</strong>g some possible role for Msn2/4 <strong>in</strong> <strong>the</strong> basal<br />

activity <strong>of</strong> <strong>HSP104</strong> (compare Fig. 5 with Fig. 3). However, unexpectedly, <strong>the</strong> reporter<br />

gene was <strong>in</strong>duced to maximal levels even <strong>in</strong> <strong>the</strong> absence <strong>of</strong> <strong>the</strong>se two transcriptional<br />

activators suggest<strong>in</strong>g that <strong>the</strong> <strong>in</strong>duced activity could be solely provided by <strong>the</strong><br />

HSE/Hsf1 system. Indeed, when we deleted <strong>the</strong> HSE cluster (reflected by <strong>the</strong> -<br />

284LacZ construct), and subjected msn2∆msn4∆ cells to heat shock, <strong>the</strong> reporter gene<br />

was no longer <strong>in</strong>duced <strong>in</strong> response to heat shock, confirm<strong>in</strong>g that <strong>in</strong> msn2∆msn4∆<br />

cells, heat shock responsiveness <strong>of</strong> <strong>the</strong> reporter gene is due to <strong>the</strong> HSEs alone (Fig. 5).<br />

This conclusion is fur<strong>the</strong>r streng<strong>the</strong>ned by measurements <strong>of</strong> <strong>the</strong> mRNA levels <strong>of</strong><br />

<strong>HSP104</strong> <strong>in</strong> msn2∆msn4∆ cells which are normally <strong>in</strong>duced <strong>in</strong> response to heat shock.<br />

A) B)<br />

900.00<br />

800.00<br />

700.00<br />

600.00<br />

500.00<br />

400.00<br />

ras2∆<br />

40.00<br />

35.00<br />

6.5<br />

30.00<br />

25.00<br />

20.00<br />

-HS<br />

Time <strong>in</strong> 39 0 C 0’ 15’ 30’ 60’<br />

SP1ras2∆<br />

SP1RAS2 val19<br />

5hrs<br />

30 0 C<br />

<strong>HSP104</strong><br />

ACTIN<br />

<strong>HSP104</strong><br />

ACTIN<br />

300.00<br />

200.00<br />

100.00<br />

3.3<br />

15.00<br />

10.00<br />

5.00<br />

6<br />

3<br />

1 0.00<br />

-334 -284 -260<br />

0.00<br />

-300 -280 -248 -230 -222 -215 -200 -180<br />

-160<br />

Figure 4. <strong>HSP104</strong> expression is derepressed <strong>in</strong> ras2∆ cells and is regulated exclusively through<br />

STREs. A) Deletion <strong>of</strong> each STRE causes a decrease <strong>in</strong> basal (30 o C) β-galactosidase activity <strong>of</strong> <strong>the</strong><br />

promoter (compare 260 vs. 248; 222 vs. 215; and 180 vs. 160). The graphs shown are different <strong>in</strong><br />

scale. The numbers above some bars describe <strong>the</strong> fold reduction <strong>in</strong> activity as compared with <strong>the</strong><br />

previous bar. B) S1 analysis <strong>of</strong> <strong>HSP104</strong> mRNA <strong>in</strong> ras2∆ and RAS2 val19 cells.<br />

Our deletion analysis, <strong>in</strong> comb<strong>in</strong>ation with <strong>the</strong> effects <strong>of</strong> <strong>the</strong> po<strong>in</strong>t mutations,<br />

strongly suggests that <strong>the</strong> derepression <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter <strong>in</strong> ras2∆ cells is<br />

mediated exclusively via STREs. These STREs must be recognized by Msn2 and<br />

Msn4, as <strong>the</strong>y are not functional <strong>in</strong> msn2∆msn4∆ cells (see Fig. 5).<br />

14


1<br />

1<br />

A) B)<br />

350<br />

300<br />

msn2∆msn4∆<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

30 0 C<br />

39 0 C<br />

Time <strong>in</strong> 39 0 C 0’ 15’ 30’ 60’<br />

Sp1msn2∆msn4∆<br />

5hrs<br />

30 0 C<br />

<strong>HSP104</strong><br />

ACTIN<br />

250<br />

0.1<br />

200<br />

150<br />

0.0<br />

-284 -260 -230 -215 -180<br />

-280 -248 -222 -200 160<br />

100<br />

50<br />

0<br />

-334 -300<br />

Figure 5. Msn2/4 contribute to <strong>the</strong> basal and <strong>in</strong>duced activities <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter. A)<br />

The β-galactosidase activity <strong>of</strong> each reporter was measured <strong>in</strong> msn2∆msn4∆ cells under optimal growth<br />

conditions <strong>of</strong> 30 o C and follow<strong>in</strong>g heat shock at 39 o C. Note that <strong>the</strong> scale used <strong>in</strong> <strong>the</strong> <strong>in</strong>set graph is<br />

different. B) S1 analysis <strong>of</strong> <strong>HSP104</strong> mRNA <strong>in</strong> msn2∆msn4∆ cells.<br />

Hence, we expected that knock<strong>in</strong>g out MSN2 and MSN4 genes <strong>in</strong> a ras2∆<br />

background would elim<strong>in</strong>ate <strong>the</strong> derepression observed <strong>in</strong> this stra<strong>in</strong>. Unexpectedly,<br />

<strong>the</strong> activity <strong>of</strong> <strong>the</strong> -334LacZ construct <strong>in</strong> ras2∆msn2∆msn4∆ was similar to its activity<br />

<strong>in</strong> ras2∆ (compare Fig. 6A with Fig. 4A). Fur<strong>the</strong>r <strong>in</strong>trigu<strong>in</strong>g was <strong>the</strong> severe decrease<br />

<strong>in</strong> activity observed for <strong>the</strong> -300LacZ construct. Thus, <strong>in</strong> ras2∆msn2∆msn4∆ cells,<br />

<strong>the</strong> region between -334bp and -300bp seems to have acquired some <strong>in</strong>creased<br />

activity although this sequence was absolutely dispensable for promoter activity <strong>in</strong><br />

ras2∆. This observation underscores <strong>the</strong> importance <strong>of</strong> <strong>the</strong> upstream 34bp. All<br />

constructs, downstream <strong>of</strong> -300LacZ, also displayed very low activity <strong>in</strong><br />

ras2∆msn2∆msn4∆ cells (Fig. 6).<br />

15


1<br />

1<br />

A) B)<br />

700<br />

600<br />

500<br />

ras2∆msn2∆msn4∆<br />

16<br />

14<br />

12<br />

30 0 C<br />

Time <strong>in</strong> 39 0 C 0’ 15’ 30’ 60’<br />

Sp1ras2∆msn2∆msn4∆<br />

5hrs<br />

30 0 C<br />

<strong>HSP104</strong><br />

ACTIN<br />

400<br />

300<br />

10<br />

8<br />

6<br />

200<br />

4<br />

100<br />

25.5<br />

2<br />

0<br />

-334 -300 -284 -280 -260<br />

0<br />

-248 -230 -222 -215 -200 -180<br />

Figure 6. <strong>HSP104</strong> expression <strong>in</strong> ras2∆msn2∆msn4∆ cells. A) Sequences between 334 and 300bp<br />

<strong>of</strong> <strong>HSP104</strong> are important for <strong>the</strong> β-galactosidase activity <strong>of</strong> <strong>the</strong> promoter <strong>in</strong> ras2∆msn2∆msn4∆ cells at<br />

30 o C. A change <strong>in</strong> scale used <strong>in</strong> <strong>the</strong> right hand graph. The 25.5 fold decrease <strong>in</strong> activity was obta<strong>in</strong>ed<br />

by divid<strong>in</strong>g <strong>the</strong> activity <strong>of</strong> -334LacZ by that <strong>of</strong> -300LacZ. B) S1 analysis <strong>of</strong> <strong>HSP104</strong>.<br />

In order to unambiguously assess that <strong>the</strong> sequences identified <strong>in</strong> our study are<br />

<strong>in</strong>deed <strong>in</strong>dependently responsible for <strong>the</strong> heat shock responsiveness <strong>of</strong> <strong>the</strong> <strong>HSP104</strong><br />

promoter, we fused <strong>the</strong> sequences from -334 to -160, or -305 to -160 (<strong>the</strong>se sequences<br />

conta<strong>in</strong> all elements responsible for <strong>the</strong> <strong>in</strong>duced activity, but lack <strong>the</strong> basal promoter<br />

region) to <strong>the</strong> CYC1 m<strong>in</strong>imal promoter and checked whe<strong>the</strong>r <strong>the</strong> sequences derived<br />

from <strong>the</strong> <strong>HSP104</strong> promoter could now render <strong>the</strong> CYC1 promoter heat shock<br />

responsive [<strong>the</strong> native CYC1 promoter is normally not <strong>in</strong>duced by heat shock (data not<br />

shown)]. Briefly, we found that <strong>the</strong> <strong>HSP104</strong> enhancer region is <strong>in</strong>deed sufficient for<br />

render<strong>in</strong>g <strong>the</strong> heterologous promoter responsive to heat shock (Fig. 7A). Also, <strong>the</strong><br />

heterologous reporters were constitutively elevated <strong>in</strong> ras2∆ cells. Namely, <strong>the</strong><br />

sequence we def<strong>in</strong>ed as an enhancer is <strong>in</strong>deed, <strong>in</strong>dependently, necessary and sufficient<br />

for promoter activation and regulation <strong>in</strong> response to heat shock and <strong>in</strong> response to <strong>the</strong><br />

Ras pathway. Notably however, we also observed that <strong>the</strong> heterologous promoters<br />

displayed lower basal activity compared to <strong>the</strong>ir homologous counterparts (compare<br />

Fig. 7A and 2B and data not shown). These results suggest that <strong>the</strong> element we<br />

def<strong>in</strong>ed as essential for <strong>the</strong> basal transcription activity (i.e., <strong>the</strong> 34bp between -334<br />

and -300) are specific for <strong>the</strong> <strong>HSP104</strong> promoter and functions toge<strong>the</strong>r with its own<br />

basal promoter and cannot function with ano<strong>the</strong>r.<br />

16


1<br />

1<br />

A) B)<br />

units<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

SP1<br />

30 0 C<br />

39 0 C<br />

+334-CYC1m<strong>in</strong> -334-CYC1m<strong>in</strong> +305-CYC1m<strong>in</strong><br />

units<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

ras2∆<br />

+334-CYC1m<strong>in</strong><br />

+305-CYC1m<strong>in</strong><br />

30 0 C<br />

39 0 C<br />

Figure 7. Sequences between -334 and -160bp <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter conta<strong>in</strong> all elements<br />

responsible for <strong>the</strong> heat shock response and <strong>the</strong> Ras response. A) β-galactosidase activity <strong>of</strong> <strong>the</strong><br />

chimeric -334<strong>HSP104</strong>-CYC1-LacZ and -305<strong>HSP104</strong>-CYC1-LacZ constructs were assayed <strong>in</strong> <strong>the</strong> wild<br />

type stra<strong>in</strong> SP1 at 30 o C and at 39 o C. ‘-‘ is <strong>the</strong> <strong>in</strong>verted and ‘+’ is <strong>the</strong> native orientation <strong>of</strong> <strong>the</strong> <strong>HSP104</strong><br />

<strong>in</strong>sert with respect to <strong>the</strong> CYC1 promoter. B) Same constructs as <strong>in</strong> A) assayed <strong>in</strong> ras2∆ cells under <strong>the</strong><br />

same experimental conditions.<br />

To summarize <strong>the</strong> results obta<strong>in</strong>ed (see Table 1), we showed, through a<br />

comb<strong>in</strong>ation <strong>of</strong> a genetic approach and a molecular approach (5’deletions <strong>of</strong> <strong>the</strong><br />

<strong>HSP104</strong> promoter, po<strong>in</strong>t mutations, fusion to a heterologous promoter and <strong>the</strong> use <strong>of</strong><br />

several yeast mutants) that <strong>the</strong> HSE/Hsf1 and <strong>the</strong> STRE/Msn2/4 systems cooperate to<br />

achieve maximal <strong>in</strong>ducible expression. However, <strong>in</strong> <strong>the</strong> absence <strong>of</strong> one set <strong>of</strong> factors<br />

(e.g., <strong>in</strong> msn2∆msn4∆ cells or <strong>in</strong> constructs lack<strong>in</strong>g HSEs) proper <strong>in</strong>duction <strong>of</strong><br />

<strong>HSP104</strong> promoter is achieved exclusively through <strong>the</strong> o<strong>the</strong>r. We also showed that<br />

<strong>HSP104</strong> is constitutively derepressed <strong>in</strong> ras2 cells. This derepression is evoked<br />

exclusively via STREs with no role for HSEs. Strik<strong>in</strong>gly, <strong>in</strong> ras2∆msn2∆msn4∆ cells,<br />

we observed that <strong>the</strong> <strong>HSP104</strong> promoter is also derepressed via <strong>the</strong> upstream 34bp.<br />

Thus, appropriate transcription <strong>of</strong> <strong>HSP104</strong> is usually obta<strong>in</strong>ed through cooperation<br />

between <strong>the</strong> STRE/Msn2/4 and HSE/Hsf1 systems, but each factor could activate <strong>the</strong><br />

promoter on its own, back<strong>in</strong>g up <strong>the</strong> o<strong>the</strong>r. <strong>Transcription</strong> control <strong>of</strong> <strong>HSP104</strong> is<br />

<strong>the</strong>refore adaptive and robust, ensur<strong>in</strong>g proper expression under extreme conditions<br />

and <strong>in</strong> various mutants. F<strong>in</strong>ally, we identified a 34bp fragment resid<strong>in</strong>g upstream to<br />

<strong>the</strong> <strong>HSP104</strong> enhancer that is critical for <strong>the</strong> promoter basal activity. This fragment is<br />

highly specific to this promoter and can acquire, under particular conditions, Ras<br />

responsive properties (i.e., <strong>in</strong> ras2∆msn2∆msn4∆ cells).<br />

17


Table 1. Summary <strong>of</strong> <strong>the</strong> role <strong>of</strong> various fragments <strong>in</strong> <strong>HSP104</strong> promoter<br />

-300 to -285<br />

Goals <strong>of</strong> Study<br />

In this <strong>the</strong>sis, I describe <strong>the</strong> cont<strong>in</strong>uation <strong>of</strong> <strong>the</strong> effort to reveal <strong>the</strong> mechanism <strong>of</strong><br />

transcriptional activation <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter. The overall goal is to obta<strong>in</strong><br />

sufficient data that will allow <strong>the</strong> establishment <strong>of</strong> a global model <strong>of</strong> <strong>the</strong> molecular<br />

events lead<strong>in</strong>g to <strong>the</strong> activation <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter. To achieve this goal, I<br />

undertook four experimental routes. One, cont<strong>in</strong>u<strong>in</strong>g <strong>the</strong> approach used <strong>in</strong> <strong>the</strong> studies<br />

described above, we proceeded with additional 5’ deletions <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter<br />

(particularly <strong>the</strong> fragment between -334 and -300) attempt<strong>in</strong>g to identify <strong>the</strong><br />

sequence(s) responsible for <strong>the</strong> basal reporter activity <strong>of</strong> <strong>HSP104</strong> and <strong>the</strong> unexpected<br />

activity observed <strong>in</strong> <strong>the</strong> ras2∆msn2∆msn4∆ stra<strong>in</strong>. Two, us<strong>in</strong>g chromat<strong>in</strong><br />

immunoprecipitation (ChIP), we monitored some <strong>of</strong> <strong>the</strong> major changes occurr<strong>in</strong>g <strong>in</strong><br />

vivo on <strong>the</strong> promoter follow<strong>in</strong>g stress. Three, us<strong>in</strong>g a genetic approach, we identified<br />

components <strong>of</strong> <strong>the</strong> basal transcription mach<strong>in</strong>ery that are important for <strong>HSP104</strong><br />

promoter activity. Four, us<strong>in</strong>g a comb<strong>in</strong>ation <strong>of</strong> ChIP experiments and a genetic<br />

approach, we sought possible regulators <strong>of</strong> Hsf1.<br />

Through <strong>the</strong> deletion analysis, we found that important properties <strong>of</strong> <strong>the</strong> 34bp<br />

between -334 and -300 could be accounted to a short HSE-like sequence resid<strong>in</strong>g <strong>in</strong> -<br />

305. Us<strong>in</strong>g ChIP assays we show that under optimal growth conditions nucleosomes<br />

on <strong>the</strong> <strong>HSP104</strong> promoter conta<strong>in</strong> mostly acetylated H3 and H4. However, follow<strong>in</strong>g<br />

heat shock <strong>the</strong>re is a rapid, but transient, decrease <strong>in</strong> <strong>the</strong> concentration <strong>of</strong> acetylated<br />

histones on <strong>the</strong> promoter which seems to be partly mediated by Msn2/4. It seems that<br />

<strong>the</strong> Ras/PKA pathway controls H3 and H4 acetylation state via Msn2/4, <strong>the</strong>reby<br />

govern<strong>in</strong>g <strong>in</strong>duction <strong>of</strong> <strong>the</strong> promoter. We fur<strong>the</strong>r show that <strong>the</strong> decrease <strong>in</strong> acetylated<br />

H3 and H4 on <strong>the</strong> promoter occurs via two dist<strong>in</strong>ct mechanisms. F<strong>in</strong>ally, we show<br />

that Hsf1 b<strong>in</strong>d<strong>in</strong>g to <strong>the</strong> promoter is constitutive regardless <strong>of</strong> stress conditions, but is<br />

reduced <strong>in</strong> ras2∆ cells. Us<strong>in</strong>g <strong>the</strong> genetic approach, we found that Rpb4, components<br />

18


<strong>of</strong> <strong>the</strong> SRB/MED coactivator complex, or <strong>of</strong> <strong>the</strong> SAGA and SWI/SNF complexes are<br />

critical for proper <strong>HSP104</strong> transcription. We also identified components <strong>of</strong> <strong>the</strong> basal<br />

transcription mach<strong>in</strong>ery (primarily <strong>of</strong> <strong>the</strong> SAGA complex that are critical for Hsf1<br />

activity.<br />

These approaches comb<strong>in</strong>ed allow <strong>the</strong> establishment <strong>of</strong> a model describ<strong>in</strong>g <strong>the</strong><br />

series <strong>of</strong> molecular events occurr<strong>in</strong>g on <strong>the</strong> <strong>HSP104</strong> promoter before and after heat<br />

shock.<br />

EXPERIMENTAL PROCEDURES<br />

Yeast stra<strong>in</strong>s, plasmids and media<br />

Yeast stra<strong>in</strong>s used were from ei<strong>the</strong>r <strong>the</strong> SP1 or <strong>the</strong> BY4741 genetic backgrounds<br />

(Table 2). Yeast cultures were usually grown <strong>in</strong> YPD medium (1% yeast extract, 2%<br />

peptone, 2% glucose). HA-Hsf1 conta<strong>in</strong><strong>in</strong>g <strong>the</strong> native HSF1 promoter was cloned <strong>in</strong><br />

pRS306 (114) expressed from its own promoter and was <strong>in</strong>tegrated <strong>in</strong> <strong>the</strong> URA3<br />

locus. -334LacZ and -260LacZ were described <strong>in</strong> (47). The HSELacZ construct is<br />

composed <strong>of</strong> <strong>the</strong> HSE cluster from <strong>HSP104</strong> subcloned <strong>in</strong> 4 repeats upstream to <strong>the</strong><br />

CYC1 m<strong>in</strong>imal promoter. Medium used for select<strong>in</strong>g transformants and for growth <strong>of</strong><br />

plasmid harbor<strong>in</strong>g cultures was <strong>the</strong> syn<strong>the</strong>tic media, SD (0.17% yeast nitrogen base<br />

without am<strong>in</strong>o acids and NH 4 (SO 4 ) 2 , 0.5% ammonium sulphate, 2% glucose and 40<br />

mg/ml <strong>of</strong> <strong>the</strong> required nutrients). If plasmid <strong>in</strong>serted was <strong>in</strong>tegrative, cells were<br />

grown (follow<strong>in</strong>g selection) <strong>in</strong> YPD medium. S<strong>in</strong>gle base pair deletions <strong>of</strong> <strong>the</strong><br />

<strong>HSP104</strong> promoter from -305 to -286 were done us<strong>in</strong>g PCR and fused to β-<br />

galactosidase reporter gene <strong>in</strong> -178trp us<strong>in</strong>g 5’XhoI and 3’BamHI restriction sites<br />

(<strong>the</strong>reby remov<strong>in</strong>g <strong>the</strong> CYC1 m<strong>in</strong>imal promoter). Constructs <strong>in</strong> which an <strong>in</strong>ternal<br />

fragment <strong>of</strong> 78bp was deleted (∆78 promoter family) were obta<strong>in</strong>ed by subclon<strong>in</strong>g <strong>the</strong><br />

various promoters <strong>in</strong>to a modified pBluescript (SK+) <strong>in</strong> which <strong>the</strong> XbaI and ApaI<br />

restriction sites were elim<strong>in</strong>ated. Follow<strong>in</strong>g subclon<strong>in</strong>g, <strong>the</strong> plasmids were digested<br />

us<strong>in</strong>g XbaI and ApaI enzymes <strong>the</strong>reby creat<strong>in</strong>g <strong>the</strong> ∆78 promoter family. Modified<br />

promoters were <strong>the</strong>n transferred back to <strong>the</strong> -178trp plasmid <strong>in</strong> XhoI and BamHI sites.<br />

The HSFp-HA-HSF vector was constructed <strong>the</strong> follow<strong>in</strong>g way. The promoter region<br />

<strong>of</strong> HSF was obta<strong>in</strong>ed via PCR with 5’KpnI and 3’ClaI flank<strong>in</strong>g restriction sites. The<br />

HSF promoter was subcloned upstream <strong>of</strong> a BS-HA-HSF vector digested with <strong>the</strong><br />

19


same enzymes. BS-HA-HSF was obta<strong>in</strong>ed us<strong>in</strong>g a PCR fragment <strong>of</strong> HSF cod<strong>in</strong>g<br />

region with 5’NcoI and 3’EcoRI flank<strong>in</strong>g restriction sites. HSF cod<strong>in</strong>g region was<br />

<strong>the</strong>n cloned <strong>in</strong> frame to HA epitope <strong>in</strong> <strong>the</strong> pBluescript plasmid. The result<strong>in</strong>g HSFp-<br />

