12.04.2015 Views

Summary of Vectors

Summary of Vectors

Summary of Vectors

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Summary</strong> <strong>of</strong> Vector Properties<br />

Basics Quantities - Scalars and <strong>Vectors</strong><br />

There are quantities, such as velocity, that have both magnitude and direction. These are<br />

vectors. A quantity with only magnitude is a scalar.<br />

Nomenclature<br />

r r r r<br />

A,B,C,D<br />

A r<br />

ê<br />

x<br />

,ê , ê<br />

y<br />

z<br />

A x ,A y ,A z<br />

s<br />

will be vectors<br />

is the magnitude or length <strong>of</strong> the vector A r . It is a scalar.<br />

will be a set <strong>of</strong> orthogonal unit vectors along the x,y,z axes<br />

(Some authors use i,j,k for these unit vectors.)<br />

are scalars that are the components <strong>of</strong> the vector A r<br />

is a scalar<br />

Component Notation<br />

r<br />

A =<br />

=<br />

A<br />

x<br />

(A<br />

ê<br />

x<br />

x<br />

+ A<br />

, A<br />

y<br />

y<br />

ê<br />

, A<br />

y<br />

z<br />

+ A<br />

Scalar Multiplication<br />

r<br />

s A = s (A<br />

x<br />

, A<br />

y<br />

, A<br />

z<br />

) =<br />

r r r r<br />

s (A + B) = sA + s B<br />

=<br />

)<br />

z<br />

ê<br />

z<br />

(sA<br />

x<br />

, sA , sA )<br />

(sA x + sB x , sA y + sB y , sA z + sB<br />

y<br />

z<br />

z<br />

)<br />

Addition<br />

r r<br />

A + B<br />

=<br />

=<br />

r r<br />

B + A<br />

(A x + B x , A y + B y,<br />

A z + B<br />

z<br />

)<br />

Dot Product or Inner Product<br />

A<br />

r • B<br />

r<br />

is a scalar.<br />

r r r r<br />

A • B = A B cosθ<br />

= A xB<br />

x<br />

+ A yBy<br />

+ A zBz<br />

r<br />

Where θ is the angle between A and<br />

r r<br />

A • B =<br />

r r<br />

B • A<br />

r<br />

B<br />

. (Either angle can be used.)<br />

1


A • (B + C)<br />

r r<br />

s(A • B) =<br />

r r r r r r r<br />

= A • B + A • C = (B + C) • A<br />

r r r r<br />

(sA) • B = A • (sB)<br />

Magnitude or Length<br />

r<br />

A<br />

=<br />

r r<br />

A • A<br />

=<br />

A<br />

2<br />

x<br />

+ A<br />

2<br />

y<br />

+ A<br />

2<br />

z<br />

Cross Product or Outer Product<br />

r<br />

D<br />

0<br />

D r<br />

r r<br />

r r<br />

= A × B is a vector (pseudo-vector). It is perpendicular to both A and B<br />

r r r r<br />

= D • A = D • B<br />

= A B sin θ<br />

The direction <strong>of</strong> D r is perpendicular to<br />

r<br />

A<br />

and<br />

advance when A r is rotated into B r . (Right hand rule.)<br />

r<br />

B , in the direction <strong>of</strong> a right hand screw<br />

The cross product is not commutative,<br />

r r<br />

A × B<br />

=<br />

r r<br />

− B × A<br />

r<br />

D<br />

=<br />

=<br />

r r<br />

A × B<br />

( A<br />

y<br />

B<br />

z<br />

− A<br />

z<br />

B<br />

y<br />

,<br />

A<br />

y<br />

B<br />

z<br />

− A<br />

z<br />

B<br />

y<br />

,<br />

A<br />

y<br />

B<br />

z<br />

− A<br />

z<br />

B<br />

y<br />

)<br />

Note the cyclic nature <strong>of</strong> the multiplications in component notation.<br />

Formally, manipulating symbols, we can represent the cross product as a determinate.<br />

r<br />

D<br />

=<br />

=<br />

r r<br />

A × B<br />

det<br />

ê<br />

A<br />

B<br />

x<br />

x<br />

x<br />

ê<br />

A<br />

B<br />

y<br />

y<br />

y<br />

Orthogonal Unit (Orthonormal) <strong>Vectors</strong><br />

From the properties <strong>of</strong> the inner product one has:<br />

ê<br />

A<br />

B<br />

z<br />

z<br />

z<br />

2


3<br />

0<br />

ê<br />

ê<br />

ê<br />

ê<br />

ê<br />

ê<br />

1<br />

ê<br />

ê<br />

ê<br />

ê<br />

ê<br />

ê<br />

z<br />

y<br />

z<br />

x<br />

y<br />

x<br />

z<br />

z<br />

y<br />

y<br />

x<br />

x<br />

=<br />

•<br />

=<br />

•<br />

=<br />

•<br />

=<br />

•<br />

=<br />

•<br />

=<br />

•<br />

The magnitude <strong>of</strong> unit vectors cross products are:<br />

0<br />

ê<br />

ê<br />

ê<br />

ê<br />

ê<br />

ê<br />

1<br />

ê<br />

ê<br />

ê<br />

ê<br />

ê<br />

ê<br />

z<br />

z<br />

y<br />

y<br />

x<br />

x<br />

x<br />

z<br />

z<br />

y<br />

y<br />

x<br />

=<br />

×<br />

=<br />

×<br />

=<br />

×<br />

=<br />

×<br />

=<br />

×<br />

=<br />

×<br />

The cross products are:<br />

)<br />

ê<br />

ê<br />

(<br />

1<br />

ê<br />

ê<br />

)<br />

ê<br />

ê<br />

(<br />

1<br />

ê<br />

ê<br />

)<br />

ê<br />

ê<br />

(<br />

1<br />

ê<br />

ê<br />

z<br />

x<br />

x<br />

z<br />

y<br />

z<br />

z<br />

y<br />

x<br />

y<br />

y<br />

x<br />

×<br />

−<br />

=<br />

=<br />

×<br />

×<br />

−<br />

=<br />

=<br />

×<br />

×<br />

−<br />

=<br />

=<br />

×

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!