17.04.2015 Views

Download the document - SECAR®, solutions for refractories

Download the document - SECAR®, solutions for refractories

Download the document - SECAR®, solutions for refractories

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 1/13<br />

New Calcium Aluminates with Improved Corrosion<br />

Resistance <strong>for</strong> <strong>the</strong> Next Generation of Refractory<br />

Monolithics<br />

C. Parr, G. Assis, C. Wöhrmeyer, H. Fryda, G. Bhattacharya<br />

Kerneos SA, Paris, France<br />

Presented at <strong>the</strong> 9th Indian International Refractories Congress, Kolkata, 2 nd - 4 th February 2012<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 2/13<br />

ABSTRACT<br />

By changing <strong>the</strong> microstructure of a monolithic castable it is possible to enhance <strong>the</strong> in-situ lining<br />

per<strong>for</strong>mance and ultimately, to increase <strong>the</strong> service life of <strong>the</strong> refractory. To achieve this, novel<br />

calcium aluminates (CA) have recently been developed, namely a 50% alumina (Al 2<br />

O 3<br />

) containing<br />

CA aggregate and a calcium magnesium aluminate (CMA) binder. Calcium aluminates can not only<br />

provide <strong>the</strong> binder function but can also add to and enhance <strong>the</strong> final per<strong>for</strong>mance as measured by<br />

corrosion resistance.<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 3/13<br />

1 Introduction<br />

The first part of this study looks at <strong>the</strong> influence<br />

of a calcium aluminate aggregate, namely R50,<br />

on <strong>the</strong> properties of a refractory castable in<br />

comparison to bauxite and fireclay aggregates.<br />

R50 aggregate contains hydraulic phases like<br />

calcium mono-aluminate that allow <strong>the</strong> surface<br />

of this aggregate to react chemically during<br />

hydration and de-hydration with <strong>the</strong> calcium<br />

aluminate cement in <strong>the</strong> binder phase, unlike<br />

o<strong>the</strong>r aggregates consisting of CA 6<br />

, corundum<br />

or mullite. The chemical bonds between <strong>the</strong> R50<br />

aggregate and <strong>the</strong> matrix enhance <strong>the</strong> physical<br />

properties of <strong>the</strong> castable.<br />

In contact with aluminium, traditional bauxite- based<br />

mixtures require anti-wetting agents to reduce metal<br />

infiltration. However, <strong>the</strong>se can negatively influence<br />

<strong>the</strong> refractoriness of <strong>the</strong> castable if <strong>the</strong> temperature<br />

of <strong>the</strong> aluminium furnace is raised above normal<br />

operating conditions. If temperatures reach<br />

unexpectedly high levels (>1200 °C), traditional<br />

anti-wetting additives like barium sulphate or<br />

calcium fluoride can destroy a bauxite-based<br />

castable. Castables made from R50, however,<br />

show superior infiltration resistance against<br />

aluminium alloys in aluminium contact areas<br />

with significantly lower (or no) anti-wetting agent<br />

additions. Minimising <strong>the</strong> use of <strong>the</strong> antiwetting<br />

