26.02.2015 Views

High performance sputtered LiCoO2 thin films obtained at a ...

High performance sputtered LiCoO2 thin films obtained at a ...

High performance sputtered LiCoO2 thin films obtained at a ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Electrochimica Acta 60 (2012) 121–129<br />

Contents lists available <strong>at</strong> SciVerse ScienceDirect<br />

Electrochimica Acta<br />

jou rn al hom epa ge: www.elsevier.com/loc<strong>at</strong>e/electacta<br />

<strong>High</strong> <strong>performance</strong> <strong>sputtered</strong> LiCoO 2 <strong>thin</strong> <strong>films</strong> <strong>obtained</strong> <strong>at</strong> a moder<strong>at</strong>e annealing<br />

tre<strong>at</strong>ment combined to a bias effect<br />

Sophie Tintignac a,b , Rita Baddour-Hadjean a,∗ , Jean-Pierre Pereira-Ramos a , Raphaël Salot b<br />

a Institut de Chimie et des M<strong>at</strong>ériaux Paris Est, ICMPE/GESMAT, UMR 7182 CNRS-Université Paris Est Créteil (UPEC), 2 rue Henri Dunant 94320 Thiais, France<br />

b CEA Grenoble, DRT/LITEN/DTNM/LCMS, 17 rue des Martyrs 38054 Grenoble, France<br />

a r t i c l e i n f o<br />

Article history:<br />

Received 8 June 2011<br />

Received in revised form<br />

29 September 2011<br />

Accepted 4 November 2011<br />

Available online 16 November 2011<br />

Keywords:<br />

LiCoO 2 <strong>thin</strong> <strong>films</strong><br />

Lithium microb<strong>at</strong>tery<br />

Raman spectroscopy<br />

RF sputtering<br />

a b s t r a c t<br />

LiCoO 2 <strong>thin</strong> <strong>films</strong> have been successfully deposited by radio frequency magnetron sputtering onto aluminum<br />

substr<strong>at</strong>e and post-annealed <strong>at</strong> a lower temper<strong>at</strong>ure of 500 ◦ C compared to usual annealing<br />

tre<strong>at</strong>ments. We demonstr<strong>at</strong>e th<strong>at</strong> an appropri<strong>at</strong>e combin<strong>at</strong>ion of key deposition parameters including a<br />

high working pressure and a substr<strong>at</strong>e bias enables for the first time the reproducible synthesis <strong>at</strong> this<br />

moder<strong>at</strong>e temper<strong>at</strong>ure of high <strong>performance</strong> layered HT-LiCoO 2 <strong>thin</strong> <strong>films</strong>. The morphology, the structure<br />

and the electrochemical behaviour of the deposits have been examined as a function of the working<br />

gas pressure ranging from 0.55 Pa to 3 Pa. Raman microspectrometry has been thoroughly used to characterize<br />

the structure of the <strong>thin</strong> <strong>films</strong>: a mixture of the layered HT-LiCoO 2 and the cubic LT-LiCoO 2<br />

phases is system<strong>at</strong>ically revealed in the absence of substr<strong>at</strong>e bias and for the first time, the access to<br />

the rel<strong>at</strong>ive amount of both compounds is allowed. A promoting effect of increasing gas pressure on the<br />

form<strong>at</strong>ion of the layered HT-LiCoO 2 phase is demonstr<strong>at</strong>ed, the HT/LT rel<strong>at</strong>ive amount increasing from<br />

1:3 <strong>at</strong> 0.55 Pa to 3:4 <strong>at</strong> 3 Pa. In a second step, we show th<strong>at</strong> the effect of substr<strong>at</strong>e bias combined with high<br />

values of working gas pressure and a moder<strong>at</strong>e he<strong>at</strong> tre<strong>at</strong>ment (500 ◦ C) leads to the form<strong>at</strong>ion of pure<br />

HT-LiCoO 2 <strong>thin</strong> <strong>films</strong> <strong>at</strong> 3 Pa, with very <strong>at</strong>tractive electrochemical properties: a high specific capacity of<br />

67 A h cm −2 m −1 <strong>at</strong> C/5 r<strong>at</strong>e, a good adherence to the substr<strong>at</strong>e and the best capacity retention known<br />

for a LiCoO 2 film in liquid electrolyte (4.2–3 V).<br />

© 2011 Elsevier Ltd. All rights reserved.<br />

1. Introduction<br />

The development of all-solid-st<strong>at</strong>e lithium microb<strong>at</strong>teries has<br />

been widely investig<strong>at</strong>ed over the last decade. Indeed, they can<br />

fit with the requests of portable devices and microelectronic components<br />

and especially with the ability of the power source to<br />

be integr<strong>at</strong>ed directly on/in the component as a backup power<br />

source in microelectromechanical system (MEMS), smart cards and<br />

biochips for instance. These microb<strong>at</strong>teries consist in stacks of <strong>thin</strong><br />

film m<strong>at</strong>erials elabor<strong>at</strong>ed by physical vapour deposition techniques<br />

and their total thickness must not exceed few tens of micrometers.<br />

<strong>High</strong> quality <strong>thin</strong> film c<strong>at</strong>hodes with high electrochemical <strong>performance</strong><br />

are one of the key points for microb<strong>at</strong>teries. Among c<strong>at</strong>hodic<br />

m<strong>at</strong>erials for Li-ion b<strong>at</strong>teries, LiCoO 2 is the most commonly used in<br />

commercial devices due to its high specific capacity (140 mA h g −1 ),<br />

high oper<strong>at</strong>ing electrode potential (≈ 4 V), long cycle life and ease<br />

∗ Corresponding author. Tel.: +33 149 781 195; fax: +33 149 781 195.<br />

E-mail address: baddour@icmpe.cnrs.fr (R. Baddour-Hadjean).<br />

of prepar<strong>at</strong>ion involving a he<strong>at</strong> tre<strong>at</strong>ment <strong>at</strong> temper<strong>at</strong>ure above<br />

700 ◦ C.<br />

LiCoO 2 <strong>thin</strong> <strong>films</strong> can be prepared by sputtering techniques<br />

[1–24], pulsed laser deposition (PLD) [25–30], chemical vapour<br />

deposition CVD [31–34], and chemical routes including the electrost<strong>at</strong>ic<br />

spray pyrolysis and sol–gel processes [35–40]. DC or RF<br />

magnetron sputtering is the most widely used technique for LiCoO 2<br />

prepar<strong>at</strong>ion investig<strong>at</strong>ed in liquid or solid electrolytes. A major<br />

characteristic of the <strong>sputtered</strong> <strong>films</strong> is their low crystallinity and<br />

low electrochemical efficiency when they are used as-prepared<br />

in Li b<strong>at</strong>teries. The synthesis of high <strong>performance</strong> <strong>thin</strong> film, in<br />

general, requires a post-annealing tre<strong>at</strong>ment <strong>at</strong> high temper<strong>at</strong>ure<br />