HA-HSF was transferred to <strong>the</strong> pRS306 shuttl<strong>in</strong>g vector us<strong>in</strong>g KpnI-EcoRI restriction<br />

sites. In order to <strong>in</strong>tegrate pRS306-HSFp-HA-HSF <strong>in</strong> <strong>the</strong> yeast genome, <strong>the</strong> vector<br />

was digested with BsmI (which cuts uniquely <strong>in</strong> <strong>the</strong> URA3 marker).<br />

Table 2. Stra<strong>in</strong>s used <strong>in</strong> this study<br />

Stra<strong>in</strong>s Genotype Reference<br />

SP1 MATa his3, leu2, ura3, trp1, ade8 Can. Toda et al.(1985)<br />

TK161R2V Isogenic to SP1 but RAS2 val19 Toda et al.(1985)<br />

Engelberg et al.<br />

SP1ras2∆<br />

Isogenic to SP1 but ras2::LEU2<br />

(1994)<br />

SP1msn2∆msn4∆ Isogenic to SP1 but msn2::HIS3 msn4::URA3 Stanhill et al.(1999)<br />

SP1ras2mmsn2∆msn4∆ Isogenic to SP1 but ras2::LEU2 msn2::HIS3 msn4::URA3 Stanhill et al.(1999)<br />

BY4741 MATa his3∆1, leu2∆0, ura3∆ Euroscarf collection<br />

BY4741xª∆ Isogenic to BY4741 but x::KanMx Euroscarf collection<br />

a represents knocked out gene<br />

Chromat<strong>in</strong> immunoprecipitation<br />

Cells were grown <strong>in</strong> YPD to A 600 <strong>of</strong> 0.8. Samples <strong>of</strong> 200ml were heat shocked at<br />

39 o C and were collected at time po<strong>in</strong>ts <strong>in</strong>dicated <strong>in</strong> each experiment. Cultures were<br />

<strong>the</strong>n treated for cross l<strong>in</strong>k<strong>in</strong>g with 40ml <strong>of</strong> 11% formaldehyde <strong>in</strong> 0.1M NaCl, 1mM<br />

EDTA, 50mM Hepes-KOH pH7.5 (f<strong>in</strong>al concentration <strong>of</strong> 1% formaldehyde). Samples<br />

were <strong>the</strong>n <strong>in</strong>cubated at room temperature for 20m<strong>in</strong> with occasional swirl<strong>in</strong>g. 60ml <strong>of</strong><br />

3M glyc<strong>in</strong>e were added with an additional <strong>in</strong>cubation <strong>of</strong> 5m<strong>in</strong>. Cells were pelleted<br />

and washed twice with cold TBS and once with 10ml cold FA lysis buffer/0.1%SDS<br />

(50mM Hepes-KOH pH7.5, 150mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1%<br />

sodium deoxycholate, 1mM PMSF). Cells were <strong>the</strong>n broken with glass beads<br />

(vortex<strong>in</strong>g 30" x 10) <strong>in</strong> 1ml cold FA lysis buffer/0.5%SDS. 6.5ml <strong>of</strong> cold FA lysis<br />

buffer/0.1%SDS was added and <strong>the</strong> supernatant was centrifuged at 45 000 rpm <strong>in</strong> a 50<br />

Ti Beckman rotor for 20m<strong>in</strong> at 4 o C. Pellets were <strong>the</strong>n "resuspended" <strong>in</strong> 1.2ml cold<br />

FA lysis buffer/0.1%SDS and transferred to 1.5ml eppendorf tube. Samples were<br />

<strong>the</strong>n sonicated to get, <strong>in</strong> average, 400bp length DNA fragments (between 100-<br />

1000bp). Samples were <strong>the</strong>n centrifuged at 15000 xg for 10m<strong>in</strong> at 4 o C. 3.25ml <strong>of</strong><br />

cold FA lysis buffer/0.1%SDS was added and samples were aliquoted and frozen <strong>in</strong><br />

liquid nitrogen. For IPs, 0.5ml <strong>of</strong> chromat<strong>in</strong> solution was <strong>in</strong>cubated with Ab pre-<br />

20


ound to prote<strong>in</strong> G sepharose beads (Amersham) for 2hrs at 4 o C (Ab. used: 1µg anti-<br />

HA 3F10 (Roche), 2µl anti-acetyl-Histone H4 (Upstate), 1µl anti-acetyl-Histone H3<br />

(Upstate), 2µg anti-total H3 (abcam) and 8µl anti-histone H4 non-acetylated<br />

(Serotec)). Beads were <strong>the</strong>n washed, each time for 5m<strong>in</strong> at room temperature <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g order: twice <strong>in</strong> 1.4ml <strong>of</strong> FA lysis buffer/0.1%SDS, twice <strong>in</strong> 1.4ml FA lysis<br />

buffer/0.1%SDS/500mM NaCl, once <strong>in</strong> 1.4ml 10mM Tris-HCl pH8, 250mM LiCl,<br />

1mM EDTA, 0.5% NP-40, 0.5% sodium deoxycholate, and once <strong>in</strong> 1.4ml TE (10mM<br />

Tris-HCl pH8, 1mM EDTA). Immunoprecipitated material was <strong>the</strong>n eluted at 65 o C <strong>in</strong><br />

0.25ml <strong>of</strong> 50mM Tris-HCl pH7.5, 10mM EDTA, 1% SDS. The sup. was <strong>the</strong>n<br />

transferred to a fresh tube conta<strong>in</strong><strong>in</strong>g 0.250ml TE (<strong>in</strong> parallel, 50µl <strong>of</strong> chromat<strong>in</strong><br />

solution which had not undergone immunoprecipitation was used (and termed whole<br />

cell extract,WCE) and followed same treatment as IP'ed material). 20µl <strong>of</strong> 20mg/ml<br />

pronase (Boehr<strong>in</strong>ger Mannheim) was added and samples were <strong>in</strong>cubated at 42 o C for<br />

two hours and <strong>the</strong>n transferred to 65 o C overnight for decrossl<strong>in</strong>k<strong>in</strong>g. 50µl <strong>of</strong> 4M LiCl<br />

was <strong>the</strong>n added and DNA was extracted with phenol-chlor<strong>of</strong>orm <strong>in</strong> LETS (0.1M LiCl,<br />

0.5M EDTA, 0.01M Tris-HCl pH7.4, 0.2% SDS) and <strong>the</strong>n chlor<strong>of</strong>orm. DNA was<br />

<strong>the</strong>n precipitated. IP's were resuspended <strong>in</strong> 200µl TE and a 1:500 stock dilutions were<br />

prepared for <strong>in</strong>put DNA. PCR reaction was done <strong>in</strong> 50µl.<br />

RNA preparation and S1 analysis<br />

Overnight cultures grown <strong>in</strong> YPD were diluted to A 600 <strong>of</strong> 0.25 and fur<strong>the</strong>r grown to<br />

A 600 <strong>of</strong> 0.8 at 30 o C. 20 ml samples were heat shocked at 39 o C for <strong>the</strong> specified time.<br />

Protocols for RNA extraction and S1 analysis are described <strong>in</strong> (47).<br />

Preparation <strong>of</strong> cell lysates and western blot analysis<br />

100ml cell cultures were grown to an A 600 <strong>of</strong> 0.8. Cultures were split to 20ml samples<br />

and each sample was treated for 5, 10, or 15 m<strong>in</strong>utes at 39 o C and one sample was<br />

ma<strong>in</strong>ta<strong>in</strong>ed under control conditions <strong>of</strong> 30 o C. Cells were pelleted and <strong>the</strong> protocol<br />

proceeded as described <strong>in</strong> (7). SDS-polyacrylamide gel electrophoresis, Western blot,<br />

and ECL reaction were performed as described <strong>in</strong> (7). For HA-HSF, detection<br />

antibody used was 12CA5 mouse anti-HA at a 1:1000 concentration. Secondary<br />

antibody used was diluted to 1:10000 concentration.<br />

21


β-Galactosidase assay<br />

Overnight cultures were diluted to A 600 <strong>of</strong> 0.15 and fur<strong>the</strong>r <strong>in</strong>cubated at 30 o C until<br />

cultures reached A 600 0.3-0.4. Follow<strong>in</strong>g procedures were performed as described <strong>in</strong><br />

(47).<br />

RESULTS<br />

The upstream 34bp fragment <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter possesses unusual<br />

modular properties<br />

Our previous analysis <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter revealed that 334bp upstream<br />

<strong>of</strong> <strong>the</strong> cod<strong>in</strong>g sequence are required for both basal and <strong>in</strong>duced activities whereas<br />

300bp are essential and sufficient for heat shock <strong>in</strong>duced activity only. That is, <strong>the</strong><br />

34bp between -334 and -300 are <strong>in</strong>dispensable for <strong>the</strong> basal activity <strong>of</strong> <strong>the</strong> promoter.<br />

Yet, although support<strong>in</strong>g basal transcription, this 34bp are highly specific to <strong>the</strong><br />

<strong>HSP104</strong> promoter because <strong>the</strong>y played no role when <strong>the</strong> upstream fragment <strong>of</strong> <strong>the</strong><br />

<strong>HSP104</strong> was fused to <strong>the</strong> m<strong>in</strong>imal CYC1 promoter. Namely, when cloned upstream<br />

to <strong>the</strong> CYC1, <strong>the</strong> fragment between -334 to -160 and <strong>the</strong> fragment between -305 to -<br />

160 manifested <strong>the</strong> same, very low basal activity [Fig. 7 and (47)]. These results<br />

suggest that, <strong>the</strong> activity <strong>of</strong> <strong>the</strong> 34bp fragment is not only specific to <strong>HSP104</strong>, but is<br />

somehow cooperat<strong>in</strong>g with <strong>the</strong> <strong>HSP104</strong> m<strong>in</strong>imal promoter (-160-+1) to impose a<br />

relatively high basal activity. F<strong>in</strong>ally, under particular conditions (i.e., <strong>in</strong> <strong>the</strong><br />

ras2∆msn2∆msn4∆ stra<strong>in</strong>) <strong>the</strong> 34bp acquire new properties and become Ras2<br />

responsive (Fig. 6). Given <strong>the</strong> importance and <strong>the</strong> specificity <strong>of</strong> <strong>the</strong> 34bp, we<br />

considered that perhaps, <strong>the</strong>re is a shorter cis-element with<strong>in</strong> this sequence. To<br />

address this matter we designed a series <strong>of</strong> deletion constructs that were planned to<br />

elim<strong>in</strong>ate some potential HSEs present <strong>in</strong> <strong>the</strong> 34bp region, as well as a possibly<br />

functional, although non-canonical, TATA box which is also present <strong>in</strong> this fragment<br />

(Fig. 8A). We also planned a series <strong>of</strong> constructs that enabled us to monitor <strong>the</strong><br />

possible <strong>in</strong>terplay between <strong>the</strong> 34bp and <strong>the</strong> m<strong>in</strong>imal promoter. The latter was<br />

achieved by delet<strong>in</strong>g an <strong>in</strong>ternal 78bp fragment with<strong>in</strong> <strong>the</strong> <strong>HSP104</strong> promoter which<br />

deletes <strong>the</strong> two most distal STREs (i.e., at -252 and -220), while leav<strong>in</strong>g <strong>in</strong>tact <strong>the</strong><br />

majority <strong>of</strong> <strong>the</strong> HSE cluster and <strong>the</strong> most proximal STRE, resid<strong>in</strong>g at -172 <strong>of</strong> <strong>the</strong><br />

22


promoter. This deletion created a promoter conta<strong>in</strong><strong>in</strong>g essentially only <strong>the</strong> elements<br />

responsible for <strong>the</strong> promoter basal activity, i.e., <strong>the</strong> 34bp, separated by a short DNA<br />

sequence, are fused to <strong>the</strong> basal promoter region (-160 to +1).<br />

The various deletion constructs were tested first <strong>in</strong> wild type cells. As shown<br />

<strong>in</strong> Figure 8B, sequential deletion <strong>of</strong> <strong>the</strong> putative HSEs <strong>in</strong> <strong>the</strong> 34bp (-328LacZ, -<br />

317LacZ, -311LacZ) or fur<strong>the</strong>r deletion <strong>of</strong> <strong>the</strong> putative TATA box (-305LacZ) did not<br />

result <strong>in</strong> a significant decrease <strong>in</strong> <strong>the</strong> activity <strong>of</strong> <strong>the</strong> reporter genes (Fig. 8B see also<br />

Fig. 9). Namely, we could not account <strong>the</strong> decrease <strong>in</strong> reporter activity upon removal<br />

<strong>of</strong> <strong>the</strong> entire 34bp to <strong>the</strong> particular deletions <strong>of</strong> <strong>the</strong> sporadic HSEs or <strong>of</strong> <strong>the</strong> noncanonical<br />

TATA box. We did observe a significant decrease <strong>in</strong> basal promoter<br />

activity when we fur<strong>the</strong>r removed <strong>the</strong> 5bp between -305 to -300 (Fig. 8B). All<br />

deletion constructs lost <strong>the</strong>ir basal activity when <strong>the</strong> <strong>in</strong>ternal 78bp were removed<br />

(compare <strong>the</strong> six bars at <strong>the</strong> left to <strong>the</strong> six bars at <strong>the</strong> right <strong>in</strong> Fig. 8B), but rema<strong>in</strong>ed<br />

never<strong>the</strong>less responsive to heat shock. These results show that <strong>the</strong> presence <strong>of</strong> <strong>the</strong><br />

34bp upstream fragment and <strong>the</strong> m<strong>in</strong>imal -160-+1 fragment is not sufficient to impose<br />

basal promoter activity. Perhaps <strong>the</strong>se two fragments must reside <strong>in</strong> a very particular<br />

spatial and distal orientation towards each o<strong>the</strong>r. An alternative explanation may be<br />

that <strong>the</strong> miss<strong>in</strong>g downstream STREs are required not only for <strong>in</strong>duced activity, but<br />

also for <strong>the</strong> basal activity and are cooperat<strong>in</strong>g with <strong>the</strong> upstream 34bp. In addition,<br />

when we mutated <strong>the</strong> STRE positioned at -172 we observed no fur<strong>the</strong>r effect <strong>in</strong> <strong>the</strong><br />

activity <strong>of</strong> <strong>the</strong> reporter, suggest<strong>in</strong>g that this STRE could be less functional or perhaps<br />

may require <strong>the</strong> presence <strong>of</strong> <strong>the</strong> more distal STREs <strong>in</strong> order to be functional [compare<br />

<strong>in</strong> Figure 8B 300∆78 and 300stre3m∆78; see also <strong>in</strong> (47)]. We next <strong>in</strong>troduced <strong>the</strong><br />

various reporters to ras2∆ cells (Fig. 8C). As expected, we measured high and<br />

spontaneous activity <strong>of</strong> <strong>the</strong> reporter gene under optimal growth conditions, which<br />

could not be fur<strong>the</strong>r <strong>in</strong>duced <strong>in</strong> response to heat shock (upper panel). Notably, <strong>the</strong><br />

activity <strong>of</strong> <strong>the</strong> -300LacZ construct was lower, suggest<strong>in</strong>g that <strong>in</strong> order to achieve full<br />

response to <strong>the</strong> Ras system, <strong>the</strong> <strong>HSP104</strong> promoter requires <strong>the</strong> 34bp upstream<br />

fragment <strong>in</strong> addition to STREs (47). Upon deletion <strong>of</strong> <strong>the</strong> <strong>in</strong>ternal 78bp fragment<br />

from all constructs, we observed two important changes <strong>in</strong> <strong>the</strong> activity <strong>of</strong> <strong>the</strong> reporters<br />

(Fig. 8C lower panel). First, <strong>the</strong> spontaneous activity <strong>of</strong> <strong>the</strong> reporters was now<br />

dramatically reduced; fur<strong>the</strong>r re<strong>in</strong>forc<strong>in</strong>g <strong>the</strong> fact that <strong>the</strong> <strong>HSP104</strong> promoter is <strong>in</strong>deed<br />

Ras responsive via two distal STREs. Second, deletion <strong>of</strong> <strong>the</strong> Ras responsive<br />

sequences converted <strong>the</strong> reporter to be<strong>in</strong>g heat shock responsive, most probably due<br />

23


to <strong>the</strong> fact that <strong>the</strong> HSEs are present and are not Ras-regulated (Fig. 8C lower panel;<br />

compare with upper and note <strong>the</strong> difference <strong>in</strong> scale between <strong>the</strong> two graphs). We<br />

next <strong>in</strong>troduced <strong>the</strong>se reporters to ras2∆msn2∆msn4∆ cells (Fig. 8D) and also<br />

observed <strong>the</strong> high and spontaneous activity, but to levels that were about half <strong>of</strong> those<br />

measured <strong>in</strong> ras2∆ (but still 4-6 fold higher compared to <strong>the</strong> activity <strong>in</strong> wild type). In<br />

addition, <strong>the</strong>re is some decrease <strong>in</strong> activity <strong>of</strong> most reporters as compared to -<br />

334LacZ. Also, <strong>the</strong> decrease <strong>of</strong> <strong>the</strong> activity <strong>of</strong> <strong>the</strong> -300LacZ reporter (compared to its<br />

activity <strong>in</strong> ras2∆ cells) is very dramatic <strong>in</strong> this stra<strong>in</strong> (~30 units versus 700 units <strong>in</strong><br />

ras2∆). Namely, <strong>the</strong>re are elements <strong>in</strong> <strong>the</strong> 34bp that are Ras responsive and can<br />

compensate for <strong>the</strong> lack <strong>of</strong> STREs activity (due to <strong>the</strong> fact that Msn2/4 are miss<strong>in</strong>g).<br />

Similar to <strong>the</strong> case <strong>in</strong> ras2∆ cells, <strong>the</strong> equivalent reporters lack<strong>in</strong>g <strong>the</strong> 78bp<br />

manifested lower basal activity, but were heat shock responsive (Fig. 8D, lower<br />

panel). We also <strong>in</strong>troduced <strong>the</strong>se reporters to msn2∆msn4∆ cells (Fig. 8E) and like<br />

we previously observed, <strong>the</strong> reporters <strong>in</strong> which we deleted <strong>the</strong> sporadic HSEs and<br />

TATA elements do not behave any differently from <strong>the</strong>ir full length counterpart -<br />

334LacZ, but <strong>the</strong> activity was significantly lower compared to that <strong>of</strong> wild type cells<br />

(compare Figs. 8E to 8B). Also, <strong>in</strong> msn2∆msn4∆ cells <strong>the</strong> <strong>in</strong>ternal 78bp are not<br />

significant clearly show<strong>in</strong>g that <strong>the</strong> contribution <strong>of</strong> <strong>the</strong> 78bp fragment to basal<br />

promoter activity requires <strong>in</strong>tact Msn2/4.<br />

24


1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

A)<br />

34bp 5’ ttttctttcgttgttcttgtagatatatatttttcc 3’<br />

putative HSE<br />

putative TATA box<br />

B)<br />

500.00<br />

SP1 (WT) cells<br />

30 o C<br />

39 o C<br />

450.00<br />

400.00<br />

350.00<br />

300.00<br />

250.00<br />

200.00<br />

150.00<br />

100.00<br />

50.00<br />

0.00<br />

334 328 317 311 305 300 334 317 311 305 300 300Stre3m<br />

∆78 ∆78 ∆78 ∆78 ∆78 ∆78<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

C) D)<br />

ras2∆ cells<br />

334 328 317 311 305 300<br />

30 o C<br />

39 o C<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

ras2∆msn2∆msn4∆ cells<br />

334 328 317 311 305 300<br />

30 o C<br />

39 o C<br />

160<br />

140<br />

120<br />

100<br />

30 o C<br />

39 o C<br />

300<br />

250<br />

200<br />

30 o C<br />

39 o C<br />

80<br />

60<br />

150<br />

40<br />

100<br />

20<br />

0<br />

50<br />

334 317 311 305 300 300stre3m<br />

∆78 ∆78 ∆78 ∆78 ∆78 ∆78<br />

msn2∆msn4∆ cells<br />

0<br />

334 317 311 305 300 300stre3m<br />

∆78 ∆78 ∆78 ∆78 ∆78 ∆78<br />

30 o C<br />

E)<br />

300<br />

250<br />

39 o C<br />

200<br />

150<br />

100<br />

50<br />

0<br />

334 328 317 311 305 300 334 317 311 305 300 300Stre3m<br />

∆78 ∆78 ∆78 ∆78 ∆78 ∆78<br />

Figure 8. Deletion analysis <strong>of</strong> <strong>the</strong> 34bp fragment. A) Sequence <strong>of</strong> <strong>the</strong> 34bp fragment <strong>of</strong> <strong>HSP104</strong><br />

required for proper basal activity. B) Activity <strong>of</strong> <strong>the</strong> various deletions <strong>of</strong> <strong>the</strong> 34bp and <strong>the</strong>ir ∆78<br />

counterparts (miss<strong>in</strong>g enhancer elements) <strong>in</strong> wild type SP1. C) Same as <strong>in</strong> B but measured <strong>in</strong> ras2∆<br />

cells. Note <strong>the</strong> difference <strong>in</strong> scale used <strong>in</strong> upper and lower graphs. D) Same as above but <strong>in</strong><br />

ras2∆msn2∆msn4∆. Note <strong>the</strong> difference <strong>in</strong> scale used <strong>in</strong> upper and lower graphs. E) Same as above<br />

but measured <strong>in</strong> msn2∆msn4∆ cells. These are <strong>the</strong> results <strong>of</strong> duplicates <strong>in</strong> a s<strong>in</strong>gle assay; hence no STD<br />

could be calculated.<br />

25


The systematic 5’ deletion analysis <strong>of</strong> <strong>the</strong> upstream 34bp po<strong>in</strong>ted at <strong>the</strong><br />

sequence between -305 and -300 as important. This 5bp conta<strong>in</strong>s a s<strong>in</strong>gle HSE site.<br />

Although HSEs are normally active <strong>in</strong> response to heat shock, this site seems to<br />

partially contribute to <strong>the</strong> basal transcription activities <strong>of</strong> <strong>the</strong> promoter and even to its<br />