agent and using R50 enhances <strong>the</strong> refractoriness<br />

of <strong>the</strong> castable up to 1400°C. This makes R50<br />

interesting <strong>for</strong> many applications where good<br />

heat containment, abrasion resistance and low<br />

liquid penetration / low accretion build-up are<br />

required.<br />

In <strong>the</strong> second part of this paper we will discuss<br />

<strong>the</strong> new CMA binder that brings microcrystalline<br />

spinel phases into areas of <strong>the</strong> castable<br />

microstructure which are normally occupied<br />

by calcium aluminate phases only. The basis<br />

of this new calcium magnesium aluminate<br />

cement is a novel multiphase clinker with a<br />

microstructure of CA phases embedded in a<br />

matrix of microcrystalline magnesium aluminate<br />

spinel crystals. Using this novel CMA as a<br />

binder in different types of ladle castables has<br />

shown significant improvements in corrosion<br />

and penetration resistance with a wide range of<br />

ladle slag compositions.<br />

2 Experimental Procedure<br />

2.1 Material Details : CA aggregate<br />

R50 is a low iron oxide, fused calcium aluminate<br />

aggregate with a very low C 12<br />

A 7<br />

content (


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 4/13<br />

Table 1 : Chemistry and mineralogy of aggregates.<br />

R50<br />

Bauxite<br />

Fused<br />

Sintered<br />

Chemistry (mass %)<br />

Al 2<br />

O 3<br />

52.5 89.5<br />

SiO 2<br />

5.5 4<br />

CaO 37 0.1<br />

Fe 2<br />

O 3<br />

2 1.5<br />

TiO 2<br />

2 3.7<br />

Mineralogy (A= Al 2<br />

O 3<br />

, S=SiO 2<br />

, C=CaO, F=Fe 2<br />

O 3<br />

)<br />

A - XXX<br />

A 3<br />

S 2<br />

- X<br />

S - X<br />

CA 2<br />

- -<br />

CA XXX -<br />

C 12<br />

A 7<br />

- -<br />

C 3<br />

A - -<br />

C 2<br />

S - -<br />

C 2<br />

AS XX -<br />

C 4<br />

AF - -<br />

XXX= primary phase, XX=secondary phase, X= minor phase (< = 1%)<br />

2.2 Test methods : Aggregate Testing<br />

Classical monolithic refractory test methods such<br />

as vibration flow, porosity by water immersion<br />

and strength measurements have been used to<br />

study <strong>the</strong> basic castable properties. Quantitative<br />

chemical and mineralogical analyses have<br />

been conducted using <strong>the</strong> XRF and XRD<br />

methods. The aggregates have been tested in a<br />

deflocculated medium cement castable (MCC)<br />

<strong>for</strong>mulation (Tab. 2).<br />

3 Experimental Results & Discussion<br />

3.1 Aggregate testing<br />

Previous work has shown [1] that R50 provides<br />

a very similar castable rheology in conventional<br />

<strong>for</strong>mulations. This is because R50 is a fused<br />

and almost pore free aggregate, minimising <strong>the</strong><br />

casting water required and ensuring that <strong>the</strong>re<br />

is no flow decay during placing. In addition, <strong>the</strong><br />

mineralogy of <strong>the</strong> R50 (with its high calcium<br />

monoaluminate and low C 12<br />

A 7<br />

content) ensures<br />

that early stiffening is prevented and working<br />

time maintained.<br />

For this work, microsilica-free MCC <strong>for</strong>mulations<br />

(Tab. 2) were chosen in order to minimise <strong>the</strong><br />

chemical reactions between <strong>the</strong> aluminium melt<br />

and <strong>the</strong> castable matrix. Different contents of<br />

barium sulphate (BaSO 4<br />

) were used as an antiwetting<br />

agent. The corrosion and penetration<br />

resistance was tested in contact with liquid<br />

aluminium. The BaSO 4<br />

addition is absolutely<br />

necessary <strong>for</strong> <strong>the</strong> bauxite based castables to<br />

minimise metal infiltration of <strong>the</strong> castable, but<br />

<strong>the</strong> results below will show that <strong>the</strong> addition can<br />

be reduced or even completely eliminated when<br />

R50 is used [1, 2] .<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 5/13<br />

Table 2 : Model MCC recipes with bauxite<br />

(B1-B3) and R50 (R1-R3) with different<br />

barium sulphate contents.<br />

Bauxite R50<br />

B1 B2 B3 R1 R2 R3<br />

R50 3-5 mm % - 33<br />

R50 1-3 mm % - 12<br />

R50 0-1 mm % - 20<br />

SECAR ® 51 % - - 5 5<br />

Bauxite 3-6 mm % 21 -<br />

Bauxite 1-3 mm % 22 -<br />

Bauxite 0-1 mm % 22 -<br />

Bauxite 0-0.09 mm % - 5 5 -<br />

Calc. Alumina % - - 5 - - 5<br />

BaSO 4<br />

% 10 5 - 10 5 -<br />

React. Alumina % 10 10<br />

SECAR ® 71 % 15 15<br />

Polyprop fibres % 0.05 0.05<br />

Peramin® AL200 % 0.15 0.12<br />

H 2<br />

O % 5 4.5<br />

A polycarboxylate e<strong>the</strong>r (Peramin ® AL200)<br />

deflocculates and fluidifies <strong>the</strong>se castables very<br />

efficiently with 5% water in case of bauxite and<br />

only 4.5% in case of R50. Despite <strong>the</strong> lower<br />

water addition and a lower deflocculant level,<br />

better flow properties were achieved <strong>for</strong> all R50<br />

containing MCC’s (R1-R3) (Fig. 3). The open<br />

porosity after firing to 800 & 1200°C, <strong>the</strong> critical<br />

temperature range <strong>for</strong> aluminium applications,<br />

is, in all cases, significantly lower with R50<br />

despite <strong>the</strong>se castables also having lower bulk<br />

densities (Fig. 4, 5). The cold crushing strength<br />

of <strong>the</strong> R50 <strong>for</strong>mulations (irrespective of <strong>the</strong><br />