(600–800 ◦ C) to improve the crystallinity of the LiCoO 2 deposit.<br />

However, such a high temper<strong>at</strong>ure process is often not comp<strong>at</strong>ible<br />

with devices requiring the direct integr<strong>at</strong>ion of the b<strong>at</strong>tery and<br />

many desirable substr<strong>at</strong>es such as flexible polymer m<strong>at</strong>erials and<br />

low-temper<strong>at</strong>ure substr<strong>at</strong>e m<strong>at</strong>erials, which can limit the applic<strong>at</strong>ion<br />

and fabric<strong>at</strong>ion of the <strong>thin</strong> film b<strong>at</strong>teries. Therefore, significant<br />

efforts must be undertaken to optimize the film crystallinity and<br />

electrochemical properties through a low temper<strong>at</strong>ure process by<br />

controlling some of the deposition parameters. Nevertheless, only<br />

a few works focused on the influence of deposition parameters<br />

0013-4686/$ – see front m<strong>at</strong>ter © 2011 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.electacta.2011.11.033


122 S. Tintignac et al. / Electrochimica Acta 60 (2012) 121–129<br />

Fig. 1. SEM surface observ<strong>at</strong>ions of <strong>films</strong> deposited on Al substr<strong>at</strong>e <strong>at</strong> 0.55 Pa (a), 1 Pa (b), 1.5 Pa (c), 2.2 Pa (d) and 3 Pa (e); SEM cross section observ<strong>at</strong>ion of a <strong>thin</strong> film<br />

deposited <strong>at</strong> 2.2 Pa on a Si substr<strong>at</strong>e (f).<br />

of the sputtering process. Several ways of improvements have<br />

been proposed such as the use of a moder<strong>at</strong>e annealing tre<strong>at</strong>ment<br />

(


S. Tintignac et al. / Electrochimica Acta 60 (2012) 121–129 123<br />

Table 1<br />

Atomic positions, site symmetries and optical vibr<strong>at</strong>ional modes expected for R-3m,<br />

Fd3m LiCoO 2 and Co 3O 4.<br />

*<br />

*<br />

(101)<br />

*<br />

*<br />

Atoms<br />

Wyckoff<br />

positions<br />

IR active<br />

modes<br />

Raman active<br />

modes<br />

LiCoO 2 (space group R-3 m)<br />

Li (0, 0, 1/2) 3b 2A 2u + 2E u A 1g + E g<br />

Co (0, 0, 0) 3a<br />

O (0, 0, .26) 6c<br />

LiCoO 2 (space group Fd3 m)<br />

Li (0, 0, 0) 16c 5F 1u A 1g + E g + 2F 2g<br />

Co (1/2, 1/2, 1/2) 16d<br />

O (1/4,1/4,1/4) 32e<br />

Co 3O 4 (space group Fd3 m)<br />

Co (1/2, 1/2, 1/2) 16d 5F 1u A 1g + E g + 3F 2g<br />

Co (1/8, 1/8, 1/8) 8a<br />

O (.26, .26, .26) 32e<br />

Intensity / a.u.<br />

(003) *<br />

(012)<br />

* *<br />

* *<br />

*<br />

3 Pa<br />

2.2 Pa<br />

1.5 Pa<br />

1 Pa<br />

0.55 Pa<br />

*<br />

(110)<br />

10<br />

20<br />

30<br />

40 50<br />

2 θ / degree<br />

60<br />

70<br />

With the objective of lowering the global thermal budget by<br />

using a temper<strong>at</strong>ure below 700 ◦ C, the deposition conditions to<br />

get well crystallized and high <strong>performance</strong> LiCoO 2 <strong>thin</strong> <strong>films</strong> have<br />

been optimized. Our approach consists in the appropri<strong>at</strong>e combined<br />

use of a high power value, a substr<strong>at</strong>e bias, an optimized<br />

value of the working pressure and a moder<strong>at</strong>e he<strong>at</strong> tre<strong>at</strong>ment<br />

temper<strong>at</strong>ure. The present work reports the investig<strong>at</strong>ion of the<br />

influence of working pressure and substr<strong>at</strong>e bias on the structural<br />

and electrochemical properties of LiCoO 2 <strong>thin</strong> <strong>films</strong>. By<br />

using Raman spectroscopy, a quantit<strong>at</strong>ive analysis of electroactive<br />

deposited LiCoO 2 phases as a function of working pressure<br />

and bias is allowed for the first time. We will show th<strong>at</strong> the<br />

optimiz<strong>at</strong>ion of these deposition parameters leads to excellent <strong>performance</strong>s<br />

when associ<strong>at</strong>ed with a process temper<strong>at</strong>ure as low as<br />

500 ◦ C.<br />

2. Experimental<br />

LiCoO 2 <strong>films</strong> with a thickness of 500 nm were deposited by<br />

radio frequency magnetron sputtering, using an ALCATEL SCM 600<br />

reactor. The 150 mm target was made of 99.9% pure LiCoO 2 (SCI<br />

engineered m<strong>at</strong>erials). Aluminum foils (Goodfellow, purity 99.0%)<br />

with thickness of 200 m were used as substr<strong>at</strong>es. The target power<br />

was set to 500 W, the Ar/O 2 r<strong>at</strong>io to 3 and the total amount of gases<br />

Fig. 2. XRD measurements of <strong>films</strong> deposited <strong>at</strong> 0.55 Pa, 1 Pa, 1.5 Pa, 2.2 Pa, 3 Pa and<br />

post-annealed <strong>at</strong> 500 ◦ C. * substr<strong>at</strong>e peaks.<br />

was set to 53 sccm. The distance between target and substr<strong>at</strong>e was<br />

9.5 cm. The working pressure was varied between 0.55 Pa and 3 Pa.<br />

The deposition was made either with or without a neg<strong>at</strong>ive substr<strong>at</strong>e<br />

bias voltage of 50 V. The deposited <strong>films</strong> were post-annealed<br />

in air <strong>at</strong> 500 ◦ C for 2 h with a r<strong>at</strong>e of 5 ◦ C/min and cooled to room<br />

temper<strong>at</strong>ure with a r<strong>at</strong>e of 2 ◦ C/min. The film thickness was determined<br />

with a Tencor AlphaStep 500 profilometer. Morphology and<br />

surface aspects of the <strong>films</strong> were observed with a Scanning Electron<br />

Microscope (SEM) LEO 1530 FEG. X-Ray diffraction experiments<br />

were performed using a Brüker D8 Advance diffractometer with Cu<br />

K radi<strong>at</strong>ion.<br />

Raman microspectrometry was also performed to g<strong>at</strong>her structural<br />

inform<strong>at</strong>ion with a LaBRAM HR 800 (Jobin-Yvon-Horiba)<br />

Raman micro-spectrometer including Edge filters and equipped<br />

for signal detection with a back illumin<strong>at</strong>ed charge coupled device<br />

detector (Spex CCD) cooled by Peltier effect to 200 K. A He:Ne laser<br />

(632.8 nm) was used as the excit<strong>at</strong>ion source. The spectra were<br />

measured in back-sc<strong>at</strong>tering geometry. The resolution was about<br />