Ras2-mediated response. It may also be part <strong>of</strong> <strong>the</strong> HSE cluster resid<strong>in</strong>g (accord<strong>in</strong>g<br />

to our orig<strong>in</strong>al mapp<strong>in</strong>g) between -300 and -285. To test <strong>the</strong> role <strong>of</strong> <strong>the</strong>se 5bp and <strong>the</strong><br />

downstream cluster <strong>of</strong> HSEs <strong>in</strong> a most f<strong>in</strong>e tuned manner, we cont<strong>in</strong>ued and<br />

proceeded with additional 5’deletions <strong>in</strong> which we systematically deleted a s<strong>in</strong>gle<br />

nucleotide at a time from -305 to -286 (Fig. 9A). In wild type cells, deletions between<br />

-305 and -302 had no effect. The -302LacZ construct still conta<strong>in</strong>s <strong>the</strong> full putative<br />

HSE sequence. The -301LacZ construct, which lacks only one nucleotide <strong>of</strong> <strong>the</strong><br />

perfect HSE cis-element, demonstrated reduced activity that was actually similar to<br />

that <strong>of</strong> -300LacZ. We fur<strong>the</strong>r verified <strong>the</strong> activity <strong>of</strong> <strong>the</strong>se deletions <strong>in</strong> msn2∆msn4∆<br />

cells (Fig 9B). Thus, we were able to map most properties <strong>of</strong> <strong>the</strong> 34bp to <strong>the</strong> s<strong>in</strong>gle<br />

HSE element at -302. In o<strong>the</strong>r words, <strong>the</strong> HSE positioned at -302 is essential for <strong>the</strong><br />

high basal activity <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter. This result could also be <strong>in</strong>terpreted by<br />

suggest<strong>in</strong>g that <strong>the</strong> HSE cluster (-302 to -285) should be <strong>in</strong>tact to support basal<br />

transcription. S<strong>in</strong>ce Hsf1 is known to be <strong>the</strong> sole regulator <strong>in</strong> <strong>the</strong> absence <strong>of</strong> Msn2/4<br />

[Fig. 5 and (47)], we also measured <strong>the</strong> ability <strong>of</strong> <strong>the</strong> various constructs to respond to<br />

heat shock <strong>in</strong> <strong>the</strong> absence <strong>of</strong> Msn2/4. Our previous, somewhat crude, mapp<strong>in</strong>g<br />

showed that this heat shock response requires <strong>the</strong> HSE cluster resid<strong>in</strong>g between -300<br />

to -285. Our current, f<strong>in</strong>e tuned mapp<strong>in</strong>g showed, quite strik<strong>in</strong>gly, that HSEs<br />

upstream to -294 are essential for <strong>the</strong> heat shock response <strong>of</strong> <strong>HSP104</strong>. Additional<br />

constructs downstream to -294bp displayed no activity even though still conta<strong>in</strong><strong>in</strong>g<br />

some HSEs (Fig. 9B). As mentioned <strong>in</strong> <strong>the</strong> “Introduction”, <strong>the</strong> activity <strong>of</strong> <strong>the</strong> -<br />

334LacZ reporter <strong>in</strong> ras2∆msn2∆msn4∆ cells was similar if not identical to that <strong>in</strong><br />

ras2∆ cells, but -300LacZ showed very low activity <strong>in</strong> ras2∆msn2∆msn4∆ and high <strong>in</strong><br />

ras2∆ (47). We tested <strong>the</strong>refore <strong>the</strong> activity <strong>of</strong> -302LacZ <strong>in</strong> ras2∆msn2∆msn4∆ cells.<br />

As shown <strong>in</strong> Fig 9C, <strong>the</strong> pattern <strong>of</strong> activity <strong>of</strong> <strong>the</strong> -301LacZ and -302LacZ reporters is<br />

quite similar to that <strong>in</strong> wild type cells but levels are slightly higher. Importantly, <strong>in</strong><br />

ras2∆msn2∆msn4∆ cells, <strong>the</strong> activity <strong>of</strong> <strong>the</strong> -302LacZ reporter is about 10 fold higher<br />

than <strong>the</strong> activity <strong>of</strong> -300LacZ. In fact, results obta<strong>in</strong>ed <strong>in</strong> ras2∆msn2∆msn4∆<br />

certa<strong>in</strong>ly suggest a role for <strong>the</strong> HSE at -302 <strong>in</strong> expla<strong>in</strong><strong>in</strong>g <strong>the</strong> high spontaneous<br />

activity <strong>of</strong> <strong>the</strong> promoter <strong>in</strong> ras2∆ cells. Namely, <strong>in</strong> cells lack<strong>in</strong>g Ras2, and <strong>in</strong> <strong>the</strong><br />

26


absence <strong>of</strong> Msn2/4, <strong>the</strong> HSE takes over and allows high spontaneous promoter<br />

activity.<br />

27


1<br />

A)<br />

units<br />

100.00<br />

90.00<br />

80.00<br />

70.00<br />

60.00<br />

50.00<br />

40.00<br />

30.00<br />

20.00<br />

10.00<br />

0.00<br />

30 o C<br />

SP1 (WT) cells<br />

334 303 301 299 297 295 293 291 289 287 285 280<br />

305 302 300 298 296 294 292 290 288 286 284 260<br />

B)<br />

msn2∆msn4∆ cells<br />

30 o C<br />

39 o C<br />

400.00<br />

350.00<br />

300.00<br />

250.00<br />

units<br />

200.00<br />

150.00<br />

100.00<br />

50.00<br />

0.00<br />

334 305 303 302 301 300 299 298 297 296 295 294<br />

C)<br />

900.00<br />

800.00<br />

700.00<br />

600.00<br />

ras2∆msn2∆msn4∆ cells<br />

30 o C<br />

stra<strong>in</strong>s<br />

500.00<br />

400.00<br />

300.00<br />

200.00<br />

100.00<br />

0.00<br />

334 303 301 299 297 295 293 291 289 287 285 280<br />

305 302 300 298 296 294 292 290 288 286 284 260<br />

Figure 9. F<strong>in</strong>e tune (s<strong>in</strong>gle base deletion) analysis <strong>of</strong> <strong>the</strong> -305 to -284 fragment. The activity <strong>of</strong><br />

s<strong>in</strong>gle base deletions <strong>of</strong> <strong>HSP104</strong> reporters were measured <strong>in</strong> SP1 (A), <strong>in</strong> msn2∆msn4∆ (B) and <strong>in</strong><br />

ras2∆msn2∆msn4∆ (C).<br />

28


In response to heat shock, acetylated H3 histones dissociate from <strong>the</strong> promoter<br />

whereas acetylated H4 histones undergo deacetylation<br />

The genetic and molecular evidence obta<strong>in</strong>ed so far show that Hsf1 and<br />

Msn2/4 are responsible for both basal and <strong>in</strong>ducible activities <strong>of</strong> <strong>the</strong> <strong>HSP104</strong><br />

promoter [Figs. 2, 3, 5 and fur<strong>the</strong>r details <strong>in</strong> (47)]. We do not know, however, how<br />

<strong>the</strong>se transcriptional activators directly affect <strong>the</strong> promoter to render it active. As <strong>the</strong><br />

major effect <strong>of</strong> transcriptional activators is remodel<strong>in</strong>g <strong>of</strong> <strong>the</strong> chromat<strong>in</strong>, particularly<br />

impos<strong>in</strong>g histone acetylation or deacetylation, we monitored <strong>the</strong> acetylation state <strong>of</strong><br />

histones H3 and H4 resid<strong>in</strong>g on <strong>the</strong> <strong>HSP104</strong> promoter. We performed ChIP assays<br />

that allow <strong>in</strong> vivo monitor<strong>in</strong>g <strong>of</strong> <strong>the</strong> promoter-bound histones. We first tested <strong>the</strong><br />

status <strong>of</strong> H3 histones (Fig. 10). Us<strong>in</strong>g anti-acetylated H3 antibodies <strong>in</strong> <strong>the</strong> ChIP<br />

assay, we observed that under optimal growth conditions acetylated H3 molecules<br />

occupy <strong>the</strong> promoter <strong>in</strong> all stra<strong>in</strong>s tested (Fig. 10A). Importantly, however, <strong>the</strong><br />

<strong>HSP104</strong> promoter <strong>in</strong> ras2∆ cells is less occupied with acetylated H3 under non-heat<br />

shock conditions (Fig. 10A).<br />

Next, we measured <strong>the</strong> status <strong>of</strong> H3 histones follow<strong>in</strong>g stress. ChIP analysis<br />

shows that <strong>in</strong> all stra<strong>in</strong>s tested, acetylated H3 histones are scarcely detectable on <strong>the</strong><br />

promoter, five to seven m<strong>in</strong>utes follow<strong>in</strong>g heat shock (Fig. 10B). The decrease<br />

observed <strong>in</strong> acetylated histone H3 on <strong>the</strong> promoter was very short lived <strong>in</strong> wild type<br />

and <strong>in</strong> ras2∆ cells (Fig. 10B). Fifteen m<strong>in</strong>utes after <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> heat shock,<br />

acetylated histone H3 was aga<strong>in</strong> occupy<strong>in</strong>g <strong>the</strong> promoter at <strong>the</strong> same level as before<br />

heat shock. In stra<strong>in</strong>s with deleted MSN2 and MSN4, acetylated histones did not<br />

reoccupy <strong>the</strong> promoter <strong>in</strong>dicat<strong>in</strong>g that Msn2/4 may have a role <strong>in</strong> <strong>the</strong> process (Fig.<br />

10B).<br />

The loss <strong>of</strong> acetylated H3 from <strong>the</strong> <strong>HSP104</strong> promoter shortly after heat shock<br />

could be achieved by ei<strong>the</strong>r <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g mechanisms: 1) Histone deacetylation.<br />

2) Specific removal <strong>of</strong> acetylated histones from nucleosomes. 3) Total disassembly <strong>of</strong><br />

nucleosomes. To dist<strong>in</strong>guish between <strong>the</strong>se possibilities, we performed a ChIP assay<br />

us<strong>in</strong>g anti H3 antibodies. As shown <strong>in</strong> Figure 10C, we observed partial reduction <strong>in</strong><br />

H3 promoter occupancy follow<strong>in</strong>g heat shock. At <strong>the</strong> same time, acetylated H3<br />

molecules are not detected (Figs. 10B and 10C). The results strongly suggest that<br />

acetylated H3 is specifically removed from <strong>the</strong> promoter <strong>in</strong> response to heat shock<br />

whereas non-acetylated H3 rema<strong>in</strong>s bound. Namely, <strong>the</strong>re seems to be partial<br />

29


nucleosome disassembly <strong>in</strong>volv<strong>in</strong>g specifically <strong>the</strong> removal <strong>of</strong> only acetylated H3<br />

molecules from <strong>the</strong> <strong>HSP104</strong> promoter <strong>in</strong> response to heat shock.<br />

A)<br />

Stra<strong>in</strong><br />

W.T.<br />

msn2∆msn4∆<br />

ras2∆<br />

ras2∆msn2∆msn4∆<br />

RAS2 val19<br />

IP:ace H3<br />

WCE<br />

B) C)<br />

Stra<strong>in</strong><br />

W.T.<br />

msn2∆msn4∆<br />

Heat Shock<br />

-<br />

7’<br />

10’<br />

15’<br />

-<br />

5’<br />

10’<br />

15’<br />

SP1<br />

IP: ace H3<br />

IP: ace H3<br />

Heat Shock<br />

-<br />

5’<br />

10’<br />

15’<br />

WCE<br />

WCE<br />

IP:totH3<br />

IP:aceH3<br />

Stra<strong>in</strong><br />

ras2∆<br />

ras2∆msn2∆msn4∆<br />

WCE<br />

Heat Shock<br />

-<br />

5’<br />

10’<br />

15’<br />

-<br />

5’<br />

10’<br />

15’<br />

IP: ace H3<br />

IP: ace H3<br />

WCE<br />

WCE<br />

Figure 10. Under non-heat shock conditions, some histone H3 molecules are acetylated on <strong>the</strong><br />

<strong>HSP104</strong> promoter and <strong>in</strong> response to heat shock, acetylated H3 histones dissociate from<br />

nucleosomes. A) ChIP analysis us<strong>in</strong>g anti-acetylated H3 antibodies, to monitor <strong>the</strong> presence <strong>of</strong> <strong>the</strong><br />

prote<strong>in</strong> on <strong>the</strong> <strong>HSP104</strong> promoter <strong>of</strong> <strong>the</strong> <strong>in</strong>dicated stra<strong>in</strong>s, grown under optimal growth conditions. B)<br />

Acetylated state <strong>of</strong> histones H3 was monitored via ChIP assays on <strong>the</strong> <strong>HSP104</strong> promoter <strong>of</strong> wild type,<br />

ras2∆, msn2∆msn4∆ and ras2∆msn2∆msn4∆ cells <strong>in</strong> response to heat shock. Cross-l<strong>in</strong>k<strong>in</strong>g and fur<strong>the</strong>r<br />

processes <strong>of</strong> <strong>the</strong> ChIP analysis were performed at <strong>the</strong> <strong>in</strong>dicated time po<strong>in</strong>ts. C) Histone H3 undergoes<br />

transient remodel<strong>in</strong>g <strong>in</strong> response to heat shock. Antibody recogniz<strong>in</strong>g total histone H3 was used <strong>in</strong><br />

ChIP assays as well as antibody recogniz<strong>in</strong>g acetylated histone H3. WCE= whole cell extract.<br />

30


Next we tested <strong>the</strong> status <strong>of</strong> H4 histones on <strong>the</strong> <strong>HSP104</strong> promoter (Fig. 11).<br />

Just like we observed <strong>in</strong> <strong>the</strong> case <strong>of</strong> histone H3, acetylated H4 molecules occupy <strong>the</strong><br />

<strong>HSP104</strong> promoter under optimal growth conditions (Fig. 11A). Also, we detected<br />

that less acetylated H4 histones occupy <strong>the</strong> <strong>HSP104</strong> promoter <strong>in</strong> ras2∆ cells. These<br />

results strongly <strong>in</strong>dicate a role for Ras2 <strong>in</strong> promot<strong>in</strong>g acetylated histone occupancy on<br />

<strong>the</strong> <strong>HSP104</strong> promoter. We next monitored <strong>the</strong> changes occurr<strong>in</strong>g to acetylated H4<br />

molecules on <strong>the</strong> promoter <strong>of</strong> <strong>HSP104</strong> follow<strong>in</strong>g heat shock (Fig. 11B). Similarly to<br />

acetylated H3 histones, we also observed a transient decrease <strong>in</strong> acetylated H4<br />

molecules on <strong>the</strong> promoter <strong>in</strong> response to heat shock. In wild type cells, follow<strong>in</strong>g a<br />

fifteen m<strong>in</strong>utes heat shock, acetylated H4 molecules reoccupied <strong>the</strong> promoter, but not<br />

to <strong>the</strong> same level as before heat shock. Very little acetylated H4 reoccupied <strong>HSP104</strong><br />

promoter <strong>in</strong> stra<strong>in</strong>s with deleted MSN2 and MSN4, just like <strong>the</strong> case for H3 histones<br />

(Fig. 10B). In an attempt to identify <strong>the</strong> mechanism lead<strong>in</strong>g to <strong>the</strong> decrease <strong>in</strong><br />

acetylated H4 histones <strong>in</strong> response to heat shock, we measured <strong>the</strong> presence <strong>of</strong> nonacetylated<br />

histone H4 on <strong>the</strong> promoter <strong>in</strong> response to heat shock. As shown <strong>in</strong> Figure<br />

11C, we could not measure non-acetylated H4 molecules <strong>in</strong> wild type cells not<br />

exposed to heat shock (Fig. 11C, left lane). However, five m<strong>in</strong>utes follow<strong>in</strong>g heat<br />

shock, this promoter becomes occupied with non-acetylated H4. This result is a clear<br />

mirror image to that <strong>in</strong> Figure 11B, show<strong>in</strong>g <strong>the</strong> disappearance <strong>of</strong> acetylated H4 from<br />

<strong>the</strong> promoter. We <strong>the</strong>refore conclude that <strong>in</strong> response to heat shock, histones H4<br />

rema<strong>in</strong> associated with <strong>the</strong> promoter but undergo extensive deacetylation. A similar<br />

mirror image is observed for <strong>the</strong> ras2∆ stra<strong>in</strong>. The <strong>HSP104</strong> promoter <strong>in</strong> this stra<strong>in</strong> is<br />

occupied with low levels <strong>of</strong> acetylated H4 under optimal conditions (Fig. 11A) and <strong>in</strong><br />

contrast conta<strong>in</strong>s <strong>in</strong>creased levels <strong>of</strong> non-acetylated H4 (Fig. 11C, lane 5). As <strong>in</strong> this<br />

stra<strong>in</strong> <strong>the</strong> promoter is spontaneously active (47), it seems that reduced levels <strong>of</strong><br />

acetylated H4 and <strong>in</strong>creased levels <strong>of</strong> non-acetylated H4 is important for promoter<br />

activity. In summary, H3 and H4 population on <strong>the</strong> promoter is modified via two<br />

different mechanisms. Acetylated H4 molecules undergo deacetylation whereas<br />

acetylated H3 are removed altoge<strong>the</strong>r. These changes that occur <strong>in</strong> response to heat<br />

shock and <strong>in</strong> ras2∆ cells correlate with promoter activity.<br />

31


A)<br />

Stra<strong>in</strong><br />

W.T.<br />

msn2∆msn4∆<br />

ras2∆<br />

ras2∆msn2∆msn4∆<br />

RAS2 val19<br />

IP:ace H4<br />

WCE<br />

B)<br />

Stra<strong>in</strong><br />

W.T.<br />

msn2∆msn4∆<br />

Heat Shock<br />

-<br />

7’<br />

10’<br />

15’<br />

-<br />

5’<br />

10’<br />

15’<br />

15’<br />

IP: ace H4<br />

IP: ace H4<br />

WCE<br />

WCE<br />

Stra<strong>in</strong><br />

ras2∆<br />

ras2∆msn2∆msn4∆<br />

Heat Shock<br />

-<br />

5’<br />

10’<br />

15’<br />

-<br />

5’<br />

10’<br />

15’<br />

IP: ace H4<br />

IP: ace H4<br />

WCE<br />

WCE<br />

C)<br />

Stra<strong>in</strong><br />

Heat Shock<br />

msn2∆msn4∆ ras2∆ ras2∆msn2∆msn4∆<br />

wt<br />

- 5’ - 5’ - 5’ 10’ 15’ - 5’ 10’ 15’<br />

IP:nonace H4<br />

WCE<br />

Figure 11. Under non-heat shock conditions, all histone H4 molecules are acetylated on <strong>the</strong><br />

<strong>HSP104</strong> promoter and <strong>in</strong> response to heat shock, acetylated H4 histones are deacetylated. A)<br />

ChIP analysis us<strong>in</strong>g anti-acetylated H4 antibodies, to monitor <strong>the</strong> presence <strong>of</strong> <strong>the</strong> prote<strong>in</strong> on <strong>the</strong><br />

<strong>HSP104</strong> promoter <strong>of</strong> <strong>the</strong> <strong>in</strong>dicated stra<strong>in</strong>s, grown under optimal growth conditions. B) Acetylated state<br />

<strong>of</strong> histones H4 was monitored via ChIP assays on <strong>the</strong> <strong>HSP104</strong> promoter <strong>of</strong> wild type, ras2∆,<br />

msn2∆msn4∆ and ras2∆msn2∆msn4∆ cells <strong>in</strong> response to heat shock. Cross-l<strong>in</strong>k<strong>in</strong>g and fur<strong>the</strong>r<br />

processes <strong>of</strong> <strong>the</strong> ChIP analysis were performe at <strong>the</strong> <strong>in</strong>dicated time po<strong>in</strong>ts. C) Histone H4 undergoes<br />

extensive deacetylation <strong>in</strong> response to heat shock. Antibody recogniz<strong>in</strong>g non-acetylated histone H4<br />

was used for ChIP assays as well as antibody recogniz<strong>in</strong>g acetylated histone H4.<br />

32


No specific HDAC is responsible for <strong>the</strong> deacetylation <strong>of</strong> H4 on <strong>the</strong> <strong>HSP104</strong><br />

promoter<br />

In an attempt to identify <strong>the</strong> histone deacetylase(s) responsible for <strong>the</strong> <strong>in</strong>itial<br />

dramatic decrease <strong>in</strong> histone H4 acetylation, we used a battery <strong>of</strong> mutants, each<br />

deleted <strong>in</strong> a gene encod<strong>in</strong>g a known histone deacetylase (taken from <strong>the</strong> S.cerevisiae<br />

knock-out library). We systematically determ<strong>in</strong>ed <strong>the</strong> acetylation state <strong>of</strong> histone H4<br />

follow<strong>in</strong>g a five m<strong>in</strong>ute heat shock <strong>in</strong> each <strong>of</strong> <strong>the</strong> mutants. As is shown <strong>in</strong> Figure 12,<br />

<strong>in</strong> all stra<strong>in</strong>s tested, we observed disappearance <strong>of</strong> acetylated H4 from <strong>the</strong> <strong>HSP104</strong><br />

promoter, as was also observed <strong>in</strong> <strong>the</strong> isogenic wild type stra<strong>in</strong> BY4741. Thus <strong>the</strong>re<br />

seems to be no s<strong>in</strong>gle HDAC responsible for H4 deacetylation on <strong>the</strong> <strong>HSP104</strong><br />

promoter. Some histone deacetylases are probably redundant (34, 73) for<br />

deacetylat<strong>in</strong>g H4 on <strong>the</strong> <strong>HSP104</strong> promoter. It may also be that yet ano<strong>the</strong>r HDAC,<br />

not yet identified and <strong>the</strong>refore not tested by us, is responsible for H4 deacetylation <strong>of</strong><br />

<strong>the</strong> <strong>HSP104</strong> promoter.<br />

Stra<strong>in</strong><br />

WT<br />

rpd3∆<br />

hst1∆<br />

hst2∆<br />

hst3∆<br />

hst4∆<br />

Stra<strong>in</strong><br />

WT<br />

hda1∆<br />

hos1∆<br />

hos2∆<br />

hos3∆<br />

sir2∆<br />

Heat Shock<br />

- 5’ - 5’ - 5’ - 5’ - 5’ - 5’<br />

Heat Shock - 5’ - 5’ - 5’ - 5’ - 5’ - 5’<br />

IP:ace H4<br />

IP:ace H4<br />

WCE<br />

WCE<br />

Figure 12. None <strong>of</strong> <strong>the</strong> deletion mutants <strong>of</strong> histone deacetylases compromises <strong>the</strong> deacetylation<br />

effect on histone H4. Mutants <strong>in</strong> which known histone deacetylases are deleted were assayed for <strong>the</strong><br />

level <strong>of</strong> acetylated histones H4 <strong>in</strong> response to heat shock.<br />