BaSO 4<br />

content) is higher than <strong>for</strong>mulation B1<br />

(10% BaSO 4<br />

) which could be considered as <strong>the</strong><br />

reference <strong>for</strong>mulation <strong>for</strong> this application (Fig.<br />

6).<br />

Vibration flow (mm)<br />

230<br />

220<br />

210<br />

200<br />

190<br />

180<br />

170<br />

160<br />

150<br />

0 30 60<br />

Time (min)<br />

Fig. 3 : Vibration flow <strong>for</strong> R50 (R1-R3) and<br />

bauxite (B1-B3).<br />

App. Porosity (Vol.%)<br />

21<br />

19<br />

17<br />

15<br />

13<br />

11<br />

9<br />

7<br />

5<br />

800°C 1200°C<br />

R1<br />

R3<br />

R2<br />

B1<br />

B3<br />

B2<br />

B1 B2 B3 R1 R2 R3<br />

Castable<br />

Fig. 4 : Apparent porosity <strong>for</strong> R50 (R1-R3)<br />

and bauxite (B1-B3).<br />

Bulk density (Vol.%)<br />

3<br />

2,95<br />

2,9<br />

2,85<br />

2,8<br />

2,75<br />

2,7<br />

2,65<br />

2,6<br />

2,55<br />

2,5<br />

800°C 1200°C<br />

B1 B2 B3 R1 R2 R3<br />

Castable<br />

Fig. 5 : Bulk density <strong>for</strong> R50 (R1-R3) and<br />

bauxite (B1-B3).<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 6/13<br />

800°C 1200°C<br />

250<br />

200<br />

CCS (MPa)<br />

150<br />

100<br />

Penetration<br />

B1: Bauxite (10% BaSO 4<br />

) B3: Bauxite (0% BaSO 4<br />

)<br />

50<br />

0<br />

B1 B2 B3 R1 R2 R3<br />

Castable<br />

Fig. 6 : Cold crushing strength of MCC with<br />

R50 (R1-R3) and bauxite (B1-B3).<br />

To simulate <strong>the</strong> in situ per<strong>for</strong>mance of <strong>the</strong>se<br />

castable <strong>for</strong>mulations given in Tab. 2, static<br />

corrosion tests in ‘Alcoa cups’ cast from each<br />

<strong>for</strong>mulation were per<strong>for</strong>med . The cups were<br />

filled with aluminium alloy 7075, heated to<br />

800°C and held at this temperature <strong>for</strong> 72 hours.<br />

Thereafter, <strong>the</strong> cups were emptied, cooled and<br />

sectioned.<br />

Fig. 8 shows photos of <strong>the</strong> sectioned cups <strong>for</strong><br />

<strong>for</strong>mulations B1 & R1 both with 10% BaSO 4<br />

, and<br />

B3 & R3 without BaSO 4<br />

additions. There is very<br />

little adherence of aluminium to <strong>the</strong> samples<br />

made with R50, and where it does exist, only very<br />

thin layers can be seen. More significantly, whilst<br />

sample B3 clearly shows areas of aluminium<br />

metal penetration into <strong>the</strong> refractory, <strong>the</strong>re is no<br />

recognisable infiltration into <strong>the</strong> microstructure<br />

of sample R3. This correlates with <strong>the</strong> lower<br />

apparent porosity results of all <strong>the</strong> R50 samples<br />

as shown in Fig. 4. The chemical bonding of <strong>the</strong><br />

R50 aggregate to <strong>the</strong> matrix, and <strong>the</strong> reduced<br />

casting water demand due to <strong>the</strong> fused nature<br />

of <strong>the</strong> R50 aggregate ensure <strong>the</strong> low porosity<br />

of <strong>the</strong> R50-based <strong>for</strong>mulations. This, in turn,<br />

significantly enhances <strong>the</strong> penetration and<br />

corrosion resistance.<br />

R1: R50 (10% BaSO 4<br />

) R3: R50 (0% BaSO 4<br />

)<br />

Fig. 7 : Alcoa cup tests after heating to 800°C<br />

<strong>for</strong> 72 hours.<br />

A final, but significant, consideration is that<br />

BaSO 4<br />

starts to decompose at 1200°C which<br />

leads to a massive volume expansion around<br />

1400°C, as seen in Fig. 8 <strong>for</strong> <strong>the</strong> bauxite-based<br />