0.5 cm −1 . A 100× objective lens was used to focus the laser light on<br />

607<br />

LiCoO 2<br />

Co 3 O 4<br />

Intensity / a.u.<br />

450<br />

485<br />

+<br />

487<br />

+ Co 3 O 4<br />

591<br />

597<br />

+<br />

Fd3m<br />

R-3m<br />

Intensity / a.u.<br />

197<br />

484<br />

525<br />

694<br />

621<br />

300<br />

400<br />

500 600<br />

Raman shift / cm -1<br />

700<br />

800<br />

200<br />

400 600<br />

Raman shift / cm -1<br />

800<br />

Fig. 3. Raman sc<strong>at</strong>tering spectra for spinel Fd3m LT-LiCoO 2, hexagonal R-3m HT-LiCoO 2 and Co 3O 4. Excit<strong>at</strong>ion with 514.5 nm radi<strong>at</strong>ion. From [43].


124 S. Tintignac et al. / Electrochimica Acta 60 (2012) 121–129<br />

sample surface to a spot size of 1 m 2 . To avoid local he<strong>at</strong>ing of the<br />

sample, the power of the laser beam was adjusted to 0.2–0.5 mW<br />

with neutral filters of various optical densities. Raman spectra have<br />

been recorded on 15 different spots of each <strong>thin</strong> film electrode. The<br />

Raman spectra have been examined using deconvolutions analysis<br />

of d<strong>at</strong>a sets exhibiting multiple peaks.<br />

Electrodes of 14 mm in diameter were assembled in cointype<br />

cells (CR2032), with metallic lithium as counter electrode,<br />

filled in with a commercial grade LP30 electrolyte (Merck) 1 M<br />

LiPF 6 (EC:DMC = 1:1). The separ<strong>at</strong>or is constituted by a Viledon ®<br />

membrane soaked with electrolyte and Cellgard ® . Galvanost<strong>at</strong>ic<br />

experiments were made with a multichannel VMP3 appar<strong>at</strong>us (Bio-<br />

Logic Science Instruments).<br />

3. Results and discussion<br />

SEM images of the <strong>films</strong> grown on aluminum substr<strong>at</strong>es <strong>at</strong> different<br />

working pressures from 0.55 Pa to 3 Pa and then annealed <strong>at</strong><br />

500 ◦ C are shown in Fig. 1. All the <strong>thin</strong> <strong>films</strong> exhibit homogeneous<br />

grain size distribution and morphology. However, for working pressure<br />

values in the range 0.55–1.5 Pa, some cracks and large size<br />

particles appear. The particle size, as well as the porosity, is seen<br />

to increase with the pressure. For instance, porous deposits are<br />

achieved <strong>at</strong> 2.2 and 3 Pa with well-defined grains of 50 nm against<br />

dense deposits of 20 nm particles for lower pressures. The SEM<br />

image of the cross section for a <strong>thin</strong> film deposited <strong>at</strong> 2.2 Pa on a Si<br />

substr<strong>at</strong>e shows a columnar growth perpendicular to the substr<strong>at</strong>e<br />

surface (Fig. 1f).<br />

XRD experiments were carried out in order to check the crystallinity<br />

of the samples annealed <strong>at</strong> 500 ◦ C as a function of the<br />

working pressure (Fig. 2). In a first approach, all the diffraction<br />

p<strong>at</strong>terns can be indexed on the basis of an hexagonal symmetry<br />

with unit cell parameters a = b = 2.82 Å and c = 14.05 Å of the<br />

LiCoO 2 phase (R-3m space group). The broadness of the lines indic<strong>at</strong>es<br />

small crystallite size. These polycrystalline <strong>thin</strong> <strong>films</strong> exhibit<br />

a preferential orient<strong>at</strong>ion which is clearly influenced by the working<br />

pressure. Indeed, two sets of diffraction p<strong>at</strong>terns are observed:<br />

in the 0.55/2.2 Pa range (0 0 3) oriented <strong>films</strong> are <strong>obtained</strong>. At 3 Pa,<br />

the (0 0 3) line disappears while a strong (1 0 1) line emerges as<br />

well as the (1 1 0) diffraction peak. The preferential (1 1 0) orient<strong>at</strong>ion<br />

was reported to be more favourable for fast Li diffusion than<br />

the (0 0 3) one [6]. However, as the R-3m and Fd3m XRD p<strong>at</strong>terns<br />

are very close (0 1 8)/(1 1 0) and (0 0 6)/(0 1 2) peaks splitting are<br />

the only evidence for the presence of the R-3m HT-LiCoO 2 phase,<br />

and due to the broadness of the peaks, X-ray diffraction does not<br />

enable a clear assignment of the LiCoO 2 structure in the deposited<br />

<strong>films</strong>. Moreover, the presence of Co 3 O 4 impurity phase cannot<br />

be discarded. Conversely, vibr<strong>at</strong>ional spectroscopy can be used to<br />

solve the problem of phase determin<strong>at</strong>ion of LiCoO 2 . Indeed, from<br />

a spectroscopic viewpoint, the factor group analysis determines<br />

the optical vibr<strong>at</strong>ional modes expected for Fd3m and R-3m LiCoO 2<br />

(Table 1). Hence, one should expect to observe two Raman bands<br />

Fig. 4. Atomic displacements of the IR and Raman active modes of hexagonal R-3m<br />

LiCoO 2.<br />

for the R-3m phase and four Raman bands for the Fd3m one. This<br />

fe<strong>at</strong>ure makes Raman microspectrometry a convenient and powerful<br />

technique for the qualit<strong>at</strong>ive microstructural analysis of LiCoO 2<br />

[41]. As shown in Fig. 3, each LiCoO 2 crystal structure gives rise to<br />

a specific Raman fingerprint, consistent with the theoretical predictions,<br />

i.e., four Raman bands are observed <strong>at</strong> ca. 450, 485, 591<br />

and 607 cm −1 for Fd3m LiCoO 2 , whereas two Raman bands <strong>at</strong> 487<br />

and 597 cm −1 , <strong>at</strong>tributed to the A 1g and E g modes, respectively, are<br />

observed for R-3m LiCoO 2 [42,43]. The Raman active modes A 1g and<br />

E g involve vibr<strong>at</strong>ions from oxygen <strong>at</strong>oms only. They correspond to<br />

rel<strong>at</strong>ive displacements of neighbouring oxygen layers with respect<br />

to each other, the displacement occurs along the c axis for the A 1g<br />

mode and is perpendicular to c for the E g mode (Fig. 4). Furthermore,<br />

Raman spectroscopy is able to detect the secondary product<br />

Co 3 O 4 even as traces (Table 1). This sensitivity is due to the particularly<br />

strong sc<strong>at</strong>tering intensity of this oxide which exhibits<br />

five Raman bands consistent with the theoretical predictions<br />

(Fig. 3).<br />

The Raman spectra <strong>obtained</strong> for the samples deposited <strong>at</strong> different<br />

pressures and post-annealed <strong>at</strong> 500 ◦ C are reported in Fig. 5.<br />