33


Hsf1 constitutively b<strong>in</strong>ds <strong>the</strong> <strong>HSP104</strong> promoter<br />

Our previous promoter analysis and genetic studies revealed that <strong>HSP104</strong><br />

transcriptional <strong>in</strong>duction is mediated by some cooperation between Hsf1 and Msn2/4<br />

[(47); see also Figs. 2 and 3]. The dynamics <strong>of</strong> promoter occupancy by each <strong>of</strong> <strong>the</strong>se<br />

activators and <strong>the</strong> mutual relationship between <strong>the</strong>m are not known. To reveal <strong>the</strong><br />

dynamics <strong>of</strong> promoter occupancy by Hsf1, we employed ChIP assays <strong>in</strong> wild type and<br />

various mutant stra<strong>in</strong>s grown under optimal growth conditions and <strong>in</strong> response to heat<br />

shock. We found that Hsf1 b<strong>in</strong>d<strong>in</strong>g is constitutive under all conditions tested <strong>in</strong> wild<br />

type cells and <strong>in</strong> <strong>the</strong> msn2∆msn4∆, ras2∆ and ras2∆msn2∆msn4∆ stra<strong>in</strong>s (Fig. 13A).<br />

Notably, basal b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> Hsf1 to <strong>the</strong> <strong>HSP104</strong> promoter <strong>in</strong> ras2∆ cells is reduced<br />

compared to its b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> o<strong>the</strong>r stra<strong>in</strong>s (Figs. 13A and B). In order to rule out <strong>the</strong><br />

possibility that lower b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> Hsf1 <strong>in</strong> ras2∆ cells reflects lower steady state levels<br />

<strong>of</strong> Hsf1 <strong>in</strong> <strong>the</strong>se cells, we performed western blot analysis and observed that steady<br />

state levels <strong>of</strong> Hsf1 are <strong>in</strong> fact identical <strong>in</strong> all stra<strong>in</strong>s and are not affected by heat<br />

shock (Fig. 13C). The lower Hsf1 promoter occupancy <strong>in</strong> ras2∆ cells may be<br />

<strong>in</strong>terpreted as if <strong>the</strong> Ras cascade positively regulates Hsf1's DNA b<strong>in</strong>d<strong>in</strong>g ability. We<br />

believe, however, that <strong>the</strong> weaker Hsf1 b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> ras2∆ cells is a result <strong>of</strong><br />

constitutive b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> Msn2/4 to <strong>the</strong> promoter <strong>in</strong> this stra<strong>in</strong> [(47); and Fig. 4) that<br />

partially disturbs Hsf1’s b<strong>in</strong>d<strong>in</strong>g. Indeed, removal <strong>of</strong> Msn2/4 from ras2∆ cells<br />

(ras2∆msn2∆msn4∆) results <strong>in</strong> resumption <strong>of</strong> efficient b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> Hsf1 to <strong>the</strong><br />

promoter (Fig. 13A and B). Also, as shown above <strong>in</strong> ras2∆ cells, Hsf1 is dispensable<br />

for <strong>HSP104</strong> promoter activity as <strong>in</strong> <strong>the</strong>se cells promoter activity was constitutively<br />

high even after all HSEs were deleted [(47); and Fig. 4].<br />

34


A)<br />

Stra<strong>in</strong><br />

W.T.<br />

Stra<strong>in</strong><br />

ras2∆<br />

Integrated vector<br />

HSFp-HA-HSF<br />

Integrated vector<br />

empty<br />

HSFp-HA-HSF<br />

Heat Shock<br />

-<br />

5’<br />

10’<br />

15’<br />

15’<br />

Heat Shock<br />

-<br />

15’<br />

-<br />

5’<br />

10’<br />

15’<br />

IP: HA-HSF<br />

IP: HA-HSF<br />

WCE<br />

WCE<br />

Stra<strong>in</strong><br />

msn2∆msn4∆<br />

Stra<strong>in</strong><br />

ras2∆msn2∆msn4∆<br />

Integrated vector<br />

empty<br />

HSFp-HA-HSF<br />

Integrated vector<br />

empty<br />

HSFp-HA-HSF<br />

Heat Shock<br />

-<br />

15’<br />

15’<br />

-<br />

5’<br />

10’<br />

15’<br />

15’<br />

Heat Shock<br />

-<br />

15’<br />

-<br />

5’<br />

10’<br />

15’<br />

IP: HA-HSF<br />

IP: HA-HSF<br />

WCE<br />

WCE<br />

B) C)<br />

Stra<strong>in</strong><br />

Integrated vector<br />

Heat Shock<br />

W.T.<br />

msn2∆msn4∆<br />

HSFp-HA-HSF<br />

ras2∆<br />

- - - -<br />

ras2∆msn2∆msn4∆<br />

Stra<strong>in</strong><br />

Integrated vector<br />

Heat Shock<br />

IB: α-HA<br />

empty<br />

HSFp-HA-HSF<br />

- -<br />

W.T.<br />

5’<br />

5’<br />

10’ 15’<br />

10’ 15’<br />

msn2∆msn4∆<br />

empty<br />

HSFp-HA-HSF<br />

- -<br />

5’<br />

10’ 15’<br />

IP: HA-HSF<br />

Stra<strong>in</strong> ras2∆ ras2∆ msn2∆msn4∆<br />

WCE<br />

Integrated vector<br />

Heat Shock<br />

empty<br />

HSFp-HA-HSF<br />

- -<br />

5’<br />

10’ 15’<br />

empty<br />

HSFp-HA-HSF<br />

- -<br />

5’<br />

10’ 15’<br />

IB: α-HA<br />

Figure 13. HSF constitutively b<strong>in</strong>ds to <strong>the</strong> <strong>HSP104</strong> promoter. A) Wild type, ras2∆, msn2∆msn4∆<br />

and ras2∆msn2∆msn4∆ stra<strong>in</strong>s were crossl<strong>in</strong>ked at <strong>the</strong> <strong>in</strong>dicated time po<strong>in</strong>ts follow<strong>in</strong>g heat shock and<br />

ChIP was performed on HA tagged Hsf1. B) Samples <strong>of</strong> ChIP experiments shown <strong>in</strong> A (from non-heat<br />

shocked cells) were loaded on <strong>the</strong> same gel to compare HSF b<strong>in</strong>d<strong>in</strong>g under basal conditions <strong>in</strong> different<br />

stra<strong>in</strong>s. C) Western analysis on HA-tagged Hsf1 show<strong>in</strong>g similar prote<strong>in</strong> level <strong>in</strong> all stra<strong>in</strong>s and under<br />

all conditions.<br />

35


Next, we attempted to directly measure <strong>the</strong> occupancy <strong>of</strong> Msn2 and Msn4 on<br />

<strong>the</strong> promoter. Similarly to Hsf1, we constructed Ha-tagged prote<strong>in</strong>s and <strong>in</strong>serted <strong>the</strong>m<br />

<strong>in</strong> <strong>the</strong> yeast genome at <strong>the</strong> URA3 locus. We were unfortunately unsuccessful <strong>in</strong><br />

detect<strong>in</strong>g ei<strong>the</strong>r Msn2 or Msn4 on <strong>the</strong> <strong>HSP104</strong> promoter under normal or heat shock<br />

conditions. Fur<strong>the</strong>rmore, we could not measure via ChIP assays Msn2/4 b<strong>in</strong>d<strong>in</strong>g <strong>in</strong><br />

ras2∆ cells <strong>in</strong> which <strong>the</strong>se two transcriptional activators are believed to constitutively<br />

b<strong>in</strong>d STREs (data not shown). We tried different variations <strong>of</strong> tagg<strong>in</strong>g Msn2 (ei<strong>the</strong>r<br />

at <strong>the</strong> N-term<strong>in</strong>us or C-term<strong>in</strong>us) and we also tried to over-express Msn2 under <strong>the</strong><br />

Alcohol Dehydrogenase 1 (ADH1) promoter known to be a strong constitutive<br />

promoter. We also tried grow<strong>in</strong>g cells <strong>in</strong> m<strong>in</strong>imal media (YNB) as opposed to rich<br />

media (YPD). In all cases, DNA b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> <strong>the</strong> prote<strong>in</strong>s was not detected although<br />

<strong>the</strong> Msn2/4 prote<strong>in</strong>s were confirmed to be expressed and active. It seems that <strong>the</strong><br />

<strong>in</strong>ability to measure Msn2/4 b<strong>in</strong>d<strong>in</strong>g via ChIP is not specific to our laboratory. There<br />

is no report <strong>in</strong> <strong>the</strong> literature on successful ChIP on Msn2 or Msn4. Some reports (part<br />

<strong>of</strong> all genome b<strong>in</strong>d<strong>in</strong>g assay) do report on Msn2/4 b<strong>in</strong>d<strong>in</strong>g to some promoter, (but<br />

with very low aff<strong>in</strong>ity) (135). We still do not know whe<strong>the</strong>r <strong>the</strong> reason is technical or<br />

conceptual (reflect<strong>in</strong>g no direct association <strong>of</strong> Msn2/4 with DNA).<br />

SAGA, SRB/MED and SWI/SNF are important for <strong>HSP104</strong> promoter activity<br />

The experiments described above analyzed <strong>the</strong> <strong>HSP104</strong> promoter and<br />

provided an <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> events occurr<strong>in</strong>g on nucleosomes located on <strong>the</strong> <strong>HSP104</strong><br />

promoter. The experiments fur<strong>the</strong>r showed that <strong>the</strong>se events are controlled, at least <strong>in</strong><br />

part, by <strong>the</strong> activators Msn2/4. Hav<strong>in</strong>g identified <strong>the</strong> major activators <strong>of</strong> <strong>the</strong> promoter<br />

and some <strong>of</strong> <strong>the</strong>ir effects on chromat<strong>in</strong> organization we sought to identify <strong>the</strong> basal<br />

transcription factors required for heat shock <strong>in</strong>duced <strong>HSP104</strong> transcription. To<br />

uncover <strong>the</strong>se factors, we tested <strong>HSP104</strong> promoter activity <strong>in</strong> various mutants from<br />

<strong>the</strong> Saccharomyces Genome Deletion Project. Mutants <strong>in</strong>cluded those lack<strong>in</strong>g a gene<br />

encod<strong>in</strong>g a basal transcription factor. Into each <strong>of</strong> <strong>the</strong>se mutants we <strong>in</strong>troduced<br />

(separately) three reporter genes: i) -334LacZ, ii) STRE-LacZ and iii) HSE-LacZ.<br />

Activity <strong>of</strong> <strong>the</strong> -334LacZ manifests <strong>the</strong> activity <strong>of</strong> <strong>the</strong> full length promoter. Activity<br />

<strong>of</strong> STRE-LacZ [-260LacZ <strong>in</strong> (47)] manifests <strong>the</strong> function <strong>of</strong> <strong>the</strong> promoter activity<br />

dependent on Msn2/4. The HSE-LacZ reporter conta<strong>in</strong>s <strong>the</strong> HSE cluster <strong>of</strong> <strong>HSP104</strong><br />

<strong>in</strong> four repeats fused to <strong>the</strong> CYC1 m<strong>in</strong>imal promoter. This reporter reflects <strong>the</strong><br />

activity <strong>of</strong> Hsf1. 69 stra<strong>in</strong>s (Table 3) were tested with <strong>the</strong> three different plasmids.<br />

36


Of those, 17 stra<strong>in</strong>s demonstrated lowered -334LacZ reporter activity, ei<strong>the</strong>r under<br />

physiological conditions or under stress conditions (Table 4), while 10 mutant stra<strong>in</strong>s<br />

displayed higher activity <strong>of</strong> -334LacZ (Table 5). N<strong>in</strong>e mutant stra<strong>in</strong>s had no <strong>in</strong>fluence<br />

on <strong>the</strong> activities <strong>of</strong> nei<strong>the</strong>r <strong>of</strong> <strong>the</strong> reporters and 34 stra<strong>in</strong>s showed reduced HSE-LacZ<br />

activity (see details below <strong>in</strong> <strong>the</strong> next section).<br />

37


Table 3. List <strong>of</strong> mutants <strong>in</strong> which reporter activity was measured.<br />

β-Gal activity (% <strong>of</strong> WT) β-Gal activity (% <strong>of</strong> WT) β-Gal activity (% <strong>of</strong> WT)<br />

Stra<strong>in</strong> C<strong>of</strong>atctor complex Un<strong>in</strong>duced Induced Un<strong>in</strong>duced Induced Un<strong>in</strong>duced Induced<br />

<strong>HSP104</strong> <strong>HSP104</strong> STRE-LacZ STRE-LacZ HSE-LacZ HSE-LacZ<br />

ahc1∆ ADA 45 66 94 70 84 80<br />

ada2∆ ADA,SAGA 56 117 57 17 27 65<br />

ada3∆ ADA,SAGA 42 74 8 7 2 1<br />

gcn5∆ ADA,SAGA 23 69 99 17 13 20<br />

ada1∆ SAGA 60 88 72 81 56 84<br />

spt3∆ SAGA 41 81 213 52 22 34<br />

spt7∆ SAGA 58 16 325 37 6 8<br />

spt8∆ SAGA 59 101 77 31 26 37<br />

yer049∆ NuA3 68 89 70 55 71 64<br />

yer1101∆ NuA3 75 115 74 206 79 75<br />

sas3∆ NuA3 3 7 0 2 7 6<br />

eaf3∆ NuA4 49 93 215 173 86 74<br />

bdf1∆ TFIID 225 135 742 122 46 67<br />

bdf2∆ TFIID 48 72 91 127 90 101<br />

elp3∆ HAT 116 185 227 140 156 111<br />

ayt1∆ HAT 52 62 172 96 67 53<br />

hpa2∆ HAT 43 55 124 83 52 53<br />

hpa3∆ HAT 62 88 88 157 29 32<br />

sas2∆ HAT 71 90 0 35 59 60<br />

rpd3∆ HDAC 56 70 142 93 69 65<br />

hda1∆ HDAC 40 58 162 224 44 44<br />

hos1∆ HDAC 56 61 97 132 111 92<br />

hos2∆ HDAC 36 64 33 55 35 26<br />

hos3∆ HDAC 64 65 77 47 23 30<br />

sir2∆ HDAC 38 71 29 77 38 46<br />

hst1∆ HDAC 36 55 80 105 72 56<br />

hst2∆ HDAC 59 85 109 116 54 41<br />

hst3∆ HDAC 59 76 92 82 60 45<br />

hst4∆ HDAC 74 118 87 92 66 62<br />

tfg3∆ Multiple 62 69 259 91 4 23<br />

swi3∆ SWI/SNF 46 96 143 95 2 14<br />

snf5∆ SWI/SNF 60 75 150 133 187 148<br />

snf6∆ SWI/SNF 13 50 0 0 10 23<br />

snf11∆ SWI/SNF 47 75 40 43 121 99<br />

rsc1∆ RSC 70 71 337 212 107 121<br />

rsc2∆ RSC 76 50 300 129 55 72<br />

isw1∆ ISW1 105 125 169 257 99 89<br />

isw2∆ ISW2 40 41 65 53 133 63<br />

chd1∆ Homodimer 74 156 143 152 149 84<br />

not3∆ CCR4-NOT 111 125 111 209 71 56<br />

not4∆ CCR4-NOT 111 109 1161 118 35 39<br />

caf1∆ CCR4-NOT 227 60 237 87 15 13<br />

38


Table 3. Con’t.<br />

β-Gal activity (% <strong>of</strong> WT) β-Gal activity (% <strong>of</strong> WT) β-Gal activity (% <strong>of</strong> WT)<br />

Stra<strong>in</strong> C<strong>of</strong>atctor complex Un<strong>in</strong>duced Induced Un<strong>in</strong>duced Induced Un<strong>in</strong>duced Induced<br />

<strong>HSP104</strong> <strong>HSP104</strong> STRE-LacZ STRE-LacZ HSE-LacZ HSE-LacZ<br />

caf4∆ CCR4-NOT 51 71 47 60 35 31<br />

caf16∆ CCR4-NOT 61 65 56 83 39 38<br />

caf40∆ CCR4-NOT 103 109 88 142 44 45<br />

caf130∆ CCR4-NOT 65 100 86 82 102 69<br />

dbf2∆ CCR4-NOT 62 51 342 415 32 23<br />

dhh1∆ CCR4-NOT 319 67 873 132 17 7<br />

srb9∆<br />

SRB/MED,CCR4-<br />

NOT<br />

150 59 723 104 52 38<br />

srb10∆<br />

SRB/MED,CCR4-<br />

NOT<br />

72 15 469 41 13 6<br />

srb2∆ SRB/MED 33 110 154 69 32 94<br />

srb5∆ SRB/MED 10 23 78 23 12 29<br />

srb8∆ SRB/MED 60 28 614 90 69 28<br />

med1∆ SRB/MED 154 107 715 229 42 38<br />

med9∆ SRB/MED 179 93 1550 484 29 32<br />

nut1∆ SRB/MED 135 68 580 249 101 78<br />

rox3∆ SRB/MED 86 41 1605 251 4 16<br />

cdc73∆ Paf1 complex 11 20 11 17 4 12<br />

rtf1∆ Paf1 complex 49 52 100 51 34 28<br />

leo1∆ Paf1 complex 21 29 37 51 34 28<br />

ccr4∆ CCR4-NOT,Paf1 157 43 399 107 11 5<br />

hpr1∆ Paf1,THO/TREX 0.1 1 0 1.5 0 0.1<br />

mft1∆ THO/TREX 4 3 5 0.1 0.4 0.5<br />

tex1∆ THO/TREX 34 38 44 61 32 33<br />

thp2∆ THO/TREX 48 74 192 148 68 57<br />

dst1∆ TFIIS 25 36 182 111 58 40<br />

spt4∆ SPT 10 2 62 8 0.5 0.3<br />

rpb9∆ RNA PolII core 48 62 169 41 34 30<br />

rpb4∆ RNA PolII core 2 0.4 17 0.6 1 0.4<br />

39


Table 4. Stra<strong>in</strong>s required for positive regulation <strong>of</strong> <strong>HSP104</strong>.<br />

β-Gal activity (% <strong>of</strong> WT) β-Gal activity (% <strong>of</strong> WT) β-Gal activity (% <strong>of</strong> WT)<br />

Stra<strong>in</strong> C<strong>of</strong>atctor complex Un<strong>in</strong>duced Induced Un<strong>in</strong>duced Induced Un<strong>in</strong>duced Induced<br />

<strong>HSP104</strong> <strong>HSP104</strong> STRE-LacZ STRE-LacZ HSE-LacZ HSE-LacZ<br />

bdf1∆ TFIID 225 135 742 122 46 67<br />

elp3∆ HAT 116 185 227 140 156 111<br />

chd1∆ Homodimer 74 156 143 152 149 84<br />

caf1∆ CCR4-NOT 227 60 237 87 15 13<br />

dhh1∆ CCR4-NOT 319 67 873 132 17 7<br />

srb9∆<br />

SRB/MED,CCR4-<br />

NOT<br />

150 59 723 104 52 38<br />

med1∆ SRB/MED 154 107 715 229 42 38<br />

med9∆ SRB/MED 179 93 1550 484 29 32<br />

nut1∆ SRB/MED 135 68 580 249 101 78<br />

β-Gal activity (% <strong>of</strong> WT) β-Gal activity (% <strong>of</strong> WT) β-Gal activity (% <strong>of</strong> WT)<br />

Stra<strong>in</strong> C<strong>of</strong>atctor complex Un<strong>in</strong>duced Induced Un<strong>in</strong>duced Induced Un<strong>in</strong>duced Induced<br />

<strong>HSP104</strong> <strong>HSP104</strong> STRE-LacZ STRE-LacZ HSE-LacZ HSE-LacZ<br />

gcn5∆ ADA,SAGA 23 69 99 17 13 20<br />

spt7∆ SAGA 58 16 325 37 6 8<br />

sas3∆ NuA3 3 7 0 2 7 6<br />

hos2∆ HDAC 36 64 33 55 35 26<br />

sir2∆ HDAC 38 71 29 77 38 46<br />

hst1∆ HDAC 36 55 80 105 72 56<br />

snf6∆ SWI/SNF 13 50 0 0 10 23<br />

srb10∆<br />

SRB/MED,CCR4-<br />

NOT<br />

72 15 469 41 13 6<br />

srb2∆ SRB/MED 33 110 154 69 32 94<br />

srb5∆ SRB/MED 10 23 78 23 12 29<br />

srb8∆ SRB/MED 60 28 614 90 69 28<br />

dst1∆ TFIIS 25 36 182 111 58 40<br />

rpb4∆ RNA PolII core 2 0.4 17 0.6 1 0.4<br />

cdc73∆ Paf1 complex 11 20 11 17 4 12<br />

leo1∆ Paf1 complex 21 29 37 51 34 28<br />

hpr1∆ Paf1,THO/TREX 0.1 1 0 1.5 0 0.1<br />

mft1∆ THO/TREX 4 3 5 0.1 0.4 0.5<br />

Table 5. Stra<strong>in</strong>s which <strong>in</strong>duced an up-regulation <strong>of</strong> <strong>HSP104</strong> (i.e. downregulate<br />

<strong>HSP104</strong>).<br />

In order to confirm that <strong>the</strong> decreased or <strong>in</strong>creased reporter activities measured<br />

<strong>in</strong> <strong>the</strong> mutants reflect <strong>in</strong>deed defects <strong>in</strong> expression <strong>of</strong> endogenous <strong>HSP104</strong>, we<br />

performed S1 analysis to detect endogenous mRNA levels <strong>of</strong> <strong>HSP104</strong>. We first<br />

measured RNA levels <strong>in</strong> stra<strong>in</strong>s which demonstrated a decrease <strong>in</strong> <strong>the</strong> β-galactosidase<br />

activity <strong>of</strong> -334LacZ. Most stra<strong>in</strong>s listed <strong>in</strong> Table 4 <strong>in</strong>deed had lower RNA levels<br />

40


ei<strong>the</strong>r under physiological conditions or under heat shock conditions when compared<br />

to wild type (Fig. 14). In some stra<strong>in</strong>s, however, such correlation was not observed.<br />

