27.03.2015 Views

Impact of Untransposed 66kV Sub-transmission Lines on Voltage ...

Impact of Untransposed 66kV Sub-transmission Lines on Voltage ...

Impact of Untransposed 66kV Sub-transmission Lines on Voltage ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where,<br />

α - voltage index for active power<br />

β - voltage index for reactive power<br />

subscripts:<br />

0 - referred to rated c<strong>on</strong>diti<strong>on</strong>s<br />

The α and β parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> this model can be set<br />

to represent the aggregate effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

composite loads (e.g. resistive loads, lighting).<br />

3.3. TRANSMISSION LINES<br />

Overhead <str<strong>on</strong>g>transmissi<strong>on</strong></str<strong>on</strong>g> lines are modelled as electromagnetically<br />

coupled impedance matrices in phase coordinates.<br />

Phase impedance matrix ([Z pq ] (3×3) ) for a<br />

three-phase <str<strong>on</strong>g>transmissi<strong>on</strong></str<strong>on</strong>g> system with earth return is<br />

derived starting from Cars<strong>on</strong>’s formula [9].<br />

( )<br />

De<br />

Z pq = R d +R s +k ln<br />

D pq<br />

( )<br />

De<br />

Z pq = R d + k ln<br />

D pq<br />

Ω/m, when p = q (4)<br />

Ω/m, when p ≠ q (5)<br />

where,<br />

R d = 9.869 × 10 −7 √f<br />

Ω/m, earth resistance<br />

D e = 658.376 ×<br />

ro<br />

f<br />

m<br />

k = 2 × { 10 −7 H/m<br />

c<strong>on</strong>ductor GMR (m), when p = q<br />

D pq −<br />

GMD between p and q (m), when p ≠ q<br />

R s - ac resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ductor (Ω/m)<br />

f - operating frequency (Hz)<br />

r o - earth resistivity (Ωm)<br />

subscripts:<br />

p and q = a, b, c<br />

Since individual lines <str<strong>on</strong>g>of</str<strong>on</strong>g> the study system c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> secti<strong>on</strong>s with different tower c<strong>on</strong>figurati<strong>on</strong>s<br />

and c<strong>on</strong>ductor material, the phase impedance matrix is<br />

obtained for each secti<strong>on</strong> and the resultant impedance<br />

matrix for the entire line is derived by combining the<br />

secti<strong>on</strong>al impedance matrices.<br />

3.4. CAPACITOR BANKS<br />

Three-phase capacitor banks are c<strong>on</strong>sidered as passive<br />

elements and are modelled as a diag<strong>on</strong>al impedance<br />

matrix. This allows reactive power injecti<strong>on</strong> by capacitor<br />

banks to be determined by the nodal voltage.<br />

4. FORMULATION OF THREE-PHASE<br />

POWER FLOW EQUATIONS<br />

4.1. CONCEPT OF COMPONENT LEVEL POWER<br />

FLOW CONSTRAINTS<br />

A unique problem in three-phase power flow analysis<br />

is the need to model numerous comp<strong>on</strong>ent c<strong>on</strong>necti<strong>on</strong>s,<br />

such as the phase to phase or delta c<strong>on</strong>necti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> loads,<br />

and impedance grounded star or delta c<strong>on</strong>necti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

generators. The c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> specifying power flow c<strong>on</strong>straints<br />

for each bus or each phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a bus cannot take<br />

comp<strong>on</strong>ent c<strong>on</strong>necti<strong>on</strong>s into account. It is therefore not<br />

suitable for generalised power flow analysis. In view <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the fact that the power c<strong>on</strong>straints such as specified generati<strong>on</strong><br />

(or c<strong>on</strong>sumpti<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g> real power are the properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents instead <str<strong>on</strong>g>of</str<strong>on</strong>g> buses [7]. Therefore the load<br />

flow c<strong>on</strong>straints for each power system comp<strong>on</strong>ent are<br />

expressed in comp<strong>on</strong>ent level here, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>straints<br />

<strong>on</strong> nodal quantities which have been used in traditi<strong>on</strong>al<br />

power flow methods.<br />

Since each comp<strong>on</strong>ent can be c<strong>on</strong>nected in any form<br />

using node renaming, arbitrary comp<strong>on</strong>ent c<strong>on</strong>necti<strong>on</strong>s<br />

with power flow c<strong>on</strong>straints can be easily represented.<br />

Furthermore, the approach allows the c<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different load types into the same network bus, thus<br />

providing the capability to model a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unbalanced bus loading c<strong>on</strong>diti<strong>on</strong>s.<br />

4.2. COMPONENT CONSTRAINTS<br />

Comp<strong>on</strong>ents with power flow c<strong>on</strong>straints such as loads<br />

and generators are represented by their respective comp<strong>on</strong>ent<br />

models and the associated power flow c<strong>on</strong>straints,<br />

as follows:<br />

(a) Slack generator: The specified c<strong>on</strong>straints are the<br />

magnitude and the phase angle <str<strong>on</strong>g>of</str<strong>on</strong>g> the positive sequence<br />

voltage(V specified ) at the machine terminals.<br />

where,<br />

[T ] = 1 3 [1 a a2 ]<br />

[T ]([V k ] − [V m ]) = V specified (6)<br />

(b) PV generator: The specified c<strong>on</strong>straints are the threephase<br />

active power output (P 3φ, specified ) and the magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the positive sequence voltage (V specified ) at the<br />

machine terminals.<br />

Real ( − [I km ] H ([V k ] − [V m ]) ) = P 3φ, specified (7)<br />

| [T ]([V k ] − [V m ]) |= V specified (8)<br />

where,<br />

superscripts:<br />

H - denotes c<strong>on</strong>jugate transposed<br />

The machine internal voltage (E) in (1) is unknown and<br />

must be adjusted to satisfy the above machine power flow<br />

c<strong>on</strong>straints.<br />

(c) Loads: The specified c<strong>on</strong>straints are the single phase<br />

active and reactive power ((P + jQ) 1φ, specified ) c<strong>on</strong>sumpti<strong>on</strong>.<br />

I H km(V k − V m ) = (P + jQ) 1φ, specified (9)<br />

The network (<str<strong>on</strong>g>transmissi<strong>on</strong></str<strong>on</strong>g> lines and capacitor banks)<br />

which does not have power flow c<strong>on</strong>straints is repre-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!