All the experimental spectra exhibit two broad bands centered<br />

respectively <strong>at</strong> 490 cm −1 and 599 cm −1 , which could be in a first<br />

approach consistent with the presence of the HT-LiCoO 2 phase. The<br />

broadness of these peaks is ascribed to the nanometer size of <strong>films</strong><br />

particles and also to more or less pronounced shoulders due to the<br />

presence of several phases in the samples. The shape and intensity<br />

of Raman bands is seen to be strongly dependent on the working<br />

pressure.<br />

Table 2<br />

Raman wavenumbers <strong>obtained</strong> from the deconvolutions of the spectral profiles of LiCoO 2 <strong>thin</strong> <strong>films</strong> deposited <strong>at</strong> different working pressures, with their asssignments to<br />

HT-LiCoO 2, LT-LiCoO 2 and Co 3O 4.<br />

Raman shift (cm −1 )<br />

LT LT HT Co 3O 4 LT HT LT Co 3O 4 Co 3O 4<br />

From [43] 449 484 487 524 590 597 605 622 692<br />

0.55 Pa 456 480 490 539 573 597 616 645 –<br />

1 Pa 456 480 490 539 573 597 616 645 –<br />

1.5 Pa – 480 490 539 573 597 616 645 –<br />

2.2 Pa 459 480 490 539 573 597 616 645 667<br />

3 Pa – – 490 – 571 599 – 636 675


S. Tintignac et al. / Electrochimica Acta 60 (2012) 121–129 125<br />

490 599<br />

0.55 Pa<br />

LT<br />

HT<br />

Intensity / a.u.<br />

3 Pa<br />

2.2 Pa<br />

1.5 Pa<br />

1 Pa<br />

HT<br />

LT<br />

LT<br />

1 Pa<br />

Co 3 O 4<br />

LT<br />

Co 3 O 4<br />

0.55 Pa<br />

HT<br />

HT<br />

400<br />

500<br />

600<br />

Raman shift / cm -1<br />

700<br />

Fig. 5. Raman spectra <strong>obtained</strong> from <strong>thin</strong> <strong>films</strong> deposited <strong>at</strong> 0.55 Pa, 1 Pa, 1.5 Pa,<br />

2.2 Pa and 3 Pa and post-annealed <strong>at</strong> 500 ◦ C.<br />

The Raman spectra were fitted assuming the coexistence of both<br />

HT- and LT-LiCoO 2 structures and cobalt oxide Co 3 O 4 . The fitting<br />

results are g<strong>at</strong>hered in Fig. 6. Table 2 summarizes the Raman band<br />

wavenumbers <strong>obtained</strong> from the deconvolution of the spectral profiles<br />

for each pressure. Wh<strong>at</strong>ever the working pressure, the Raman<br />

spectra account for a mixture of the Fd3m and R-3m fingerprints<br />

consisting in four Raman bands loc<strong>at</strong>ed <strong>at</strong> ca. 456, 480, 573 and<br />

616 cm −1 and two bands <strong>at</strong> 490 and 597 cm −1 respectively. Additional<br />

broad Raman fe<strong>at</strong>ures <strong>at</strong> 539, 636/645 and 667/675 cm −1<br />

indic<strong>at</strong>e the presence of low crystallized residual Co 3 O 4 in all the<br />

samples, the very weak contribution observed for the highest working<br />

pressure of 3 Pa revealing probably only some traces for this<br />

impurity. The system<strong>at</strong>ic presence of residual Co 3 O 4 in the samples<br />

raises the question of the compositional evolution in sputter<br />

deposited LiCoO 2 <strong>thin</strong> <strong>films</strong>. Actually, this is a difficult task not<br />

yet resolved because sputtering from a multielemental target like<br />

LiCoO 2 is largely influenced by the process parameters involved<br />

during deposition. Recent studies based upon MC simul<strong>at</strong>ions deal<br />

with some of these complex aspects and put forward the role of<br />

inhomogeneous distribution of Li and Co <strong>at</strong>oms, differential sputtering<br />

yield of individual components but also angular ejection<br />

of the <strong>sputtered</strong> <strong>at</strong>oms and differential transport of the <strong>sputtered</strong><br />

<strong>at</strong>oms [44].<br />

On the other hand, the intensity of Raman bands associ<strong>at</strong>ed with<br />

the R-3m structure strengthens along with the pressure increase,<br />

whereas the shoulders assigned to the Fd3m phase undergo a significant<br />

decrease. Due to the spectroscopic similarity of both phases,<br />

this trend can be quantit<strong>at</strong>ively depicted from the analysis of the<br />

integr<strong>at</strong>ed intensities rel<strong>at</strong>ed to the Fd3m and R-3m Raman fe<strong>at</strong>ures<br />

respectively which provides a good estim<strong>at</strong>ion of the Fd3m/R-3m<br />

rel<strong>at</strong>ive amounts as a function of the working pressure (Fig. 7). This<br />

leads to an amount of ca. 30% R-3m phase in the deposit <strong>obtained</strong> <strong>at</strong><br />

0.55 Pa. Then, when the pressure increases from 1 Pa to 2.2 Pa, the<br />

R-3m amount significantly increases to ≈50% to reach 75% <strong>at</strong> 3 Pa.<br />

It comes out th<strong>at</strong> the R-3m phase appears from a pressure as low as<br />

0.55 Pa, but th<strong>at</strong> 25% Fd3m phase still coexists with the R-3m phase<br />

<strong>at</strong> 3 Pa.<br />

Intensity / a.u.<br />

LT<br />

LT<br />

1.5 Pa<br />

2.2 Pa<br />

3 Pa<br />

HT<br />

LT<br />

HT<br />

LT<br />

LT<br />

HT<br />

Co 3 O 4<br />

LT<br />

HT<br />

LT<br />

Co LT<br />

3<br />

O 4<br />

Co 3 O 4<br />

HT<br />

LT<br />

Co 3 O 4<br />

LT<br />

LT<br />

Co 3 O 4<br />

Co 3 O 4 Co 3 O 4<br />

LT<br />

HT<br />

Co 3 O 4Co3 O 4<br />

400 500 600 700<br />

Raman shift / cm -1<br />

Fig. 6. Raman spectra of <strong>thin</strong> <strong>films</strong> deposited <strong>at</strong> 0.55 Pa, 1 Pa, 1.5 Pa, 2.2 Pa and 3 Pa<br />

and post-annealed <strong>at</strong> 500 ◦ C, with the deconvolutions shown below.