The sas3∆ stra<strong>in</strong> is an extreme case <strong>of</strong> such discrepancy. When we measured β-<br />

galactosidase activity <strong>of</strong> <strong>the</strong> various constructs <strong>in</strong> sas3∆ cells very little or no activity<br />

was detected. We were <strong>the</strong>refore surprised to see that an impressive amount <strong>of</strong><br />

<strong>HSP104</strong> mRNA accumulated <strong>in</strong> <strong>the</strong>se cells <strong>in</strong> response to heat shock. O<strong>the</strong>r stra<strong>in</strong>s <strong>in</strong><br />

which RNA levels were not fully correlated to levels <strong>of</strong> reporter assays are snf6∆ and<br />

srb2∆ that exhibited very low levels <strong>of</strong> <strong>HSP104</strong> mRNA, but normal or close to<br />

normal levels <strong>of</strong> β-galactosidase <strong>in</strong>duced activity. In addition, <strong>in</strong> <strong>the</strong> hos2∆ and sir2∆<br />

stra<strong>in</strong>s that showed some decrease <strong>in</strong> promoter activity (Table 4) endogenous <strong>HSP104</strong><br />

mRNA levels were not affected (data not shown). F<strong>in</strong>ally, hpr1∆ cells which showed<br />

very low or non-<strong>in</strong>ducible reporter activity, expressed <strong>HSP104</strong> mRNA at basal levels<br />

(not <strong>in</strong>duced) significantly higher than those <strong>in</strong> wild type cells (Fig. 16). We <strong>the</strong>refore<br />

considered Hpr1 as a negative regulator <strong>of</strong> <strong>HSP104</strong> ra<strong>the</strong>r than a positive regulator.<br />

A<br />

B<br />

time<br />

wt<br />

-<br />

Heat shock<br />

5’<br />

10’<br />

15’<br />

60’<br />

5hrs 30 0<br />

<strong>HSP104</strong>-LacZ(units)<br />

-HS<br />

+HS<br />

51.2 273<br />

time<br />

hst1∆<br />

-<br />

5’<br />

10’<br />

15’<br />

60’<br />

5hrs 30 0<br />

<strong>HSP104</strong>-LacZ(units)<br />

-HS<br />

+HS<br />

28.1 161.2<br />

time<br />

wt<br />

-<br />

5’<br />

Heat shock<br />

10’<br />

15’<br />

60’<br />

5hrs 30 0<br />

time<br />

hst1∆<br />

-<br />

Heat shock<br />

5’<br />

10’<br />

15’<br />

60’<br />

5hrs 30 0<br />

srb2∆<br />

15.7 271.7<br />

gcn5∆<br />

12.8 185.4<br />

srb2∆<br />

srb5∆<br />

gcn5∆<br />

spt7∆<br />

srb5∆<br />

4.7 56.3<br />

spt7∆<br />

31.5 43.6<br />

srb8∆<br />

dst1∆<br />

srb8∆<br />

24.2 56.0<br />

dst1∆<br />

15.4 103.1<br />

srb9∆<br />

srb10∆<br />

mft1∆<br />

cdc73∆<br />

srb9∆<br />

59.9 179.6<br />

mft1∆<br />

2.0 5.8<br />

med1∆<br />

rpb4∆<br />

srb10∆<br />

37.4 56.1<br />

cdc73∆<br />

6.1 55.0<br />

snf6∆<br />

ACTIN<br />

sas3∆<br />

ACTIN<br />

med1∆<br />

60.6 288.4<br />

rpb4∆<br />

1.01 1.35<br />

snf6∆<br />

<strong>HSP104</strong><br />

7.4 175.6<br />

sas3∆<br />

<strong>HSP104</strong><br />

1.82 12.6<br />

Figure 14. Components from <strong>the</strong> SRB/MED, SAGA and SWI/SNF complexes and RNA PolII<br />

subunit, Rpb4, are important for proper transcription <strong>of</strong> <strong>HSP104</strong>. A) S1 RNA analysis <strong>of</strong><br />

<strong>HSP104</strong> mRNA was performed on <strong>the</strong> <strong>in</strong>dicated yeast stra<strong>in</strong>s follow<strong>in</strong>g heat shock at <strong>the</strong> marked time<br />

po<strong>in</strong>ts. Table <strong>in</strong>dicates β-galactosidase activity units obta<strong>in</strong>ed with <strong>the</strong> -334LacZ reporter <strong>in</strong> <strong>the</strong> same<br />

stra<strong>in</strong>s before and after heat shock. B) Same RNAs as <strong>in</strong> A were used to measure ACTIN mRNA levels<br />

via S1 analysis as control.<br />

41


Overall, <strong>the</strong> results never<strong>the</strong>less show a general correlation between reporter<br />

activity and mRNA levels. Namely, <strong>the</strong> genes deleted <strong>in</strong> 15 stra<strong>in</strong>s out <strong>of</strong> <strong>the</strong> 17<br />

tested, encode prote<strong>in</strong>s that are required for proper <strong>in</strong>duction <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter.<br />

Our results strongly suggest <strong>the</strong> <strong>in</strong>volvement <strong>of</strong> <strong>the</strong> SAGA complex (represented by<br />

<strong>the</strong> spt7∆, gcn5∆ mutants), <strong>the</strong> SRB/MED coactivator complex (represented by <strong>the</strong><br />

srb2∆, srb5∆, srb8∆, srb9∆, srb10∆, and med1∆ mutants) as well as <strong>the</strong> SWI/SNF<br />

chromat<strong>in</strong> remodel<strong>in</strong>g complex (snf6∆ mutant) <strong>in</strong> mediat<strong>in</strong>g <strong>HSP104</strong> transcription<br />

<strong>in</strong>itiation (Table 4). In addition, we also measured promoter activity and mRNA<br />

levels <strong>of</strong> <strong>HSP104</strong> <strong>in</strong> rpb4∆ cells and observed that <strong>HSP104</strong> is barely, if at all, <strong>in</strong>duced<br />

<strong>in</strong> this stra<strong>in</strong> <strong>in</strong> response to heat shock. Rpb4 is a RNA PolII subunit which is not<br />

essential for growth under optimal growth conditions, but essential under stress and is<br />

important for <strong>the</strong> activation <strong>of</strong> PolII under heat shock conditions (23, 24, 89, 97, 98).<br />

As <strong>the</strong> components identified are part <strong>of</strong> <strong>the</strong> basal mach<strong>in</strong>ery we wondered whe<strong>the</strong>r<br />

<strong>the</strong> defective <strong>in</strong>duction <strong>of</strong> <strong>HSP104</strong> <strong>in</strong> <strong>the</strong>se mutants is specific to <strong>HSP104</strong>, or whe<strong>the</strong>r<br />

<strong>the</strong> mutants demonstrate a general abnormality <strong>in</strong> <strong>in</strong>duc<strong>in</strong>g stress genes <strong>in</strong> response to<br />

heat shock. To this end we measured <strong>the</strong> mRNAs <strong>of</strong> HSP26 and SSA3, two HSP<br />

encod<strong>in</strong>g genes known to be <strong>in</strong>duced <strong>in</strong> response to heat shock. As shown <strong>in</strong> Figure<br />

15, most <strong>of</strong> <strong>the</strong> mutants tested <strong>in</strong>duced HSP26 and SSA3 normally, suggest<strong>in</strong>g that <strong>the</strong><br />

failure <strong>of</strong> <strong>the</strong> mutants to properly <strong>in</strong>duce <strong>HSP104</strong> is specific. We did notice however,<br />

that some mutants, like rpb4∆ and snf6∆, seem to have more general defects <strong>in</strong><br />

<strong>in</strong>duc<strong>in</strong>g stress genes. Curiously, SSA3 mRNA levels were spontaneously elevated <strong>in</strong><br />

most mutants.<br />

WT<br />

dst1∆<br />

hst1∆<br />

srb8∆<br />

srb10∆<br />

spt7∆<br />

gcn5∆<br />

srb2∆<br />

HS - + - + - + - + - + - + - + - +<br />

HS<br />

srb5∆<br />

snf6∆<br />

rpb4∆<br />

sas3∆<br />

mft1∆<br />

cdc73∆<br />

med1∆<br />

srb9∆<br />

- + - + - + - + - + - + - + - +<br />

HSP26<br />

HSP26<br />

SSA3<br />

SSA3<br />

Figure 15. Most factors required for proper <strong>in</strong>duction <strong>of</strong> <strong>HSP104</strong> are specific for this gene.<br />

RNA from mutants that demonstrated impaired <strong>HSP104</strong> <strong>in</strong>duction <strong>in</strong> response to heat shock, were used<br />

to measure mRNA levels <strong>of</strong> HSP26 (sample <strong>of</strong> no heat shock and ten m<strong>in</strong>utes heat shock were used)<br />

and SSA3 (sample <strong>of</strong> no heat shock and fifteen m<strong>in</strong>utes heat shock were used).<br />

42


Next, we monitored <strong>HSP104</strong> mRNA levels <strong>in</strong> stra<strong>in</strong>s which, <strong>in</strong> <strong>the</strong> reporter<br />

assay, demonstrated an <strong>in</strong>crease <strong>in</strong> activity (Table 5) and are <strong>the</strong>refore mutated <strong>in</strong><br />

putative suppressors <strong>of</strong> <strong>HSP104</strong> transcription. Most <strong>of</strong> <strong>the</strong>se stra<strong>in</strong>s did demonstrate<br />

spontaneous elevation <strong>of</strong> <strong>HSP104</strong> mRNA levels (Fig. 16) and also manifested higher<br />

<strong>in</strong>duced levels when compared to wild type. bdf1∆, caf1∆, and srb9∆ stra<strong>in</strong>s,<br />

however, demonstrated <strong>in</strong>duced levels <strong>of</strong> <strong>HSP104</strong> mRNA close to those <strong>of</strong> wild type,<br />

and <strong>the</strong>refore were considered as non-regulators <strong>of</strong> <strong>HSP104</strong> (data not shown).<br />

Comb<strong>in</strong><strong>in</strong>g <strong>the</strong> results obta<strong>in</strong>ed we note that a total <strong>of</strong> 6 stra<strong>in</strong>s are considered to be<br />

mutated <strong>in</strong> negative regulators <strong>of</strong> <strong>HSP104</strong> transcription. Two <strong>of</strong> <strong>the</strong>m are mutated <strong>in</strong><br />

components <strong>of</strong> <strong>the</strong> SRB/MED complex (med9∆ and nut1∆) <strong>the</strong> same complex that is<br />

also <strong>in</strong>volved <strong>in</strong> positively regulat<strong>in</strong>g <strong>HSP104</strong>. The fact that components <strong>of</strong> <strong>the</strong> same<br />

complex both positively and negatively regulate <strong>HSP104</strong> transcription, strongly<br />

suggests that <strong>the</strong> SRB/MED complex may play a role <strong>in</strong> <strong>the</strong> f<strong>in</strong>e tun<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

transcription <strong>in</strong>itiation <strong>of</strong> <strong>HSP104</strong>. The o<strong>the</strong>r four mutated stra<strong>in</strong>s cannot be grouped.<br />

time<br />

-<br />

5’<br />

Heat shock<br />

10’<br />

15’<br />

60’<br />

5hrs 30 0<br />

wt<br />

ccr4∆<br />

chd1∆<br />

elp3∆<br />

med9∆<br />

hpr1∆<br />

ACTIN<br />

nut1∆<br />

<strong>HSP104</strong><br />

Figure 16. Some components are <strong>in</strong>volved <strong>in</strong> down-regulat<strong>in</strong>g <strong>the</strong> transcription <strong>of</strong> <strong>HSP104</strong>. A)<br />

S1 RNA analysis <strong>of</strong> <strong>HSP104</strong> mRNA was performed on <strong>the</strong> <strong>in</strong>dicated yeast stra<strong>in</strong>s follow<strong>in</strong>g heat shock<br />

at <strong>the</strong> marked time po<strong>in</strong>ts (left panel). The right panel shows same RNAs as <strong>in</strong> <strong>the</strong> left panel was used<br />

to measure ACTIN mRNA levels via S1 analysis as control.<br />

43


Regulation <strong>of</strong> Hsf1<br />

As expla<strong>in</strong>ed <strong>in</strong> “Introduction”, mechanisms underly<strong>in</strong>g Hsf1<br />

activation/regulation are not revealed. Many regulators <strong>of</strong> Hsf1 have been identified,<br />

that impose phosphorylation, sumoylation, and oxidation, but none <strong>of</strong> <strong>the</strong>se<br />

modifications seems critical. Fur<strong>the</strong>rmore, elements <strong>of</strong> <strong>the</strong> basal transcription<br />

mach<strong>in</strong>ery that are required for Hsf1 activity were hi<strong>the</strong>rto not identified. As<br />

described <strong>in</strong> <strong>the</strong> previous section, we monitored <strong>the</strong> activity <strong>of</strong> <strong>the</strong> HSE-LacZ reporter<br />

gene <strong>in</strong> various mutants. This reporter reflects <strong>the</strong> activity <strong>of</strong> Hsf1 only, because it<br />

conta<strong>in</strong>s only HSEs upstream to <strong>the</strong> m<strong>in</strong>imal promoter. Therefore, <strong>in</strong> a stra<strong>in</strong><br />

demonstrat<strong>in</strong>g poor activity <strong>of</strong> this reporter, Hsf1 activity is compromised (Table 6, <strong>of</strong><br />

which 20 mutant stra<strong>in</strong>s exclusively affect activity <strong>of</strong> <strong>the</strong> HSE-LacZ reporter). Thirty<br />

n<strong>in</strong>e such stra<strong>in</strong>s were identified. We did not f<strong>in</strong>d even one stra<strong>in</strong> with spontaneous<br />

<strong>in</strong>creased HSE-LacZ activity. S<strong>in</strong>ce stra<strong>in</strong>s identified are mutated <strong>in</strong> components <strong>of</strong><br />

<strong>the</strong> basal transcription mach<strong>in</strong>ery, <strong>the</strong>y may be compromised <strong>in</strong> activation <strong>of</strong> many<br />

stress-<strong>in</strong>duced activators and not specifically Hsf1. In order to assess whe<strong>the</strong>r <strong>the</strong><br />

effects observed are specific to Hsf1, we tested <strong>in</strong> some <strong>of</strong> <strong>the</strong> stra<strong>in</strong>s <strong>the</strong> activity <strong>of</strong><br />

<strong>the</strong> SV40-LacZ reporter which is activated solely by <strong>the</strong> yAP-1 transcriptional<br />

activator (Table 7). Except for one stra<strong>in</strong> (sas3∆), all o<strong>the</strong>r 11 stra<strong>in</strong>s with reduced<br />

HSE-LacZ activity that were tested, showed activity levels <strong>of</strong> <strong>the</strong> SV40-LacZ gene<br />

similar to that <strong>of</strong> wild type (Table 7).<br />

44


Table 6. Stra<strong>in</strong>s which down-regulated HSE-LacZ reporter activity (not exclusive).<br />

Stra<strong>in</strong> C<strong>of</strong>atctor complex β-Gal activity (% <strong>of</strong> WT)<br />

Un<strong>in</strong>duced Induced<br />

<strong>HSP104</strong> <strong>HSP104</strong><br />

β-Gal activity (% <strong>of</strong> WT)<br />

Un<strong>in</strong>duced Induced<br />

STRE-LacZ STRE-LacZ<br />

β-Gal activity (% <strong>of</strong> WT)<br />

Un<strong>in</strong>duced Induced<br />

HSE-LacZ HSE-LacZ<br />

ada2∆ ADA,SAGA 56 117 57 17 27 65<br />

ada3∆ ADA,SAGA 42 74 8 7 2 1<br />

gcn5∆ ADA,SAGA 23 69 99 17 13 20<br />

spt3∆ SAGA 41 81 213 52 22 34<br />

spt7∆ SAGA 58 16 325 37 6 8<br />

spt8∆ SAGA 59 101 77 31 26 37<br />

sas3∆ NuA3 3 7 0 2 7 6<br />

hpa3∆ HAT 62 88 88 157 29 32<br />

hos2∆ HDAC 36 64 33 55 35 26<br />

hos3∆ HDAC 64 65 77 47 23 30<br />

sir2∆ HDAC 38 71 29 77 38 46<br />

hst2∆ HDAC 59 85 109 116 54 41<br />

tfg3∆ Multiple 62 69 259 91 4 23<br />

swi3∆ SWI/SNF 46 96 143 95 2 14<br />

snf6∆ SWI/SNF 13 50 0 0 10 23<br />

not4∆ CCR4-NOT 111 109 1161 118 35 39<br />

caf1∆ CCR4-NOT 227 60 237 87 15 13<br />

caf4∆ CCR4-NOT 51 71 47 60 35 31<br />

caf16∆ CCR4-NOT 61 65 56 83 39 38<br />

dbf2∆ CCR4-NOT 62 51 342 415 32 23<br />

dhh1∆ CCR4-NOT 319 67 873 132 17 7<br />

srb9∆<br />

SRB/MED,CCR4-<br />

NOT<br />

150 59 723 104 52 38<br />

srb10∆<br />

SRB/MED,CCR4-<br />

NOT<br />

72 15 469 41 13 6<br />

srb2∆ SRB/MED 33 110 154 69 32 94<br />

srb5∆ SRB/MED 10 23 78 23 12 29<br />

srb8∆ SRB/MED 60 28 614 90 69 28<br />

med1∆ SRB/MED 154 107 715 229 42 38<br />

med9∆ SRB/MED 179 93 1550 484 29 32<br />

rox3∆ SRB/MED 86 41 1605 251 4 16<br />

cdc73∆ Paf1 complex 11 20 11 17 4 12<br />

rtf1∆ Paf1 complex 49 52 100 51 34 28<br />

leo1∆ Paf1 complex 21 29 37 51 34 28<br />

ccr4∆ CCR4-NOT,Paf1 157 43 399 107 11 5<br />

hpr1∆ Paf1,THO/TREX 0.1 1 0 1.5 0 0.1<br />

mft1∆ THO/TREX 4 3 5 0.1 0.4 0.5<br />

tex1∆ THO/TREX 34 38 44 61 32 33<br />

spt4∆ SPT 10 2 62 8 0.5 0.3<br />

rpb9∆ RNA PolII core 48 62 169 41 34 30<br />

rpb4∆ RNA PolII core 2 0.4 17 0.6 1 0.4<br />

45


Table 7. Comparison between HSE-LacZ and SV40-LacZ <strong>in</strong> various mutant stra<strong>in</strong>s.<br />

Stra<strong>in</strong>s C<strong>of</strong>actor complex<br />

β-Gal activity (% <strong>of</strong> WT) β-Gal activity (% <strong>of</strong> WT)<br />

Un<strong>in</strong>duced Induced<br />

Un<strong>in</strong>duced Induced<br />

HSE-LacZ HSE-LacZ SV40-LacZ SV40-LacZ<br />

ada2∆ ADA,SAGA 32 89 125 149<br />

ada3∆ ADA,SAGA 0.5 0.4 111 111<br />

gcn5∆ ADA,SAGA 25 40 137 126<br />

spt3∆ SAGA 32 57 350 194<br />

spt7∆ SAGA 6 10 169 92<br />

spt8∆ SAGA 32 54 313 168<br />

sas3∆ NuA3 8 6 10 9<br />

hpa3∆ HAT 40 45 101 103<br />

hos2∆ HDAC 35 28 67 72<br />

hos3∆ HDAC 40 43 132 101<br />

sir2∆ HDAC 43 47 165 102<br />

hst2∆ HDAC 64 50 102 90<br />

To beg<strong>in</strong> and address <strong>the</strong> mechanism <strong>of</strong> action <strong>of</strong> <strong>the</strong> mutations responsible for<br />

reduced Hsf1 activity, we tested <strong>in</strong> some <strong>of</strong> <strong>the</strong> stra<strong>in</strong>s <strong>the</strong> ability <strong>of</strong> Hsf1 to b<strong>in</strong>d <strong>in</strong><br />

vivo to <strong>the</strong> <strong>HSP104</strong> promoter. S<strong>in</strong>ce we showed that Hsf1 constitutively b<strong>in</strong>ds HSEs<br />

on <strong>the</strong> <strong>HSP104</strong> promoter regardless <strong>of</strong> heat shock conditions, we predicted reduced<br />

DNA b<strong>in</strong>d<strong>in</strong>g activity <strong>of</strong> Hsf1 <strong>in</strong> stra<strong>in</strong>s <strong>in</strong> which HSE-LacZ activity was low. Quite<br />

surpris<strong>in</strong>gly, we actually observed an <strong>in</strong>verse correlation between <strong>the</strong> transcriptional<br />

activity <strong>of</strong> Hsf1 and its DNA b<strong>in</strong>d<strong>in</strong>g activity. As is shown <strong>in</strong> Figure 17, gcn5∆,<br />

spt7∆, caf1∆, and ccr4∆ cells which demonstrated very poor reporter activity <strong>of</strong> HSE-<br />

LacZ (Table 6), displayed stronger b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> Hsf1 on <strong>the</strong> <strong>HSP104</strong> promoter<br />

compared to wild type. Perhaps <strong>in</strong> <strong>the</strong>se stra<strong>in</strong>s stronger Hsf1 DNA b<strong>in</strong>d<strong>in</strong>g activity<br />

is <strong>in</strong>hibitory. <strong>Transcription</strong> repression activity <strong>of</strong> Hsf1 was previously suggested<br />

(131). It should be noted that <strong>the</strong> studies on <strong>the</strong> mechanism <strong>of</strong> action <strong>of</strong> <strong>the</strong> mutants is<br />

only at its beg<strong>in</strong>n<strong>in</strong>g and a large scale study is required for reveal<strong>in</strong>g <strong>the</strong> role <strong>of</strong> each<br />

factor on Hsf1 activity. Never<strong>the</strong>less, <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> elements <strong>of</strong> <strong>the</strong> basal<br />

transcription mach<strong>in</strong>ery that are highly specific to Hsf1 is novel and unexpected.<br />

46


Integrated Vector empty HSFp-HA-HSF<br />

empty<br />

HSFp-HA-HSF<br />

empty<br />

HSFp-HA-HSF<br />

empty<br />

HSFp-HA-HSF<br />

empty<br />

HSFp-HA-HSF<br />

Heat Shock - - 5’<br />

- - 5’<br />

- - 5’<br />

- - 5’<br />

- - 5’<br />

IP: HA-HSF<br />

WCE<br />

Stra<strong>in</strong><br />

BY4741<br />

caf1∆<br />

ccr4∆<br />

gcn5∆<br />

spt7∆<br />

Figure17. Hsf1 shows stronger b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> some HSE-LacZ <strong>in</strong>efficient stra<strong>in</strong>s. Indicated stra<strong>in</strong>s<br />

were crossl<strong>in</strong>ked at <strong>the</strong> <strong>in</strong>dicated time po<strong>in</strong>ts follow<strong>in</strong>g heat shock and ChIP was performed on HA<br />

tagged Hsf1.<br />

DISCUSSION<br />

In response to stress, or to fluctuations <strong>in</strong> optimal growth conditions, cells halt<br />

transcription <strong>of</strong> most genes. Yet, genes <strong>in</strong>volved <strong>in</strong> combat<strong>in</strong>g stresses are<br />

upregulated. The molecular mechanisms responsible for transcription <strong>in</strong>itiation <strong>of</strong><br />

this group <strong>of</strong> genes are not fully revealed. This work described a systematic study<br />

aimed at reveal<strong>in</strong>g <strong>the</strong>se mechanisms <strong>in</strong> <strong>the</strong> S.cerevisiae <strong>HSP104</strong> gene. This<br />

experimental approach (elaborat<strong>in</strong>g on just one promoter) is somewhat different than<br />

current prevail<strong>in</strong>g strategies <strong>in</strong> <strong>the</strong> field. Common studies reported <strong>in</strong> recent years on<br />

transcription <strong>in</strong>itiation <strong>in</strong> general and <strong>in</strong> response to stress <strong>in</strong> particular, addressed coregulation<br />

<strong>of</strong> many genes search<strong>in</strong>g for common <strong>the</strong>mes <strong>in</strong> <strong>the</strong>ir regulation (21, 36,<br />

59, 103, 128, 135, 136). These approaches lead on one hand to important discoveries,<br />

but on <strong>the</strong> o<strong>the</strong>r hand major matters are left unresolved. Most important, data<br />

accumulated so far suggest that although common regulatory <strong>the</strong>mes do exist, each<br />

promoter is <strong>in</strong>duced via specific processes. Our long-term <strong>in</strong>tention is <strong>the</strong>refore to<br />

dissect <strong>the</strong> processes <strong>of</strong> transcription <strong>in</strong>itiation under stress <strong>of</strong> one gene <strong>in</strong> order to<br />

understand its specific and unique regulation at high resolution and <strong>in</strong> a highly<br />

detailed manner.<br />

This <strong>the</strong>sis presents <strong>the</strong> data obta<strong>in</strong>ed so far <strong>in</strong> <strong>the</strong> long run toward this<br />

ultimate goal. This data was obta<strong>in</strong>ed via three approaches I undertook: I) Promoter<br />

analysis, i.e., identification <strong>of</strong> various cis-elements which are essential for regulat<strong>in</strong>g<br />

promoter activity <strong>of</strong> <strong>HSP104</strong>. In order to identify <strong>the</strong> important elements and <strong>the</strong><br />

relationships between <strong>the</strong>m for <strong>HSP104</strong> transcription we proceeded with 5’deletions<br />

<strong>of</strong> <strong>the</strong> promoter, po<strong>in</strong>t mutations and <strong>the</strong> establishment <strong>of</strong> heterologous reporter genes.<br />

II) Monitor<strong>in</strong>g modifications <strong>of</strong> histones occurr<strong>in</strong>g on <strong>the</strong> promoter <strong>of</strong> <strong>HSP104</strong> <strong>in</strong><br />

response to heat shock. We also monitored <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g activity <strong>of</strong> <strong>the</strong> transcriptional<br />

activator Hsf1 and attempted to measure <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> Msn2/4 on <strong>the</strong> <strong>HSP104</strong><br />

47


promoter. III) The identification <strong>of</strong> components <strong>of</strong> <strong>the</strong> basal transcription mach<strong>in</strong>ery<br />

<strong>in</strong>volved specifically <strong>in</strong> transcriptionally activat<strong>in</strong>g <strong>HSP104</strong>.<br />

The results obta<strong>in</strong>ed allow us to draw a detailed work<strong>in</strong>g model for <strong>the</strong><br />

molecular events occurr<strong>in</strong>g on <strong>the</strong> <strong>HSP104</strong> promoter <strong>in</strong> response to heat shock (see<br />

details <strong>in</strong> <strong>the</strong> last section <strong>of</strong> <strong>the</strong> Discussion). The first aspect <strong>of</strong> our promoter analysis<br />

dealt with, as mentioned above, analyz<strong>in</strong>g <strong>the</strong> promoter through 5’deletion [most<br />

aspects <strong>of</strong> promoter analysis are thoroughly described <strong>in</strong> (47)]. We sought at this<br />

stage <strong>of</strong> our study, to identify sequences which are required for <strong>the</strong> high basal activity<br />

<strong>of</strong> -334LacZ reporter. We found <strong>the</strong> putative s<strong>in</strong>gle HSE site between (-304 and -300)<br />

to have an important role <strong>in</strong> this promoter activity. In fact, our f<strong>in</strong>e-tuned mapp<strong>in</strong>g<br />

effort did not po<strong>in</strong>t at an additional particular sequence with<strong>in</strong> <strong>the</strong> 34bp as responsible<br />

for <strong>the</strong> activity. We fur<strong>the</strong>r conclude that <strong>the</strong> 34bp (particularly <strong>the</strong> HSE between -<br />

304 and -300) may possibly be required to <strong>in</strong>teract with <strong>the</strong> specific basal<br />

transcription mach<strong>in</strong>ery <strong>of</strong> <strong>HSP104</strong> (this conclusion is also based on <strong>the</strong> results with<br />

<strong>the</strong> heterologous promoter, Fig. 7). We <strong>the</strong>refore attempted to analyze <strong>the</strong> <strong>in</strong>teraction<br />

between <strong>the</strong> 34bp with <strong>the</strong> basal transcription mach<strong>in</strong>ery by delet<strong>in</strong>g an <strong>in</strong>ternal<br />

fragment <strong>of</strong> 78bp, <strong>the</strong>reby br<strong>in</strong>g<strong>in</strong>g <strong>the</strong> 34bp close to <strong>the</strong> m<strong>in</strong>imal promoter. The<br />

various ∆78 constructs manifested low basal activity, suggest<strong>in</strong>g that perhaps <strong>the</strong><br />

spatial organization between <strong>the</strong> 34bp and <strong>the</strong> basal transcription mach<strong>in</strong>ery is critical<br />

for <strong>the</strong> basal activity <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter. It could also be that STREs, removed<br />

with <strong>the</strong> <strong>in</strong>ternal 78bp, are required for basal activity. The ∆78 constructs provided<br />

important <strong>in</strong>formation about <strong>the</strong> flexibility and modularity <strong>of</strong> <strong>the</strong> promoter (Fig. 8).<br />

Normally, <strong>the</strong>re is complete cooperation between STRE/Msn2/4 and HSE/Hsf1<br />

systems for optimal promoter activity. Yet, under specific conditions, such as <strong>in</strong><br />

msn2∆msn4∆ cells, <strong>HSP104</strong> is solely activated by <strong>the</strong> HSE/Hsf1 system. Conversely,<br />

<strong>in</strong> ras2∆ cells, <strong>the</strong> HSE/Hsf1 system is not required for <strong>the</strong> activation <strong>of</strong> <strong>HSP104</strong><br />

promoter activity. High activity <strong>of</strong> <strong>HSP104</strong> <strong>in</strong> this stra<strong>in</strong> is due to <strong>the</strong> hypo<strong>the</strong>sized<br />

constitutive b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> Msn2/4 to <strong>the</strong> STREs present on <strong>the</strong> promoter. This<br />

flexibility and back-up capabilities <strong>of</strong> <strong>the</strong> HSE/Hsf1 and STRE/Msn2/4 systems are<br />

now fur<strong>the</strong>r expanded and <strong>in</strong>clude <strong>the</strong> upstream 34bp that become Ras2 responsive <strong>in</strong><br />

cells lack<strong>in</strong>g Msn2/4 and <strong>the</strong> <strong>in</strong>ternal 78bp, that under various conditions, affect not<br />

only <strong>in</strong>duced, but also basal promoter activity. Namely, promoter flexibility is much<br />

stronger than we previously suggested and many cis and trans-elements are back<strong>in</strong>g<br />

up each o<strong>the</strong>r to allow promoter activity under various circumstances. Measur<strong>in</strong>g<br />

48


<strong>HSP104</strong> mRNA <strong>in</strong> different mutants show, <strong>in</strong>deed, <strong>the</strong> robustness <strong>of</strong> <strong>HSP104</strong><br />

transcription that is rarely affected by <strong>the</strong> absence <strong>of</strong> activators and o<strong>the</strong>r transcription<br />

factors.<br />

Through monitor<strong>in</strong>g <strong>the</strong> acetylation states <strong>of</strong> histones, we suggest that<br />

<strong>in</strong>duction <strong>of</strong> <strong>HSP104</strong> transcription requires that acetylated H3 and H4 molecules be<br />

absent. We observed that under optimal growth conditions all H4 histones on <strong>the</strong><br />

<strong>HSP104</strong> promoter are acetylated as well as major fractions <strong>of</strong> H3 histones. Under<br />

<strong>the</strong>se conditions, only <strong>in</strong> ras2∆ cells, concentrations <strong>of</strong> acetylated H3 and H4 are<br />

lower and <strong>the</strong> promoter is even occupied with non-acetylated H4. As <strong>in</strong> this stra<strong>in</strong> <strong>the</strong><br />

<strong>HSP104</strong> promoter is constitutively active, <strong>the</strong>re is clear correlation between promoter<br />

activity and non-acetylated histones. Current dogma <strong>of</strong> gene activation claims that<br />

acetylation <strong>of</strong> histones followed by <strong>the</strong> dissociation <strong>of</strong> nucleosomes from promoters is<br />

required for promoter activation (28, 49, 50). The case for <strong>HSP104</strong> is different.<br />

There is no global dissociation <strong>of</strong> histones from <strong>the</strong> promoter, but ra<strong>the</strong>r a specific<br />

dissociation <strong>of</strong> acetylated H3 molecules from nucleosomal structures and<br />

deacetylation <strong>of</strong> H4 molecules. Non-acetylated H3 prote<strong>in</strong>s rema<strong>in</strong> associated with<br />

nucleosomes even <strong>in</strong> response to heat shock and so do histone H4 molecules that are<br />

now not acetylated. Although not very common, <strong>the</strong> disassembly and deacetylation<br />

patterns we observe for <strong>HSP104</strong> <strong>in</strong> response to heat shock should not be that<br />

surpris<strong>in</strong>g. As described <strong>in</strong> Deckert et al (31) histone deacetylation can also lead to<br />

transcription <strong>in</strong>itiation <strong>of</strong> several stress-responsive genes. Also, a recent study also<br />

demonstrated that some promoters, namely GAL <strong>in</strong>duced promoters, are activated by<br />

histone deacetylation (31).<br />

However, our conclusion differs somewhat from that <strong>of</strong> Deckert and Struhl<br />

(31). These <strong>in</strong>vestigators also monitored a dramatic decrease <strong>in</strong> acetylated histones<br />

on <strong>the</strong> <strong>HSP104</strong> promoter <strong>in</strong> response to heat shock [18 fold decrease <strong>of</strong> acetylated H4<br />

and 10 fold decrease <strong>in</strong> acetylated H3 (31)]. Yet, as <strong>the</strong>re was some decrease <strong>in</strong> <strong>the</strong><br />

level <strong>of</strong> unacetylated H4 occupancy (30%) <strong>the</strong>y concluded that <strong>the</strong>re is altoge<strong>the</strong>r<br />

chromat<strong>in</strong> remodel<strong>in</strong>g or disassembly <strong>of</strong> <strong>the</strong> nucleosomes. We suggest that <strong>the</strong><br />

changes on <strong>the</strong> chromat<strong>in</strong> should not be taken as all-or-non activity (disassembly, or<br />

deacetylation). There seems to be a series <strong>of</strong> different events which we partly<br />

revealed; i.e., histones H4 are deacetylated, and acetylated H3 molecules are<br />

disassembled from nucleosomes. Also, <strong>the</strong>se changes are transient and reflect <strong>the</strong><br />

dynamic nature <strong>of</strong> <strong>the</strong> changes occurr<strong>in</strong>g on <strong>the</strong> promoter dur<strong>in</strong>g cont<strong>in</strong>uous exposure<br />

49


to stress. This change <strong>in</strong> nucleosome composition may also be part <strong>of</strong> <strong>the</strong> shift <strong>of</strong> <strong>the</strong><br />

cell’s response from acute stage to adaptive stage. Perhaps fifteen m<strong>in</strong>utes after heat<br />

shock, nucleosomes are reassembled <strong>in</strong> a different comb<strong>in</strong>ation <strong>of</strong> modified histones<br />

and transcription cont<strong>in</strong>ues through a different mechanism than that <strong>of</strong> <strong>the</strong> first fifteen<br />

m<strong>in</strong>utes follow<strong>in</strong>g heat shock.<br />

In spite <strong>of</strong> mass research it is still not possible to describe <strong>in</strong> f<strong>in</strong>e details events<br />

lead<strong>in</strong>g to transcription activation. To a certa<strong>in</strong> extent, it is possible for some<br />

promoters. For <strong>in</strong>stance, <strong>the</strong> transcription <strong>of</strong> <strong>the</strong> HO gene, transcribed dur<strong>in</strong>g <strong>the</strong> G1<br />

phase <strong>of</strong> <strong>the</strong> cell cycle <strong>in</strong>cludes <strong>the</strong> recruitment (by a transcriptional activator) <strong>of</strong> <strong>the</strong><br />

chromat<strong>in</strong> remodel<strong>in</strong>g complex SWI/SNF which is followed by <strong>the</strong> recruitment <strong>of</strong><br />

Gcn5 that acetylates histones on <strong>the</strong> nucleosomes present on <strong>the</strong> promoter.<br />

Acetylation via Gcn5 <strong>the</strong>n <strong>in</strong>duces <strong>the</strong> recruitment <strong>of</strong> ano<strong>the</strong>r transcriptional activator<br />

to <strong>the</strong> HO promoter (29). Ano<strong>the</strong>r study showed that with<strong>in</strong> a group <strong>of</strong> HSP genes,<br />

thought to be co-regulated, <strong>the</strong>re are differences <strong>in</strong> <strong>the</strong> steps lead<strong>in</strong>g to <strong>the</strong>ir<br />

transcription <strong>in</strong>itiation (36). For <strong>in</strong>stance, HSP12 which showed <strong>the</strong> highest level <strong>of</strong><br />

nucleosome displacement also showed highest level <strong>of</strong> histone H3 acetylation (36).<br />

SSA4 which showed <strong>the</strong> lowest nucleosome displacement also demonstrated <strong>the</strong><br />

lowest acetylation state. F<strong>in</strong>ally HSP82 also showed an <strong>in</strong>crease <strong>in</strong> nucleosome<br />

displacement which correlated with an <strong>in</strong>crease with histone acetylation (36) and yet<br />

all three genes are activated <strong>in</strong> response to heat shock <strong>in</strong> an Hsf1 dependent manner.<br />

For <strong>the</strong> first time, we show that transcriptional activation <strong>of</strong> a s<strong>in</strong>gle promoter<br />

<strong>in</strong>volves a comb<strong>in</strong>ation <strong>of</strong> mechanisms for remodel<strong>in</strong>g nucleosomes; histone<br />

displacement (partial nucleosome disassembly) and histone deacetylation.<br />

What factor(s) is responsible for <strong>in</strong>duc<strong>in</strong>g <strong>the</strong> changes observed on <strong>the</strong> <strong>HSP104</strong><br />

promoter? Results from our small genetic screen <strong>in</strong>dicate a role for SWI/SNF <strong>in</strong><br />

regulat<strong>in</strong>g promoter activity and transcription <strong>of</strong> <strong>HSP104</strong>. The ma<strong>in</strong> role for<br />

SWI/SNF is to promote nucleosome disassembly rais<strong>in</strong>g <strong>the</strong> question whe<strong>the</strong>r<br />

SWI/SNF is responsible for disassembl<strong>in</strong>g acetylated histone H3 from <strong>the</strong> <strong>HSP104</strong><br />

promoter <strong>in</strong> response to heat shock. ChIP assays may answer this question by<br />

monitor<strong>in</strong>g acetylation state <strong>of</strong> histone H3 <strong>in</strong> response to heat shock <strong>in</strong> mutant<br />

SWI/SNF stra<strong>in</strong>s (snf6∆, for example). Ano<strong>the</strong>r open question is <strong>the</strong> identity <strong>of</strong> <strong>the</strong><br />

histone deacetylases (HDACs) <strong>in</strong>volved <strong>in</strong> deacetylat<strong>in</strong>g histone H4 on <strong>the</strong> promoter<br />

<strong>of</strong> <strong>HSP104</strong> <strong>in</strong> response to heat shock. It is clear that <strong>the</strong>se enzymes display some<br />

redundancy <strong>in</strong> <strong>the</strong> cell (34, 73). In order to target which family <strong>of</strong> histone deacetylase<br />

50


is responsible for deacetylat<strong>in</strong>g histone H4 it will be necessary to construct many<br />

stra<strong>in</strong>s with comb<strong>in</strong>ed deletions <strong>of</strong> various HDACs. Many transcriptional activators,<br />

such as Hsf1 (<strong>in</strong> mammals), Gcn4 and Swi5 have been shown to recruit chromat<strong>in</strong><br />

remodel<strong>in</strong>g complexes to promoters <strong>in</strong> vitro and <strong>in</strong> vivo (29, 124). Does Hsf1 <strong>in</strong> yeast<br />

play such a role on heat shock <strong>in</strong>duced promoters? As Hsf1 constitutively b<strong>in</strong>ds<br />

<strong>HSP104</strong> regardless <strong>of</strong> stress conditions, perhaps some post-translational modification<br />

<strong>of</strong> <strong>the</strong> prote<strong>in</strong> could target chromat<strong>in</strong> modify<strong>in</strong>g complexes to <strong>the</strong> <strong>HSP104</strong> promoter.<br />

An alternative explanation is that Msn2/4 recruit <strong>the</strong> nucleosome remodel<strong>in</strong>g<br />

enzymes. The fact that <strong>the</strong> lower levels <strong>of</strong> acetylated H3 or H4 are found <strong>in</strong> ras2∆, <strong>in</strong><br />

which Msn2/4 are constitutively active and probably constitutively bound, supports<br />

<strong>the</strong> notion that Msn2/4 are responsible for <strong>the</strong>se changes.<br />

Studies show that <strong>in</strong> Drosophila, Hsf1 is responsible for recruit<strong>in</strong>g <strong>the</strong><br />

mediator complex to heat shock promoters (95). Hsf1 <strong>in</strong> S.cerevisiae was also shown<br />

to have a role <strong>in</strong> recruit<strong>in</strong>g <strong>the</strong> SRB/MED co-activator complex to Hsf1 dependent<br />

promoters (39). Hsf1 may recruit <strong>the</strong> SRB/MED complex to <strong>the</strong> <strong>HSP104</strong> s<strong>in</strong>ce we<br />

f<strong>in</strong>d that SRB/MED is <strong>in</strong>volved <strong>in</strong> transcription <strong>in</strong>itiation <strong>of</strong> <strong>HSP104</strong>. The<br />

confirmation <strong>of</strong> such a hypo<strong>the</strong>sis could be achieved by perform<strong>in</strong>g a successive<br />

immunoprecipitation followed by PCR (i.e., double ChIP assays, one<br />

immunoprecipitation aga<strong>in</strong>st Hsf1 followed by ano<strong>the</strong>r one aga<strong>in</strong>st a component <strong>of</strong><br />

<strong>the</strong> SRB/MED complex) as components <strong>of</strong> <strong>the</strong> mediator complex have been shown to<br />

be associated with <strong>the</strong> <strong>HSP104</strong> promoter <strong>in</strong> response to heat shock and to o<strong>the</strong>r Hsf1<br />

target genes (39). The Srb10 component <strong>of</strong> <strong>the</strong> SRB/MED complex seems to be<br />

<strong>in</strong>volved <strong>in</strong> transcription <strong>of</strong> <strong>HSP104</strong> (Table 4). We observed that at <strong>the</strong> level <strong>of</strong> <strong>the</strong><br />

reporter gene activity and, more importantly, at <strong>the</strong> level <strong>of</strong> RNA production.<br />

However, our reporter studies demonstrated that <strong>the</strong> activity <strong>of</strong> a STRE-LacZ reporter<br />

<strong>in</strong> srb10∆ was significantly up-regulated even under non-heat shock conditions. This<br />

result is <strong>in</strong> agreement with studies show<strong>in</strong>g that Msn2 is degraded <strong>in</strong> a Srb10-<br />

dependent manner (39). Regard<strong>in</strong>g <strong>HSP104</strong> transcription, this suggests that o<strong>the</strong>r<br />

mechanisms seem to override <strong>the</strong> loss <strong>of</strong> Srb10 and that probably Srb10 <strong>in</strong> <strong>the</strong> context<br />

<strong>of</strong> <strong>the</strong> SRB/MED complex has ano<strong>the</strong>r function.<br />

Through <strong>the</strong> genetic screen, we also found that Rpb4, a RNA PolII subunit, is<br />

required for <strong>HSP104</strong> as well as for HSP26 and SSA3 transcription [Figs. 14 and 15<br />

and (24)]. Indeed, DNA micro array studies show that 98% <strong>of</strong> genes are<br />

downregulated <strong>in</strong> response to heat shock <strong>in</strong> RPB4 null cells (89). Interest<strong>in</strong>gly and<br />

51


perhaps not surpris<strong>in</strong>gly, overexpression <strong>of</strong> Msn2 could suppress <strong>the</strong> growth<br />

phenotype observed for Rpb4, but only at 34 o C. It would be <strong>in</strong>terest<strong>in</strong>g to test<br />

whe<strong>the</strong>r <strong>in</strong> rpb4∆ cells, Hsf1 b<strong>in</strong>ds <strong>the</strong> <strong>HSP104</strong> promoter and whe<strong>the</strong>r <strong>the</strong><br />

modifications <strong>of</strong> histones H3 and H4 still take place.<br />

The study presented <strong>in</strong> this <strong>the</strong>sis allows establishment <strong>of</strong> a model describ<strong>in</strong>g<br />