126 S. Tintignac et al. / Electrochimica Acta 60 (2012) 121–129<br />

100<br />

HT HT bias -50V<br />

LT LT bias -50V<br />

a<br />

4.2<br />

i= 10 µA cm -2<br />

HT/LT rel<strong>at</strong>ive amount / %<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

1<br />

Working pressure / Pa<br />

Fig. 7. Rel<strong>at</strong>ive amount of HT/LT-LiCoO 2 phases in <strong>thin</strong> <strong>films</strong> deposited <strong>at</strong> different<br />

working pressure with or without a neg<strong>at</strong>ive substr<strong>at</strong>e bias of 50 V and<br />

post-annealed <strong>at</strong> 500 ◦ C.<br />

All the <strong>thin</strong> <strong>films</strong> were cycled <strong>at</strong> 10 A cm −2 between 3 and<br />

4.2 V versus Li/Li + to investig<strong>at</strong>e their charge–discharge properties.<br />

As shown in Fig. 8a, the electrochemical results are consistent<br />

with the previous structural characteriz<strong>at</strong>ion afforded by Raman<br />

analysis. Indeed, the film deposited <strong>at</strong> 3 Pa and containing the highest<br />

r<strong>at</strong>io of HT-LiCoO 2 phase leads to the best charge capacity of<br />

52 A h cm −2 m −1 while the low pressure sample is barely cycled,<br />

giving 22 A h cm −2 m −1 , i.e. less than half the capacity of the 3 Pa<br />

<strong>thin</strong> film. The higher the working pressure for deposition, the higher<br />

the HT-LiCoO 2 content and the larger the specific capacity. This<br />

capacity value, lower than th<strong>at</strong> expected, can be explained by the<br />

coexistence of the cubic phase but also by some residual Co 3 O 4 . The<br />

deriv<strong>at</strong>ive curves of the chronopentiometric signals highlight the<br />

following fe<strong>at</strong>ures (Fig. 8b): the electrochemical fingerprint clearly<br />

marked for the HT-LiCoO 2 phase <strong>at</strong> 3.9 V <strong>at</strong> 3 Pa is accompanied by<br />

another couple of peaks <strong>at</strong> 3.75 V and 3.6 V due to the LT-LiCoO 2<br />

phase [45,46]. This film corresponds to an optimized composition<br />

since the contribution of the LT-LiCoO 2 phase significantly<br />

decreases with the pressure to the benefit of the R-3m phase. This<br />

trend is well consistent with the Raman analysis. The cycling properties<br />

of these <strong>films</strong> are illustr<strong>at</strong>ed in Fig. 8c. Starting from different<br />

specific discharge capacities depending on the working pressure,<br />

the same regular capacity decline is observed over 25 cycles for the<br />

<strong>thin</strong> <strong>films</strong> prepared in the 1–3 Pa range. For instance, the discharge<br />

capacity changes <strong>at</strong> 3 Pa from 45 to 34 A h cm −2 m −1 after 25<br />

cycles. This slow capacity decrease with cycles can be ascribed to<br />

the presence of the LT-LiCoO 2 phase which is known to be poorly<br />

rechargeable.<br />

A DC neg<strong>at</strong>ive polariz<strong>at</strong>ion (50 V) has been applied to the substr<strong>at</strong>e<br />

during the film deposition <strong>at</strong> 2 Pa and 3 Pa. This aims <strong>at</strong><br />

increasing the local temper<strong>at</strong>ure by an ion bombardment of the<br />

sample surface. Indeed, effect of Bias during deposition has been<br />

previously described [18,47]. It has been reported th<strong>at</strong> the ion bombardment<br />

of growing <strong>films</strong> strongly influences their microstructure<br />

by increasing the mobility of ad<strong>at</strong>oms on the surface, which results<br />

in increasing the rearrangement probability of ad<strong>at</strong>oms.<br />

The surface morphology of the <strong>thin</strong> film deposited with a substr<strong>at</strong>e<br />

bias <strong>at</strong> 2.2 Pa and post-annealed <strong>at</strong> 500 ◦ C (Fig. 9) indic<strong>at</strong>es an<br />

increase in the mean grain size from 50 to 100 nm. As a result, for<br />

the same deposition conditions and annealing tre<strong>at</strong>ment (500 ◦ C),<br />

the Raman spectra of the <strong>films</strong> indic<strong>at</strong>e also a strong influence of<br />

the bias polariz<strong>at</strong>ion on the film composition (Fig. 10). Indeed, as<br />

2<br />

3<br />

E vs. (Li/Li + ) / V<br />

b<br />

c<br />

Discharge capacity / µAh cm -2 µm -1<br />

4.0<br />

3.8<br />

3.6<br />

3.4<br />

3.2<br />

dQ dE -1 / a.u.<br />

0.55 Pa<br />

1 Pa<br />

1.5 Pa<br />

2.2 Pa<br />

3 Pa<br />

100<br />

3.0<br />

0 20 40 60 80<br />

i = 10 µA cm -2<br />

Capacity / µAh cm -2 µm -1 0.55 Pa<br />

1 Pa<br />

1.5 Pa<br />

2.2 Pa<br />

3 Pa<br />

3.2 3.4 3.6 3.8 4.0 4.2<br />

E vs. (Li/Li + ) / V<br />

70<br />

60<br />

i = 10 µA cm -2<br />

3 Pa<br />

2.2 Pa<br />

1.5 Pa<br />

50<br />

1 Pa<br />

0.55 Pa<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 5 10 15 20 25<br />

Cycles<br />

Fig. 8. Galvanost<strong>at</strong>ic experiments <strong>at</strong> 10 A/cm 2 in EC:DMC = 1:1/1 M LiPF 6. Cell<br />

potential versus capacity (a), deriv<strong>at</strong>ive signal (b) and discharge capacity versus<br />

cycle number (c).<br />

evidenced from the Raman spectra fitting reported in Fig. 11, the<br />

Fd3m contribution is strongly reduced and even removed: from 40%<br />

to 10% and from 25% to 0% for the LiCoO 2 film deposited <strong>at</strong> 2.2 Pa<br />

and 3 Pa respectively (Fig. 7).<br />

As a consequence, the corresponding electrochemical fe<strong>at</strong>ures<br />

are significantly improved, as shown in the deriv<strong>at</strong>ive curve of<br />

discharge–charge curves (Fig. 12a). The intensity of the peak<br />

loc<strong>at</strong>ed <strong>at</strong> 3.90 V, characteristic of the HT-LiCoO 2 phase, rises


S. Tintignac et al. / Electrochimica Acta 60 (2012) 121–129 127<br />

Fig. 9. Comparison of the surface morphology for <strong>films</strong> deposited <strong>at</strong> 2.2 Pa with or without a neg<strong>at</strong>ive substr<strong>at</strong>e bias of 50 V and post-annealed <strong>at</strong> 500 ◦ C.<br />