<strong>the</strong> molecular events lead<strong>in</strong>g to <strong>the</strong> transcriptional activation <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> promoter:<br />

under optimal growth conditions, <strong>the</strong> promoter is occupied by Hsf1 and acetylated<br />

histones. Under <strong>the</strong>se conditions, <strong>the</strong> promoter is only partially active via <strong>the</strong> 34bp<br />

(most probably via <strong>the</strong> HSE at -304 to -300), but also partially via downstream STREs<br />

(because lower basal levels are measured <strong>in</strong> msn2∆msn4∆ cells or <strong>in</strong> constructs<br />

lack<strong>in</strong>g <strong>in</strong>ternal STREs, <strong>the</strong> ∆78 constructs). Upon lower<strong>in</strong>g cAMP levels,<br />

permanently, such as <strong>in</strong> ras∆2 cells or under stress conditions, cells remove <strong>the</strong><br />

negative regulation imposed by <strong>the</strong> Ras/cAMP/PKA pathway on Msn2/4. This<br />

enables <strong>the</strong> nuclear localization <strong>of</strong> <strong>the</strong> STRE-b<strong>in</strong>d<strong>in</strong>g transcriptional activators which<br />

subsequently leads to <strong>the</strong> transcriptional activation <strong>of</strong> STRE-conta<strong>in</strong><strong>in</strong>g genes. In<br />

parallel, upon heat shock (which also activates Msn2/4), HSE conta<strong>in</strong><strong>in</strong>g promoters<br />

are transcriptionally activated through <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> Hsf1. In <strong>the</strong> case <strong>of</strong> <strong>HSP104</strong>,<br />

<strong>the</strong> b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> both transcriptional activators leads to proper transcriptional activation<br />

<strong>of</strong> this gene via <strong>the</strong> recruitment <strong>of</strong> chromat<strong>in</strong> modify<strong>in</strong>g complexes (<strong>in</strong> an Msn2/4<br />

dependent manner) which promote histone H4 deacetylation and disassembly <strong>of</strong><br />

acetylated H3 histones from nucleosomes. In addition to <strong>the</strong>se chromat<strong>in</strong><br />

modifications, proper transcriptional <strong>in</strong>duction could be enhanced through <strong>the</strong><br />

recruitment <strong>of</strong> <strong>the</strong> SRB/MED complex [perhaps via Hsf1 (39)]. F<strong>in</strong>ally, <strong>the</strong> RNA<br />

PolII is recruited, but it must be <strong>in</strong> its holoenzyme form (i.e., conta<strong>in</strong><strong>in</strong>g all subunits<br />

<strong>in</strong>clud<strong>in</strong>g Rpb4)<br />

Thus, we now have a comprehensive work<strong>in</strong>g model that describes <strong>the</strong> major<br />

molecular steps lead<strong>in</strong>g to <strong>the</strong> transcriptional activation <strong>of</strong> <strong>the</strong> <strong>HSP104</strong> gene.<br />

REFERENCES<br />

1. Aalfs, J. D., and R. E. K<strong>in</strong>gston. 2000. What does 'chromat<strong>in</strong> remodel<strong>in</strong>g'<br />

mean? Trends Biochem Sci 25:548-55.<br />

2. Agalioti, T., S. Lomvardas, B. Parekh, J. Yie, T. Maniatis, and D. Thanos.<br />

2000. Ordered recruitment <strong>of</strong> chromat<strong>in</strong> modify<strong>in</strong>g and general transcription<br />

factors to <strong>the</strong> IFN-beta promoter. Cell 103:667-78.<br />

52


3. Alexander, M. R., M. Tyers, M. Perret, B. M. Craig, K. S. Fang, and M. C.<br />

Gust<strong>in</strong>. 2001. Regulation <strong>of</strong> cell cycle progression by Swe1p and Hog1p<br />

follow<strong>in</strong>g hypertonic stress. Mol Biol Cell 12:53-62.<br />

4. Amoros, M., and F. Estruch. 2001. Hsf1p and Msn2/4p cooperate <strong>in</strong> <strong>the</strong><br />

expression <strong>of</strong> Saccharomyces cerevisiae genes HSP26 and <strong>HSP104</strong> <strong>in</strong> a geneand<br />

stress type-dependent manner. Mol Microbiol 39:1523-32.<br />

5. Amundson, S. A., T. G. Myers, and A. J. Fornace, Jr. 1998. Roles for p53 <strong>in</strong><br />

growth arrest and apoptosis: putt<strong>in</strong>g on <strong>the</strong> brakes after genotoxic stress.<br />

Oncogene 17:3287-99.<br />

6. Anckar, J., V. Hietakangas, K. Denessiouk, D. J. Thiele, M. S. Johnson, and L.<br />

Sistonen. 2006. Inhibition <strong>of</strong> DNA b<strong>in</strong>d<strong>in</strong>g by differential sumoylation <strong>of</strong> heat<br />

shock factors. Mol Cell Biol 26:955-64.<br />

7. Ausubel, F., Brent, R., K<strong>in</strong>gston, R.E., Moore, D.D., Seidman, J.G., Smith,<br />

J.A., and Struhl, K. 1991. Current Protocols <strong>in</strong> Molecular Biology. John Wiley<br />

& Sons, New York.<br />

8. Biddick, R., and E. T. Young. 2005. Yeast mediator and its role <strong>in</strong><br />

transcriptional regulation. C R Biol 328:773-82.<br />

9. Biss<strong>in</strong>ger, P. H., R. Wieser, B. Hamilton, and H. Ruis. 1989. Control <strong>of</strong><br />

Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient<br />

supply via <strong>the</strong> RAS-cyclic AMP pathway. Mol Cell Biol 9:1309-15.<br />

10. Bjorklund, S., and C. M. Gustafsson. 2005. The yeast Mediator complex and<br />

its regulation. Trends Biochem Sci 30:240-4.<br />

11. Blank, M., and Y. Shiloh. 2007. Programs for cell death: apoptosis is only one<br />

way to go. Cell Cycle 6:686-95.<br />

12. Blondel, M., P. M. Alepuz, L. S. Huang, S. Shaham, G. Ammerer, and M.<br />

Peter. 1999. Nuclear export <strong>of</strong> Far1p <strong>in</strong> response to pheromones requires <strong>the</strong><br />

export receptor Msn5p/Ste21p. Genes Dev 13:2284-300.<br />

13. Boeger, H., J. Griesenbeck, J. S. Strattan, and R. D. Kornberg. 2003.<br />

Nucleosomes unfold completely at a transcriptionally active promoter. Mol<br />

Cell 11:1587-98.<br />

14. Boorste<strong>in</strong>, W. R., and E. A. Craig. 1990. <strong>Transcription</strong>al regulation <strong>of</strong> SSA3,<br />

an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol 10:3262-7.<br />

15. Bose, S., J. A. Dutko, and R. S. Zitomer. 2005. Genetic factors that regulate<br />

<strong>the</strong> attenuation <strong>of</strong> <strong>the</strong> general stress response <strong>of</strong> yeast. Genetics 169:1215-26.<br />

16. Boy-Marcotte, E., G. Lagniel, M. Perrot, F. Bussereau, A. Boudsocq, M.<br />

Jacquet, and J. Labarre. 1999. The heat shock response <strong>in</strong> yeast: differential<br />

regulations and contributions <strong>of</strong> <strong>the</strong> Msn2p/Msn4p and Hsf1p regulons. Mol<br />

Microbiol 33:274-83.<br />

17. Boy-Marcotte, E., M. Perrot, F. Bussereau, H. Boucherie, and M. Jacquet.<br />

1998. Msn2p and Msn4p control a large number <strong>of</strong> genes <strong>in</strong>duced at <strong>the</strong><br />

diauxic transition which are repressed by cyclic AMP <strong>in</strong> Saccharomyces<br />

cerevisiae. J Bacteriol 180:1044-52.<br />

18. Broach, J. R. 1991. RAS genes <strong>in</strong> Saccharomyces cerevisiae: signal<br />

transduction <strong>in</strong> search <strong>of</strong> a pathway. Trends Genet 7:28-33.<br />

19. Broach, J. R., and R. J. Deschenes. 1990. The function <strong>of</strong> ras genes <strong>in</strong><br />

Saccharomyces cerevisiae. Adv Cancer Res 54:79-139.<br />

20. Causton, H. C., B. Ren, S. S. Koh, C. T. Harbison, E. Kan<strong>in</strong>, E. G. Jenn<strong>in</strong>gs,<br />

T. I. Lee, H. L. True, E. S. Lander, and R. A. Young. 2001. Remodel<strong>in</strong>g <strong>of</strong><br />

yeast genome expression <strong>in</strong> response to environmental changes. Mol Biol Cell<br />

12:323-37.<br />

53


21. Chandy, M., J. L. Gutierrez, P. Prochasson, and J. L. Workman. 2006.<br />

SWI/SNF displaces SAGA-acetylated nucleosomes. Eukaryot Cell 5:1738-47.<br />

22. Chi, Y., M. J. Huddleston, X. Zhang, R. A. Young, R. S. Annan, S. A. Carr,<br />

and R. J. Deshaies. 2001. Negative regulation <strong>of</strong> Gcn4 and Msn2 transcription<br />

factors by Srb10 cycl<strong>in</strong>-dependent k<strong>in</strong>ase. Genes Dev 15:1078-92.<br />

23. Choder, M. 2004. Rpb4 and Rpb7: subunits <strong>of</strong> RNA polymerase II and<br />

beyond. Trends Biochem Sci 29:674-81.<br />

24. Choder, M., and R. A. Young. 1993. A portion <strong>of</strong> RNA polymerase II<br />

molecules has a component essential for stress responses and stress survival.<br />

Mol Cell Biol 13:6984-91.<br />

25. Chu, B., F. Sonc<strong>in</strong>, B. D. Price, M. A. Stevenson, and S. K. Calderwood.<br />

1996. Sequential phosphorylation by mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase and<br />

glycogen synthase k<strong>in</strong>ase 3 represses transcriptional activation by heat shock<br />

factor-1. J Biol Chem 271:30847-57.<br />

26. Chu, B., R. Zhong, F. Sonc<strong>in</strong>, M. A. Stevenson, and S. K. Calderwood. 1998.<br />

<strong>Transcription</strong>al activity <strong>of</strong> heat shock factor 1 at 37 degrees C is repressed<br />

through phosphorylation on two dist<strong>in</strong>ct ser<strong>in</strong>e residues by glycogen synthase<br />

k<strong>in</strong>ase 3 and prote<strong>in</strong> k<strong>in</strong>ases Calpha and Czeta. J Biol Chem 273:18640-6.<br />

27. Conl<strong>in</strong>, L. K., and H. C. Nelson. 2007. The natural osmolyte trehalose is a<br />

positive regulator <strong>of</strong> <strong>the</strong> heat-<strong>in</strong>duced activity <strong>of</strong> yeast heat shock transcription<br />

factor. Mol Cell Biol 27:1505-15.<br />

28. Cosma, M. P. 2002. Ordered recruitment: gene-specific mechanism <strong>of</strong><br />

transcription activation. Mol Cell 10:227-36.<br />

29. Cosma, M. P., T. Tanaka, and K. Nasmyth. 1999. Ordered recruitment <strong>of</strong><br />

transcription and chromat<strong>in</strong> remodel<strong>in</strong>g factors to a cell cycle- and<br />

developmentally regulated promoter. Cell 97:299-311.<br />

30. Dai, R., W. Frejtag, B. He, Y. Zhang, and N. F. Mivechi. 2000. c-Jun NH2-<br />

term<strong>in</strong>al k<strong>in</strong>ase target<strong>in</strong>g and phosphorylation <strong>of</strong> heat shock factor-1 suppress<br />

its transcriptional activity. J Biol Chem 275:18210-8.<br />

31. Deckert, J., and K. Struhl. 2001. Histone acetylation at promoters is<br />

differentially affected by specific activators and repressors. Mol Cell Biol<br />

21:2726-35.<br />

32. DeVit, M. J., and M. Johnston. 1999. The nuclear export<strong>in</strong> Msn5 is required<br />

for nuclear export <strong>of</strong> <strong>the</strong> Mig1 glucose repressor <strong>of</strong> Saccharomyces cerevisiae.<br />

Curr Biol 9:1231-41.<br />

33. Durchschlag, E., W. Reiter, G. Ammerer, and C. Schuller. 2004. Nuclear<br />

localization destabilizes <strong>the</strong> stress-regulated transcription factor Msn2. J Biol<br />

Chem 279:55425-32.<br />

34. Ekwall, K. 2005. Genome-wide analysis <strong>of</strong> HDAC function. Trends Genet<br />

21:608-15.<br />

35. Engelberg, D., E. Zandi, C. S. Parker, and M. Kar<strong>in</strong>. 1994. The yeast and<br />

mammalian Ras pathways control transcription <strong>of</strong> heat shock genes<br />

<strong>in</strong>dependently <strong>of</strong> heat shock transcription factor. Mol Cell Biol 14:4929-37.<br />

36. Erk<strong>in</strong>a, T. Y., and A. M. Erk<strong>in</strong>e. 2006. Displacement <strong>of</strong> histones at promoters<br />

<strong>of</strong> Saccharomyces cerevisiae heat shock genes is differentially associated with<br />

histone H3 acetylation. Mol Cell Biol 26:7587-600.<br />

37. Estruch, F. 2000. Stress-controlled transcription factors, stress-<strong>in</strong>duced genes<br />

and stress tolerance <strong>in</strong> budd<strong>in</strong>g yeast. FEMS Microbiol Rev 24:469-86.<br />

54


38. Estruch, F., and M. Carlson. 1993. Two homologous z<strong>in</strong>c f<strong>in</strong>ger genes<br />

identified by multicopy suppression <strong>in</strong> a SNF1 prote<strong>in</strong> k<strong>in</strong>ase mutant <strong>of</strong><br />

Saccharomyces cerevisiae. Mol Cell Biol 13:3872-81.<br />

39. Fan, X., D. M. Chou, and K. Struhl. 2006. Activator-specific recruitment <strong>of</strong><br />

Mediator <strong>in</strong> vivo. Nat Struct Mol Biol 13:117-20.<br />

40. Ferguson, S. B., E. S. Anderson, R. B. Harshaw, T. Thate, N. L. Craig, and H.<br />

C. Nelson. 2005. Prote<strong>in</strong> k<strong>in</strong>ase A regulates constitutive expression <strong>of</strong> small<br />

heat-shock genes <strong>in</strong> an Msn2/4p-<strong>in</strong>dependent and Hsf1p-dependent manner <strong>in</strong><br />

Saccharomyces cerevisiae. Genetics 169:1203-14.<br />

41. Fernandes, L., C. Rodrigues-Pousada, and K. Struhl. 1997. Yap, a novel<br />

family <strong>of</strong> eight bZIP prote<strong>in</strong>s <strong>in</strong> Saccharomyces cerevisiae with dist<strong>in</strong>ct<br />

biological functions. Mol Cell Biol 17:6982-93.<br />

42. Fry, C. J., and C. L. Peterson. 2002. <strong>Transcription</strong>. Unlock<strong>in</strong>g <strong>the</strong> gates to<br />

gene expression. Science 295:1847-8.<br />

43. Fyodorov, D. V., and J. T. Kadonaga. 2001. The many faces <strong>of</strong> chromat<strong>in</strong><br />

remodel<strong>in</strong>g: SWItch<strong>in</strong>g beyond transcription. Cell 106:523-5.<br />

44. Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G.<br />

Storz, D. Botste<strong>in</strong>, and P. O. Brown. 2000. Genomic expression programs <strong>in</strong><br />

<strong>the</strong> response <strong>of</strong> yeast cells to environmental changes. Mol Biol Cell 11:4241-<br />

57.<br />

45. Georgopoulos, C., and W. J. Welch. 1993. Role <strong>of</strong> <strong>the</strong> major heat shock<br />

prote<strong>in</strong>s as molecular chaperones. Annu Rev Cell Biol 9:601-34.<br />

46. Gorner, W., E. Durchschlag, M. T. Mart<strong>in</strong>ez-Pastor, F. Estruch, G. Ammerer,<br />

B. Hamilton, H. Ruis, and C. Schuller. 1998. Nuclear localization <strong>of</strong> <strong>the</strong> C2H2<br />

z<strong>in</strong>c f<strong>in</strong>ger prote<strong>in</strong> Msn2p is regulated by stress and prote<strong>in</strong> k<strong>in</strong>ase A activity.<br />

Genes Dev 12:586-97.<br />

47. Grably, M. R., A. Stanhill, O. Tell, and D. Engelberg. 2002. HSF and<br />

Msn2/4p can exclusively or cooperatively activate <strong>the</strong> yeast <strong>HSP104</strong> gene.<br />

Mol Microbiol 44:21-35.<br />

48. Green, M. R. 2000. TBP-associated factors (TAFIIs): multiple, selective<br />

transcriptional mediators <strong>in</strong> common complexes. Trends Biochem Sci 25:59-<br />

63.<br />

49. Gregory, P. D. 2001. <strong>Transcription</strong> and chromat<strong>in</strong> converge: lessons from<br />

yeast genetics. Curr Op<strong>in</strong> Genet Dev 11:142-7.<br />

50. Gregory, P. D., K. Wagner, and W. Horz. 2001. Histone acetylation and<br />

chromat<strong>in</strong> remodel<strong>in</strong>g. Exp Cell Res 265:195-202.<br />

51. Hahn, J. S., Z. Hu, D. J. Thiele, and V. R. Iyer. 2004. Genome-wide analysis<br />

<strong>of</strong> <strong>the</strong> biology <strong>of</strong> stress responses through heat shock transcription factor. Mol<br />

Cell Biol 24:5249-56.<br />

52. Hahn, J. S., and D. J. Thiele. 2004. Activation <strong>of</strong> <strong>the</strong> Saccharomyces<br />

cerevisiae heat shock transcription factor under glucose starvation conditions<br />

by Snf1 prote<strong>in</strong> k<strong>in</strong>ase. J Biol Chem 279:5169-76.<br />

53. Han, S. J., Y. C. Lee, B. S. Gim, G. H. Ryu, S. J. Park, W. S. Lane, and Y. J.<br />

Kim. 1999. Activator-specific requirement <strong>of</strong> yeast mediator prote<strong>in</strong>s for RNA<br />

polymerase II transcriptional activation. Mol Cell Biol 19:979-88.<br />

54. Harris, S. L., and A. J. Lev<strong>in</strong>e. 2005. The p53 pathway: positive and negative<br />

feedback loops. Oncogene 24:2899-908.<br />

55. Hashikawa, N., and H. Sakurai. 2004. Phosphorylation <strong>of</strong> <strong>the</strong> yeast heat shock<br />

transcription factor is implicated <strong>in</strong> gene-specific activation dependent on <strong>the</strong><br />

architecture <strong>of</strong> <strong>the</strong> heat shock element. Mol Cell Biol 24:3648-59.<br />

55


56. Hietakangas, V., J. K. Ahlskog, A. M. Jakobsson, M. Hellesuo, N. M.<br />

Sahlberg, C. I. Holmberg, A. Mikhailov, J. J. Palvimo, L. Pirkkala, and L.<br />

Sistonen. 2003. Phosphorylation <strong>of</strong> ser<strong>in</strong>e 303 is a prerequisite for <strong>the</strong> stress<strong>in</strong>ducible<br />

SUMO modification <strong>of</strong> heat shock factor 1. Mol Cell Biol 23:2953-<br />

68.<br />

57. Hilgarth, R. S., Y. Hong, O. K. Park-Sarge, and K. D. Sarge. 2003. Insights<br />

<strong>in</strong>to <strong>the</strong> regulation <strong>of</strong> heat shock transcription factor 1 SUMO-1 modification.<br />

Biochem Biophys Res Commun 303:196-200.<br />

58. Holmberg, C. I., V. Hietakangas, A. Mikhailov, J. O. Rantanen, M. Kallio, A.<br />

Me<strong>in</strong>ander, J. Hellman, N. Morrice, C. MacK<strong>in</strong>tosh, R. I. Morimoto, J. E.<br />

Eriksson, and L. Sistonen. 2001. Phosphorylation <strong>of</strong> ser<strong>in</strong>e 230 promotes<br />

<strong>in</strong>ducible transcriptional activity <strong>of</strong> heat shock factor 1. Embo J 20:3800-10.<br />

59. Holstege, F. C., E. G. Jenn<strong>in</strong>gs, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R.<br />

Green, T. R. Golub, E. S. Lander, and R. A. Young. 1998. Dissect<strong>in</strong>g <strong>the</strong><br />

regulatory circuitry <strong>of</strong> a eukaryotic genome. Cell 95:717-28.<br />

60. Hong, Y., R. Rogers, M. J. Matunis, C. N. Mayhew, M. L. Goodson, O. K.<br />

Park-Sarge, and K. D. Sarge. 2001. Regulation <strong>of</strong> heat shock transcription<br />

factor 1 by stress-<strong>in</strong>duced SUMO-1 modification. J Biol Chem 276:40263-7.<br />

61. Jakobsen, B. K., and H. R. Pelham. 1988. Constitutive b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> yeast heat<br />

shock factor to DNA <strong>in</strong> vivo. Mol Cell Biol 8:5040-2.<br />

62. Kaffman, A., N. M. Rank, E. M. O'Neill, L. S. Huang, and E. K. O'Shea. 1998.<br />

The receptor Msn5 exports <strong>the</strong> phosphorylated transcription factor Pho4 out <strong>of</strong><br />

<strong>the</strong> nucleus. Nature 396:482-6.<br />

63. Kang, J. S., S. H. Kim, M. S. Hwang, S. J. Han, Y. C. Lee, and Y. J. Kim.<br />

2001. The structural and functional organization <strong>of</strong> <strong>the</strong> yeast mediator<br />

complex. J Biol Chem 276:42003-10.<br />

64. Katan-Khaykovich, Y., and K. Struhl. 2002. Dynamics <strong>of</strong> global histone<br />

acetylation and deacetylation <strong>in</strong> vivo: rapid restoration <strong>of</strong> normal histone<br />

acetylation status upon removal <strong>of</strong> activators and repressors. Genes Dev<br />