Intensity / a.u.<br />

* Co 3<br />

O 4<br />

*<br />

200<br />

3 Pa / bias<br />

2.2 Pa / bias<br />

*<br />

3 Pa<br />

2.2 Pa<br />

400<br />

487<br />

597<br />

600<br />

Raman shift / cm -1<br />

*<br />

* *<br />

*<br />

800<br />

Fig. 10. Raman spectra of the 2.2 Pa and 3.3 Pa <strong>thin</strong> <strong>films</strong> deposited with or without<br />

a neg<strong>at</strong>ive substr<strong>at</strong>e bias of 50 V and post-annealed <strong>at</strong> 500 ◦ C.<br />

tremendously when the substr<strong>at</strong>e bias of −50 V is applied, corrobor<strong>at</strong>ing<br />

the Raman spectra results. The LT-LiCoO 2 peaks <strong>at</strong><br />

3.75 V and 3.6 V disappear from the electrochemical signal as<br />

soon as a substr<strong>at</strong>e polariz<strong>at</strong>ion is used. The electrochemical<br />

cycling <strong>performance</strong>s of these samples are reported in Fig. 12b.<br />

The substr<strong>at</strong>e polariz<strong>at</strong>ion leads to a large increase by 40% of<br />

the capacity value as well as an improvement of cycling properties.<br />

The achievement of 67 A h cm −2 m −1 (133 mA h g −1 ) for<br />

the optimized 3 Pa biased sample, close to the theoretical capacity<br />

of HT-LiCoO 2 can be explained by the Raman analysis giving<br />

a composition of pure HT-LiCoO 2 phase with some traces of<br />

Co 3 O 4 impurity. The cycling properties are also clearly influenced<br />

by the HT/LT r<strong>at</strong>io. Indeed, the 100% HT-LiCoO 2 phase<br />

<strong>obtained</strong> for the 3 Pa/bias film shows an excellent cyclability with<br />

reduced capacity loss of 0.2% per cycle with a slow decrease<br />

from 67 A h cm −2 m −1 (133 mA h g −1 ) for the first cycle to still<br />

61 A h cm −2 m −1 (121 mA h g −1 ) after 50 cycles. In comparison,<br />

the remaining 10% of LT-LiCoO 2 phase contained in the 2.2 Pa/bias<br />

layer is responsible for a faster capacity fading over 50 cycles, the<br />

capacity diminishing from 63 A h cm −2 m −1 (125 mA h g −1 ) to<br />

54 A h cm −2 m −1 (107 mA h g −1 ). In other respect, Fig. 13 shows<br />

there is little change in the discharge–charge curves of the 3 Pa/bias<br />

film which superimpose during cycling. The capacity decreases very<br />

slowly and no polariz<strong>at</strong>ion phenomenon appears, which reflects<br />

good cycling properties. Conversely, a fast capacity decline accompanied<br />

by a strong polariz<strong>at</strong>ion phenomenon is observed for the<br />

deposit <strong>obtained</strong> <strong>at</strong> the same working pressure without the bias<br />

procedure. The efficiency of the synthesis conditions proposed in<br />

Intensity / a.u.<br />

HT<br />

2.2 Pa / bias = -50V<br />

HT<br />

Intensity / a.u.<br />

HT<br />

3 Pa / bias = - 50V<br />

HT<br />

*<br />

LT<br />

* *<br />

* *<br />

*<br />

*<br />

*<br />

400<br />

500<br />

600<br />

700<br />

400 500 600 700<br />

Raman shift / cm -1 Raman shift / cm -1<br />

Fig. 11. Raman spectra of the 2.2 Pa/bias and 3 Pa/bias <strong>thin</strong> <strong>films</strong> post-annealed <strong>at</strong> 500 ◦ C, with their deconvolutions shown below. * Co 3O 4 peaks.


128 S. Tintignac et al. / Electrochimica Acta 60 (2012) 121–129<br />

the present work is demonstr<strong>at</strong>ed by the theoretical specific capacity<br />

reached here in the initial discharge while only ≈66% of this<br />

value is usually <strong>obtained</strong> with an annealing tre<strong>at</strong>ment <strong>at</strong> 500 ◦ C<br />

without the bias procedure [20,21] (Fig. 8). We have checked th<strong>at</strong><br />

an increase in the applied bias voltage (90 V instead of 50 V) induces<br />

a decrease in discharge capacity and an increase in the polariz<strong>at</strong>ion<br />

of the electrodes. Furthermore, measurements of the residual<br />

compressive stress in the <strong>films</strong> indic<strong>at</strong>e an increase by a factor 2<br />

when the applied bias voltage is increased from 50 to 90 V, which is<br />

detrimental towards the all-solid-st<strong>at</strong>e microb<strong>at</strong>teries applic<strong>at</strong>ion.<br />

It must be outlined th<strong>at</strong> a thermal tre<strong>at</strong>ment <strong>at</strong> a minimum<br />

temper<strong>at</strong>ure of 700 ◦ C is usually required to get nearly the theoretical<br />

capacity [1,20–22]. One study reports a discharge capacity<br />

of 130 mA h g −1 in liquid electrolyte for a <strong>sputtered</strong> LiCoO 2 <strong>thin</strong><br />

film deposited <strong>at</strong> an elev<strong>at</strong>ed working pressure of 10 Pa and postannealed<br />

<strong>at</strong> 600 ◦ C [17]. However these <strong>films</strong> are found to exhibit<br />

a capacity loss of 0.7% per cycle, a decrease from 130 mA h g −1 for<br />

the first cycle to 109 mA h g −1 being reported after 25 cycles [17].<br />

With a 90% capacity retention (61 A h cm −2 m −1 after 50<br />

cycles in liquid electrolyte), the present cycling <strong>performance</strong><br />

achieved with the 3 Pa/bias film significantly exceeds all the results<br />

reported in the 4.2–3 V potential range for a <strong>sputtered</strong> LiCoO 2 film<br />

annealed <strong>at</strong> 500 ◦ C [20,21]. Indeed, a high capacity loss of ≈40% is<br />

usually observed over 50 cycles for <strong>thin</strong> <strong>films</strong> annealed <strong>at</strong> temper<strong>at</strong>ure<br />

as low as 500 ◦ C. This outlines the relevance of the combined<br />

use of optimized bias and working pressure values to get a high<br />

crystallinity of the hexagonal LiCoO 2 compound without any presence<br />

of the disordered cubic LiCoO 2 phase. Even compared with<br />

<strong>thin</strong> <strong>films</strong> he<strong>at</strong>-tre<strong>at</strong>ed <strong>at</strong> higher temper<strong>at</strong>ures, our results offer a<br />

better cycling behaviour since a large capacity loss from 25 to 50%<br />

is usually recorded for <strong>films</strong> annealed in the temper<strong>at</strong>ure range<br />

650–900 ◦ C [20–23]. A better adherence of the film to the substr<strong>at</strong>e<br />

provided by the bias procedure cannot be discarded to explain the<br />

better behaviour in addition to the promoting effect on the form<strong>at</strong>ion<br />

of HT-LiCoO 2 .<br />

The understanding of the capacity loss of LiCoO 2 <strong>thin</strong> <strong>films</strong> in<br />

liquid electrolyte is not solved <strong>at</strong> present time but the faster capacity<br />

decline compared to th<strong>at</strong> achieved in an all-solid-st<strong>at</strong>e b<strong>at</strong>tery<br />

is thought to be rel<strong>at</strong>ed with the degrad<strong>at</strong>ion of the LiCoO 2 crystal<br />

structure [24] while this phenomenon would be suppressed when<br />

the oxide film is covered by a solid electrolyte. Therefore, further<br />

experiments are under progress in our labor<strong>at</strong>ory to investig<strong>at</strong>e the<br />

cause of the capacity fading by comparing the electrochemical and<br />

structural responses of the 500 ◦ C he<strong>at</strong>-tre<strong>at</strong>ed 3 Pa/bias <strong>films</strong> in<br />

liquid and solid electrolyte.<br />

Discharge capacity / µAh cm -2 µm -1<br />

a<br />

dQ dE -1 / a.u.<br />

b<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

3 Pa bias<br />

2.2 Pa bias<br />

3 Pa<br />

2.2 Pa<br />

i=10µA cm -2<br />

3.6 3.8 4.0 4.2<br />

E vs. (Li/Li + ) / V<br />

3 Pa bias<br />

2.2 Pa bias<br />

3 Pa<br />

i = 10µA cm -2 2.2 Pa<br />

50<br />

10<br />

20<br />

Cycles<br />

30<br />

40<br />

Fig. 12. Deriv<strong>at</strong>ive curve of the galvanost<strong>at</strong>ic discharge–charge curve (a) and<br />

capacity versus cycling (b) for the 2.2 Pa, 2.2 Pa/bias, 3 Pa and 3 Pa/bias <strong>thin</strong> <strong>films</strong><br />

post-annealed <strong>at</strong> 500 ◦ C. Current density: 10 A cm −2 , EC:DMC = 1:1/1 M LiPF 6.<br />

50<br />

4.2<br />

3Pa<br />

3Pa / bias<br />

4.0<br />

E vs. (Li/Li+) / V<br />

3.8<br />

3.6<br />

3.4<br />

3.2<br />

Cycle 2<br />

Cycle 5<br />

Cycle 10<br />

Cycle 25<br />

Cycle 2<br />

Cycle 5<br />

Cycle 10<br />

Cycle 25<br />

3.0<br />

0<br />

20 40 60<br />

Capacity / µAh cm -2 µm -1<br />

0<br />

20 40 60<br />

Capacity / µAh cm -2 µm -1<br />

Fig. 13. Comparison of galvanost<strong>at</strong>ic cycling curves <strong>at</strong> 10 A cm −2 for the 3 Pa and 3 Pa/bias <strong>thin</strong> <strong>films</strong> post-annealed <strong>at</strong> 500 ◦ C.


S. Tintignac et al. / Electrochimica Acta 60 (2012) 121–129 129<br />

4. Conclusions<br />

Using a high power of 500 W and a moder<strong>at</strong>e annealing tre<strong>at</strong>ment<br />

<strong>at</strong> 500 ◦ C in air, the influence of the working pressure in the<br />

0.55–3 Pa range has been investig<strong>at</strong>ed to get crystalline <strong>sputtered</strong><br />

LiCoO 2 <strong>thin</strong> <strong>films</strong> with <strong>at</strong>tractive electrochemical properties. The<br />

morphology and the structure of the <strong>films</strong> are seen to be controlled<br />

by the working pressure. In particular, a thorough Raman<br />

analysis based upon system<strong>at</strong>ic Raman spectra fittings indic<strong>at</strong>es<br />

the presence of a LT-LiCoO 2 /HT-LiCoO 2 mixture in the deposits.<br />

Furthermore, this technique turned out to be very useful as it<br />

allowed for the first time to check quantit<strong>at</strong>ively the Fd3m/R-3m<br />

rel<strong>at</strong>ive amount in the <strong>sputtered</strong> <strong>thin</strong> <strong>films</strong>: a promoting effect<br />

of the increasing pressure is demonstr<strong>at</strong>ed, in good accord with<br />

the corresponding electrochemical properties in the 4.2/3 V potential<br />

region, the HT-LiCoO 2 content increasing from 30% <strong>at</strong> 0.55 Pa<br />

to 75% <strong>at</strong> 3 Pa. Enhanced electrochemical properties in terms of<br />

capacity and cycle life have been <strong>obtained</strong> by applying a neg<strong>at</strong>ive<br />

polariz<strong>at</strong>ion to the substr<strong>at</strong>e. Indeed, the combined use of substr<strong>at</strong>e<br />

bias (−50 V) with a high working pressure of 3 Pa during rf magnetron<br />

sputtering has allowed to get rid of the cubic phase and<br />

then to achieve high <strong>performance</strong> HT-LiCoO 2 <strong>films</strong> with specific<br />

capacity of 67 A h cm −2 m −1 close to the theoretical value and<br />

a capacity retention of ≈90% over 50 cycles <strong>at</strong> C/5 r<strong>at</strong>e without<br />

any polariz<strong>at</strong>ion phenomenon during cycling. These electrochemical<br />

characteristics are the best known for a LiCoO 2 <strong>thin</strong> film in liquid<br />

electrolyte. The use of a high pressure, high power, bias substr<strong>at</strong>e<br />

and moder<strong>at</strong>e he<strong>at</strong>-tre<strong>at</strong>ment <strong>at</strong> 500 ◦ C has ensured the high crystallinity<br />

of the deposit, the exclusive form<strong>at</strong>ion of the hexagonal<br />

HT-LiCoO 2 phase, the decrease of the Co 3 O 4 amount and probably<br />

a good adherence of the LiCoO 2 film to the aluminum substr<strong>at</strong>e.<br />

Of course, additional measurements such as kinetic studies and<br />

extended cycling experiments are under progress in our group as<br />

well as the integr<strong>at</strong>ion of these HT-LiCoO 2 <strong>thin</strong> <strong>films</strong> in all-solidst<strong>at</strong>e<br />

Li b<strong>at</strong>teries.<br />

References<br />

[1] B. Wang, J.B. B<strong>at</strong>es, F.X. Hart, B.C. Sales, R.A. Zuhr, J.D. Robertson, J. Electrochem.<br />

Soc. 143 (1996) 3203.<br />

[2] N.J. Dudney, Y.I. Jang, J. Power Sources 119–121 (2003) 300.<br />

[3] J.B. B<strong>at</strong>es, N.J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun, S.A. Hackney, J. Electrochem.<br />

Soc. 147 (2000) 59.<br />

[4] J.B. B<strong>at</strong>es, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Solid St<strong>at</strong>e Ionics 135<br />

(2000) 33.<br />

[5] P.J. Bouwman, B.A. Boukamp, H.J.M. Bouwmeester, H.J. Wondergem, P.H.L. Notten,<br />