16:743-52.<br />

65. Keaveney, M., and K. Struhl. 1998. Activator-mediated recruitment <strong>of</strong> <strong>the</strong><br />

RNA polymerase II mach<strong>in</strong>ery is <strong>the</strong> predom<strong>in</strong>ant mechanism for<br />

transcriptional activation <strong>in</strong> yeast. Mol Cell 1:917-24.<br />

66. Kim, J., A. Nueda, Y. H. Meng, W. S. Dynan, and N. F. Mivechi. 1997.<br />

Analysis <strong>of</strong> <strong>the</strong> phosphorylation <strong>of</strong> human heat shock transcription factor-1 by<br />

MAP k<strong>in</strong>ase family members. J Cell Biochem 67:43-54.<br />

67. Knauf, U., E. M. Newton, J. Kyriakis, and R. E. K<strong>in</strong>gston. 1996. Repression<br />

<strong>of</strong> human heat shock factor 1 activity at control temperature by<br />

phosphorylation. Genes Dev 10:2782-93.<br />

68. Kobayashi, N., and K. McEntee. 1990. Evidence for a heat shock transcription<br />

factor-<strong>in</strong>dependent mechanism for heat shock <strong>in</strong>duction <strong>of</strong> transcription <strong>in</strong><br />

Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 87:6550-4.<br />

69. Koerkamp, M. G., M. Rep, H. J. Bussemaker, G. P. Hardy, A. Mul, K.<br />

Piekarska, C. A. Szigyarto, J. M. De Mattos, and H. F. Tabak. 2002.<br />

Dissection <strong>of</strong> transient oxidative stress response <strong>in</strong> Saccharomyces cerevisiae<br />

by us<strong>in</strong>g DNA microarrays. Mol Biol Cell 13:2783-94.<br />

70. Kouzarides, T. 2007. Chromat<strong>in</strong> modifications and <strong>the</strong>ir function. Cell<br />

128:693-705.<br />

56


71. Kuras, L., P. Kosa, M. Mencia, and K. Struhl. 2000. TAF-Conta<strong>in</strong><strong>in</strong>g and<br />

TAF-<strong>in</strong>dependent forms <strong>of</strong> transcriptionally active TBP <strong>in</strong> vivo. Science<br />

288:1244-8.<br />

72. Kuras, L., and K. Struhl. 1999. B<strong>in</strong>d<strong>in</strong>g <strong>of</strong> TBP to promoters <strong>in</strong> vivo is<br />

stimulated by activators and requires Pol II holoenzyme. Nature 399:609-13.<br />

73. Kurdistani, S. K., and M. Grunste<strong>in</strong>. 2003. Histone acetylation and<br />

deacetylation <strong>in</strong> yeast. Nat Rev Mol Cell Biol 4:276-84.<br />

74. Lallet, S., H. Garreau, C. Garmendia-Torres, D. Szestakowska, E. Boy-<br />

Marcotte, S. Quevillon-Cheruel, and M. Jacquet. 2006. Role <strong>of</strong> Gal11, a<br />

component <strong>of</strong> <strong>the</strong> RNA polymerase II mediator <strong>in</strong> stress-<strong>in</strong>duced<br />

hyperphosphorylation <strong>of</strong> Msn2 <strong>in</strong> Saccharomyces cerevisiae. Mol Microbiol<br />

62:438-52.<br />

75. Lallet, S., H. Garreau, C. Poisier, E. Boy-Marcotte, and M. Jacquet. 2004.<br />

Heat shock-<strong>in</strong>duced degradation <strong>of</strong> Msn2p, a Saccharomyces cerevisiae<br />

transcription factor, occurs <strong>in</strong> <strong>the</strong> nucleus. Mol Genet Genomics 272:353-62.<br />

76. Lee, J., A. Romeo, and D. J. Kosman. 1996. <strong>Transcription</strong>al remodel<strong>in</strong>g and<br />

G1 arrest <strong>in</strong> dioxygen stress <strong>in</strong> Saccharomyces cerevisiae. J Biol Chem<br />

271:24885-93.<br />

77. Lee, S., T. Carlson, N. Christian, K. Lea, J. Kedzie, J. P. Reilly, and J. J.<br />

Bonner. 2000. The yeast heat shock transcription factor changes conformation<br />

<strong>in</strong> response to superoxide and temperature. Mol Biol Cell 11:1753-64.<br />

78. Lemon, B., and R. Tjian. 2000. Orchestrated response: a symphony <strong>of</strong><br />

transcription factors for gene control. Genes Dev 14:2551-69.<br />

79. Li, B., M. Carey, and J. L. Workman. 2007. The role <strong>of</strong> chromat<strong>in</strong> dur<strong>in</strong>g<br />

transcription. Cell 128:707-19.<br />

80. Li, X. Y., A. Virbasius, X. Zhu, and M. R. Green. 1999. Enhancement <strong>of</strong> TBP<br />

b<strong>in</strong>d<strong>in</strong>g by activators and general transcription factors. Nature 399:605-9.<br />

81. L<strong>in</strong>dquist, S. 1986. The heat-shock response. Annu Rev Biochem 55:1151-91.<br />

82. L<strong>in</strong>dquist, S., and E. A. Craig. 1988. The heat-shock prote<strong>in</strong>s. Annu Rev<br />

Genet 22:631-77.<br />

83. Liu, X. D., and D. J. Thiele. 1996. Oxidative stress <strong>in</strong>duced heat shock factor<br />

phosphorylation and HSF-dependent activation <strong>of</strong> yeast metallothione<strong>in</strong> gene<br />

transcription. Genes Dev 10:592-603.<br />

84. Lucch<strong>in</strong>i, G., A. G. H<strong>in</strong>nebusch, C. Chen, and G. R. F<strong>in</strong>k. 1984. Positive<br />

regulatory <strong>in</strong>teractions <strong>of</strong> <strong>the</strong> HIS4 gene <strong>of</strong> Saccharomyces cerevisiae. Mol<br />

Cell Biol 4:1326-33.<br />

85. Mager, W. H., and A. J. De Kruijff. 1995. Stress-<strong>in</strong>duced transcriptional<br />

activation. Microbiol Rev 59:506-31.<br />

86. Marchler, G., C. Schuller, G. Adam, and H. Ruis. 1993. A Saccharomyces<br />

cerevisiae UAS element controlled by prote<strong>in</strong> k<strong>in</strong>ase A activates transcription<br />

<strong>in</strong> response to a variety <strong>of</strong> stress conditions. Embo J 12:1997-2003.<br />

87. Mart<strong>in</strong>ez-Pastor, M. T., G. Marchler, C. Schuller, A. Marchler-Bauer, H. Ruis,<br />

and F. Estruch. 1996. The Saccharomyces cerevisiae z<strong>in</strong>c f<strong>in</strong>ger prote<strong>in</strong>s<br />

Msn2p and Msn4p are required for transcriptional <strong>in</strong>duction through <strong>the</strong> stress<br />

response element (STRE). Embo J 15:2227-35.<br />

88. M<strong>in</strong>ehart, P. L., and B. Magasanik. 1991. Sequence and expression <strong>of</strong> GLN3,<br />

a positive nitrogen regulatory gene <strong>of</strong> Saccharomyces cerevisiae encod<strong>in</strong>g a<br />

prote<strong>in</strong> with a putative z<strong>in</strong>c f<strong>in</strong>ger DNA-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>. Mol Cell Biol<br />

11:6216-28.<br />

57


89. Miyao, T., J. D. Barnett, and N. A. Woychik. 2001. Deletion <strong>of</strong> <strong>the</strong> RNA<br />

polymerase subunit RPB4 acts as a global, not stress-specific, shut-<strong>of</strong>f switch<br />

for RNA polymerase II transcription at high temperatures. J Biol Chem<br />

276:46408-13.<br />

90. Morimoto, R. I. 1998. Regulation <strong>of</strong> <strong>the</strong> heat shock transcriptional response:<br />

cross talk between a family <strong>of</strong> heat shock factors, molecular chaperones, and<br />

negative regulators. Genes Dev 12:3788-96.<br />

91. Moskv<strong>in</strong>a, E., C. Schuller, C. T. Maurer, W. H. Mager, and H. Ruis. 1998. A<br />

search <strong>in</strong> <strong>the</strong> genome <strong>of</strong> Saccharomyces cerevisiae for genes regulated via<br />

stress response elements. Yeast 14:1041-50.<br />

92. Moye-Rowley, W. S., K. D. Harshman, and C. S. Parker. 1989. Yeast YAP1<br />

encodes a novel form <strong>of</strong> <strong>the</strong> jun family <strong>of</strong> transcriptional activator prote<strong>in</strong>s.<br />

Genes Dev 3:283-92.<br />

93. Neely, K. E., A. H. Hassan, C. E. Brown, L. Howe, and J. L. Workman. 2002.<br />

<strong>Transcription</strong> activator <strong>in</strong>teractions with multiple SWI/SNF subunits. Mol Cell<br />

Biol 22:1615-25.<br />

94. Ozaki, M., S. S. Deshpande, P. Angkeow, S. Suzuki, and K. Irani. 2000. Rac1<br />

regulates stress-<strong>in</strong>duced, redox-dependent heat shock factor activation. J Biol<br />

Chem 275:35377-83.<br />

95. Park, J. M., J. Werner, J. M. Kim, J. T. Lis, and Y. J. Kim. 2001. Mediator,<br />

not holoenzyme, is directly recruited to <strong>the</strong> heat shock promoter by HSF upon<br />

heat shock. Mol Cell 8:9-19.<br />

96. Pedruzzi, I., N. Burckert, P. Egger, and C. De Virgilio. 2000. Saccharomyces<br />

cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent<br />

transcription through <strong>the</strong> z<strong>in</strong>c f<strong>in</strong>ger prote<strong>in</strong> Gis1. Embo J 19:2569-79.<br />

97. Pillai, B., V. Sampath, N. Sharma, and P. Sadhale. 2001. Rpb4, a non-essential<br />

subunit <strong>of</strong> core RNA polymerase II <strong>of</strong> Saccharomyces cerevisiae is important<br />

for activated transcription <strong>of</strong> a subset <strong>of</strong> genes. J Biol Chem 276:30641-7.<br />

98. Pillai, B., J. Verma, A. Abraham, P. Francis, Y. Kumar, U. Tatu, S. K.<br />

Brahmachari, and P. P. Sadhale. 2003. Whole genome expression pr<strong>of</strong>iles <strong>of</strong><br />

yeast RNA polymerase II core subunit, Rpb4, <strong>in</strong> stress and nonstress<br />

conditions. J Biol Chem 278:3339-46.<br />

99. Pirkkala, L., P. Nykanen, and L. Sistonen. 2001. Roles <strong>of</strong> <strong>the</strong> heat shock<br />

transcription factors <strong>in</strong> regulation <strong>of</strong> <strong>the</strong> heat shock response and beyond.<br />

Faseb J 15:1118-31.<br />

100. Pnueli, L., I. Edry, M. Cohen, and Y. Kassir. 2004. Glucose and nitrogen<br />

regulate <strong>the</strong> switch from histone deacetylation to acetylation for expression <strong>of</strong><br />

early meiosis-specific genes <strong>in</strong> budd<strong>in</strong>g yeast. Mol Cell Biol 24:5197-208.<br />

101. Raboy, B., A. Marom, Y. Dor, and R. G. Kulka. 1999. Heat-<strong>in</strong>duced cell cycle<br />

arrest <strong>of</strong> Saccharomyces cerevisiae: <strong>in</strong>volvement <strong>of</strong> <strong>the</strong> RAD6/UBC2 and<br />

WSC2 genes <strong>in</strong> its reversal. Mol Microbiol 32:729-39.<br />

102. Rep, M., M. Krantz, J. M. Thevele<strong>in</strong>, and S. Hohmann. 2000. The<br />

transcriptional response <strong>of</strong> Saccharomyces cerevisiae to osmotic shock. Hot1p<br />

and Msn2p/Msn4p are required for <strong>the</strong> <strong>in</strong>duction <strong>of</strong> subsets <strong>of</strong> high osmolarity<br />

glycerol pathway-dependent genes. J Biol Chem 275:8290-300.<br />

103. Robert, F., D. K. Pokholok, N. M. Hannett, N. J. R<strong>in</strong>aldi, M. Chandy, A.<br />

Rolfe, J. L. Workman, D. K. Gifford, and R. A. Young. 2004. Global position<br />

and recruitment <strong>of</strong> HATs and HDACs <strong>in</strong> <strong>the</strong> yeast genome. Mol Cell 16:199-<br />

209.<br />

58


104. Rosenheck, S., and M. Choder. 1998. Rpb4, a subunit <strong>of</strong> RNA polymerase II,<br />

enables <strong>the</strong> enzyme to transcribe at temperature extremes <strong>in</strong> vitro. J Bacteriol<br />

180:6187-92.<br />

105. Rossi, A., G. Elia, and M. G. Santoro. 1998. Activation <strong>of</strong> <strong>the</strong> heat shock<br />

factor 1 by ser<strong>in</strong>e protease <strong>in</strong>hibitors. An effect associated with nuclear factorkappaB<br />

<strong>in</strong>hibition. J Biol Chem 273:16446-52.<br />

106. Rowley, A., G. C. Johnston, B. Butler, M. Werner-Washburne, and R. A.<br />

S<strong>in</strong>ger. 1993. Heat shock-mediated cell cycle blockage and G1 cycl<strong>in</strong><br />

expression <strong>in</strong> <strong>the</strong> yeast Saccharomyces cerevisiae. Mol Cell Biol 13:1034-41.<br />

107. Ruis, H., and C. Schuller. 1995. Stress signal<strong>in</strong>g <strong>in</strong> yeast. Bioessays 17:959-<br />

65.<br />

108. Sanchez, Y., and S. L. L<strong>in</strong>dquist. 1990. <strong>HSP104</strong> required for <strong>in</strong>duced<br />

<strong>the</strong>rmotolerance. Science 248:1112-5.<br />

109. Santoro, N., N. Johansson, and D. J. Thiele. 1998. Heat shock element<br />

architecture is an important determ<strong>in</strong>ant <strong>in</strong> <strong>the</strong> temperature and transactivation<br />

doma<strong>in</strong> requirements for heat shock transcription factor. Mol Cell Biol<br />

18:6340-52.<br />

110. Schmitt, A. P., and K. McEntee. 1996. Msn2p, a z<strong>in</strong>c f<strong>in</strong>ger DNA-b<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong>, is <strong>the</strong> transcriptional activator <strong>of</strong> <strong>the</strong> multistress response <strong>in</strong><br />

Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5777-82.<br />

111. Schwartz, D., and V. Rotter. 1998. p53-dependent cell cycle control: response<br />

to genotoxic stress. Sem<strong>in</strong> Cancer Biol 8:325-36.<br />

112. Shamovsky, I., M. Ivannikov, E. S. Kandel, D. Gershon, and E. Nudler. 2006.<br />

RNA-mediated response to heat shock <strong>in</strong> mammalian cells. Nature 440:556-<br />

60.<br />

113. Shen, W. C., S. R. Bhaumik, H. C. Causton, I. Simon, X. Zhu, E. G. Jenn<strong>in</strong>gs,<br />

T. H. Wang, R. A. Young, and M. R. Green. 2003. Systematic analysis <strong>of</strong><br />

essential yeast TAFs <strong>in</strong> genome-wide transcription and pre<strong>in</strong>itiation complex<br />

assembly. Embo J 22:3395-402.<br />

114. Sikorski, R. S., and P. Hieter. 1989. A system <strong>of</strong> shuttle vectors and yeast host<br />

stra<strong>in</strong>s designed for efficient manipulation <strong>of</strong> DNA <strong>in</strong> Saccharomyces<br />

cerevisiae. Genetics 122:19-27.<br />

115. Simon, J. R., J. M. Treger, and K. McEntee. 1999. Multiple <strong>in</strong>dependent<br />

regulatory pathways control UBI4 expression after heat shock <strong>in</strong><br />

Saccharomyces cerevisiae. Mol Microbiol 31:823-32.<br />

116. Smith, A., M. P. Ward, and S. Garrett. 1998. Yeast PKA represses<br />

Msn2p/Msn4p-dependent gene expression to regulate growth, stress response<br />

and glycogen accumulation. Embo J 17:3556-64.<br />

117. Sorger, P. K. 1991. Heat shock factor and <strong>the</strong> heat shock response. Cell<br />

65:363-6.<br />

118. Sorger, P. K., M. J. Lewis, and H. R. Pelham. 1987. Heat shock factor is<br />

regulated differently <strong>in</strong> yeast and HeLa cells. Nature 329:81-4.<br />

119. Sorger, P. K., and H. R. Pelham. 1988. Yeast heat shock factor is an essential<br />

DNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> that exhibits temperature-dependent phosphorylation.<br />

Cell 54:855-64.<br />

120. Stanhill, A., V. Lev<strong>in</strong>, A. Hendel, I. Shachar, D. Kazanov, N. Arber, N.<br />

Kam<strong>in</strong>ski, and D. Engelberg. 2006. Ha-ras(val12) <strong>in</strong>duces HSP70b<br />

transcription via <strong>the</strong> HSE/HSF1 system, but HSP70b expression is suppressed<br />

<strong>in</strong> Ha-ras(val12)-transformed cells. Oncogene 25:1485-95.<br />

59


121. Stanhill, A., N. Schick, and D. Engelberg. 1999. The yeast ras/cyclic AMP<br />

pathway <strong>in</strong>duces <strong>in</strong>vasive growth by suppress<strong>in</strong>g <strong>the</strong> cellular stress response.<br />

Mol Cell Biol 19:7529-38.<br />

122. Strahl, B. D., and C. D. Allis. 2000. The language <strong>of</strong> covalent histone<br />

modifications. Nature 403:41-5.<br />

123. Sullivan, E. K., C. S. Weirich, J. R. Guyon, S. Sif, and R. E. K<strong>in</strong>gston. 2001.<br />

<strong>Transcription</strong>al activation doma<strong>in</strong>s <strong>of</strong> human heat shock factor 1 recruit<br />

human SWI/SNF. Mol Cell Biol 21:5826-37.<br />

124. Swanson, M. J., H. Qiu, L. Sumibcay, A. Krueger, S. J. Kim, K. Natarajan, S.<br />

Yoon, and A. G. H<strong>in</strong>nebusch. 2003. A multiplicity <strong>of</strong> coactivators is required<br />

by Gcn4p at <strong>in</strong>dividual promoters <strong>in</strong> vivo. Mol Cell Biol 23:2800-20.<br />

125. Thompson, C. M., A. J. Koleske, D. M. Chao, and R. A. Young. 1993. A<br />

multisubunit complex associated with <strong>the</strong> RNA polymerase II CTD and<br />

TATA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> <strong>in</strong> yeast. Cell 73:1361-75.<br />

126. Treger, J. M., T. R. Magee, and K. McEntee. 1998. Functional analysis <strong>of</strong> <strong>the</strong><br />

stress response element and its role <strong>in</strong> <strong>the</strong> multistress response <strong>of</strong><br />

Saccharomyces cerevisiae. Biochem Biophys Res Commun 243:13-9.<br />

127. Treger, J. M., A. P. Schmitt, J. R. Simon, and K. McEntee. 1998.<br />

<strong>Transcription</strong>al factor mutations reveal regulatory complexities <strong>of</strong> heat shock<br />

and newly identified stress genes <strong>in</strong> Saccharomyces cerevisiae. J Biol Chem<br />

273:26875-9.<br />

128. Uffenbeck, S. R., and J. E. Krebs. 2006. The role <strong>of</strong> chromat<strong>in</strong> structure <strong>in</strong><br />

regulat<strong>in</strong>g stress-<strong>in</strong>duced transcription <strong>in</strong> Saccharomyces cerevisiae. Biochem<br />

Cell Biol 84:477-89.<br />

129. Varela, J. C., U. M. Praekelt, P. A. Meacock, R. J. Planta, and W. H. Mager.<br />

1995. The Saccharomyces cerevisiae HSP12 gene is activated by <strong>the</strong> highosmolarity<br />

glycerol pathway and negatively regulated by prote<strong>in</strong> k<strong>in</strong>ase A.<br />

Mol Cell Biol 15:6232-45.<br />

130. Wanke, V., K. Accorsi, D. Porro, F. Esposito, T. Russo, and M. Vanoni. 1999.<br />

In budd<strong>in</strong>g yeast, reactive oxygen species <strong>in</strong>duce both RAS-dependent and<br />

RAS-<strong>in</strong>dependent cell cycle-specific arrest. Mol Microbiol 32:753-64.<br />

131. Westwood, J. T., J. Clos, and C. Wu. 1991. Stress-<strong>in</strong>duced oligomerization<br />

and chromosomal relocalization <strong>of</strong> heat-shock factor. Nature 353:822-7.<br />

132. Wieser, R., G. Adam, A. Wagner, C. Schuller, G. Marchler, H. Ruis, Z.<br />

Krawiec, and T. Bil<strong>in</strong>ski. 1991. Heat shock factor-<strong>in</strong>dependent heat control <strong>of</strong><br />

transcription <strong>of</strong> <strong>the</strong> CTT1 gene encod<strong>in</strong>g <strong>the</strong> cytosolic catalase T <strong>of</strong><br />

Saccharomyces cerevisiae. J Biol Chem 266:12406-11.<br />

133. Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu<br />

Rev Cell Dev Biol 11:441-69.<br />

134. Zandi, E., T. N. Tran, W. Chamberla<strong>in</strong>, and C. S. Parker. 1997. Nuclear entry,<br />

oligomerization, and DNA b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> <strong>the</strong> Drosophila heat shock transcription<br />

factor are regulated by a unique nuclear localization sequence. Genes Dev<br />

11:1299-314.<br />

135. Zanton, S. J., and B. F. Pugh. 2006. Full and partial genome-wide assembly<br />

and disassembly <strong>of</strong> <strong>the</strong> yeast transcription mach<strong>in</strong>ery <strong>in</strong> response to heat<br />

shock. Genes Dev 20:2250-65.<br />

136. Zhao, J., J. Herrera-Diaz, and D. S. Gross. 2005. Doma<strong>in</strong>-wide displacement<br />

<strong>of</strong> histones by activated heat shock factor occurs <strong>in</strong>dependently <strong>of</strong> Swi/Snf and<br />

is not correlated with RNA polymerase II density. Mol Cell Biol 25:8985-99.<br />

60


137. Zhong, M., A. Orosz, and C. Wu. 1998. Direct sens<strong>in</strong>g <strong>of</strong> heat and oxidation<br />

by Drosophila heat shock transcription factor. Mol Cell 2:101-8.<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!