J. Electrochem. Soc. 148 (2001) A311.<br />

[6] P.J. Bouwman, B.A. Boukamp, H.J.M. Bouwmeester, P.H.L. Notten, J. Electrochem.<br />

Soc. 149 (2002) A699.<br />

[7] J.F. Whitacre, W.C. West, B.V. R<strong>at</strong>nakumar, J. Power Sources 103 (2001)<br />

134.<br />

[8] J.K. Lee, S.J. Lee, H.K. Baik, H.Y. Lee, S.W. Jang, S.M. Lee, Electrochem. Solid St<strong>at</strong>e<br />

Lett. 2 (1999) 512.<br />

[9] M. Hayashi, M. Takahashi, Y. Sakurai, J. Power Sources 174 (2007) 990.<br />

[10] J.F. Whitacre, W.C. West, E. Brandon, B.V. R<strong>at</strong>nakumar, J. Electrochem. Soc 148<br />

(2001) A1078.<br />

[11] K.F. Chiu, F.C. Hsu, G.S. Chen, M.K. Wu, J. Electrochem. Soc. 150 (2003) A503.<br />

[12] J. Pracharova, J. Pridal, J. Bludska, I. Jakubec, V. Vorlicek, Z. Malkova, Th. Dikonimos<br />

Makris, R. Giorgi, L. Jastrabik, J. Power Sources 108 (2002) 204.<br />

[13] X. Zhu, Z. Guo, G. Du, P. Zhang, H. Liu, Surf. Co<strong>at</strong>. Technol. 204 (2010) 1710.<br />

[14] S.W. Jeon, J.K. Lim, S.H. Lim, S.M. Lee, Electrochim. Acta 51 (2005) 268.<br />

[15] H. Pan, Y. Yang, J. Power Sources 189 (2009) 633.<br />

[16] H.Y. Park, S.C. Nam, Y.C. Lim, K.G. Choi, K.C. Lee, G.B. Park, H.P. Kim, S.B. Cho,<br />

Korean J. Chem. Eng. 23 (2006) 832.<br />

[17] C. Ziebert, B. Ketterer, M. Rinke, C. Adelhelm, S. Ulrich, K.-H. Zum Gahr, S. Indris,<br />

T. Schimmel, Surf. Co<strong>at</strong>. Technol. 205 (2010) 1589.<br />

[18] H.Y. Park, S.R. Lee, Y.J. Lee, B.W. Cho, W.I. Cho, M<strong>at</strong>er. Chem. Phys. 93 (2005)<br />

70.<br />

[19] B. Ketterer, H. Vasilchina, K. Seeman, S. Ulrich, H. Besser, W. Pfleging, T. Kaiser,<br />

C. Adelhelm, Int. J. M<strong>at</strong>er. Res. 99 (2008) 1171.<br />

[20] C.L. Liao, K.Z. Fung, J. Power Sources 128 (2004) 263.<br />

[21] C.L. Liao, Y.H. Lee, K.Z. Fung, J. Alloys Compd. 436 (2007) 303.<br />

[22] J. Xie, N. Imanishi, T. M<strong>at</strong>sumura, A. Hirano, Y. Takeda, O. Yamamoto, Solid St<strong>at</strong>e<br />

Ionics 179 (2008) 362.<br />

[23] W.S. Kim, J. Power Sources 134 (2004) 103.<br />

[24] M. Takahashi, M. Hayashi, Y.T. Shodai, J. Power Sources 189 (2009) 191.<br />

[25] M. Antaya, J.R. Dahn, J.S. Preston, E. Rossen, J.N. Reimers, J. Electrochem. Soc.<br />

140 (1993) 575.<br />

[26] K.A. Striebel, C.Z. Deng, S.J. Wen, E.J. Cairns, J. Electrochem. Soc 143 (1996)<br />

1821.<br />

[27] J.D. Perkins, C.S. Bahn, J.M. Mc Graw, P.A. Parilla, D.S. Ginley, J. Electrochem. Soc.<br />

148 (2001) A1302.<br />

[28] C. Julien, M.A. Camacho-Lopez, L. Escobar-Alarcon, E. Haro-Poni<strong>at</strong>owski, M<strong>at</strong>er.<br />

Chem. Phys. 68 (2001) 210.<br />

[29] S.B. Tang, M.O. Lai, L. Lu, J. Alloys Compd. 424 (2006) 342.<br />

[30] H. Xia, L. Lu, Electrochim. Acta 52 (2007) 7014.<br />

[31] S.I. Cho, S.G. Yoon, J. Electrochem. Soc. 149 (2002) A1584.<br />

[32] S.I. Cho, S.G. Yoon, Appl. Phys. Lett. 82 (2003) 3345.<br />

[33] W.-G. Chai, S.-G. Yoon, J. Power Sources 125 (2004) 236.<br />

[34] J.F.M. Oudenhoven, T. Van Dongen, R.A.H. Niessen, M. de Croon, P.H.L. Notten,<br />

J. Electrochem. Soc. 156 (2009) D169.<br />

[35] P. Fragnaud, T. Brousse, D.M. Schleich, J. Power Sources 63 (1996) 187.<br />

[36] P. Fragnaud, R. Nagarajan, D.M. Schleich, D. Vujic, J. Power Sources 54 (1995)<br />

362.<br />

[37] Y. Yu, J.L. Shui, Y. Jin, C.H. Chen, Electrochim. Acta 51 (2006) 3292.<br />

[38] Y.H. Rho, K. Kanamura, T. Umegaki, J. Electrochem. Soc. 150 (2003) A107.<br />

[39] Y.H. Rho, K. Kanamura, M. Fujisaki, J.I. Hamagami, S.I. Suda, T. Umegaki, Solid<br />

St<strong>at</strong>e Ionics 151 (2002) 151.<br />

[40] M.K. Kim, H.T. Chung, Y.J. Park, J.G. Kim, J.T. Son, K.S. Park, H.G. Kim, J. Power<br />

Sources 99 (2001) 34.<br />

[41] R. Baddour-Hadjean, J.P. Pereira-Ramos, Chem. Rev. 110 (2010) 1278.<br />

[42] W. Huang, R. Frech, Solid St<strong>at</strong>e Ionics 86–88 (1996) 395.<br />

[43] L. Mendoza, R. Baddour-Hadjean, M. Cassir, J.P. Pereira-Ramos, Appl. Surf. Sci.<br />

225 (2004) 356.<br />

[44] C.S. Nimisha, G.M. Rao, J. Appl. Phys. 109 (2011) 114910.<br />

[45] B. Garcia, J. Farcy, J.P. Pereira-Ramos, N. Baffier, J. Electrochem. Soc. 144 (1997)<br />

1179.<br />

[46] E. Rossen, J.N. Reimers, J.R. Dahn, Solid St<strong>at</strong>e Ionics 62 (1993) 53.<br />

[47] R. Messier, et al., J. Vac. Sci. Technol. A2 (1984) 500.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!