<strong>for</strong>mulations (B1 & B2). In <strong>the</strong> case of R50, however,<br />

since significantly less BaSO 4<br />

needs to<br />

be added to maintain <strong>the</strong> infiltration resistance<br />

of <strong>the</strong> castable, <strong>the</strong> associated advantages of<br />

a higher service temperature can be realised.<br />

Consequently, using R50 as <strong>the</strong> aggregate<br />

gives supplementary security even if unexpectedly<br />

high temperatures occur during aluminium<br />

production.<br />

App. Porosity (Vol. %)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

B3<br />

R3<br />

R2<br />

B2<br />

R1<br />

0<br />

-2,00 -1,00 0,00 1,00 2,00 3,00 4,00 5,00<br />

Permanent linear change 110°C --> 1400°C (%)<br />

Fig. 8 : Permanent linear change after firing at<br />

1400°C vs open porosity <strong>for</strong> R50 (R1-R3) and<br />

bauxite (B1-B3).<br />

B1<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 7/13<br />

4 Experimental Procedure<br />

4.1 Material Details : Calcuim Magnesium<br />

Aluminate (CMA) binder<br />

Castable developments <strong>for</strong> steel ladles during<br />

<strong>the</strong> last three decades have shown aluminaspinel<br />

and alumina-magnesia systems to<br />

be most effective [3-5] . More recently, hybrid<br />

systems which combine both materials have<br />

been developed [6] . Kantani and Imaiida [7]<br />

found that <strong>the</strong> best compromise between slag<br />

penetration and corrosion resistance could be<br />

achieved when <strong>the</strong> castable contains 20 - 40%<br />

magnesium aluminate spinel after firing. It has<br />

also been shown that <strong>the</strong> slag penetration can<br />

be minimized by reducing <strong>the</strong> spinel grain size [8] .<br />

Very fine spinel can be created by adding<br />

magnesia to <strong>the</strong> castable, which reacts during<br />

firing with <strong>the</strong> alumina fillers to <strong>for</strong>m spinel insitu.<br />

However, <strong>the</strong> magnesia addition often has<br />

negative side effects, creating problems during<br />

dry-out due to <strong>the</strong> magnesia hydration and<br />

volume expansion at firing temperatures due<br />

to <strong>the</strong> spinel <strong>for</strong>mation. To improve <strong>the</strong> volume<br />

stability of <strong>the</strong> castable, small amounts of<br />

microsilica are often added to <strong>the</strong> dry-mix which<br />

creates a small amount of liquid phase during<br />

firing. Although this counteracts <strong>the</strong> expansion<br />

caused by <strong>the</strong> spinel <strong>for</strong>mation [5, 9, 10] .<br />

Development work on a composite hydraulic<br />

binder (calcium-magnesium-aluminate cement)<br />

which would combine micro-crystalline spinel<br />

(MA) with calcium aluminate phases (CA, CA 2<br />

)<br />

has been <strong>the</strong> centre of numerous patents and<br />

publications since 1969 (Patent no 1575633,<br />

Romania) [11] . Numerous publications were<br />

lodged in <strong>the</strong> late 1990’s by predominantly<br />

Japanese (1996) [12] , Spanish (1999) [13] , and<br />

Chinese [14] authors. Kerneos lodged a unique<br />

patent in 1999 [15] to produce a commercially and<br />

industrially viable calcium magnesium aluminate<br />

(CMA) binder <strong>for</strong> steel ladle applications. This<br />

new CMA 72 has been successfully produced<br />

on an industrial scale. The raw material mix is<br />

sintered in a rotary kiln to simultaneously <strong>for</strong>m<br />

a micro-crystalline spinel toge<strong>the</strong>r with calcium<br />

aluminate phases within <strong>the</strong> same clinker. This<br />

can be achieved below <strong>the</strong> sintering temperature<br />

of pure spinel and with crystal sizes as small as<br />

spinel that is generated in-situ inside <strong>the</strong> matrix<br />

of an alumina-magnesia castable.<br />

CA<br />

CA2<br />

CA<br />

CAC grain<br />

CA2<br />

MA<br />

MA<br />

MA<br />

MA<br />

CA<br />

MA<br />

CA<br />

CMA grain<br />

Fig. 9 : Schematic microstructure of a CAC<br />

and a CMA grain (average grain diameter ca.<br />

15µm).<br />

The exact chemical and mineralogical<br />

comparison between SECAR ® 71 and CMA can<br />

be found in Tab. 10. Both products contain 70%<br />

Al 2<br />

O 3<br />

but CMA contains only 10% CaO and<br />

20% MgO, <strong>the</strong> latter facilitating <strong>the</strong> presence<br />

of <strong>the</strong> MA phase in <strong>the</strong> CMA. CMA clinker<br />

displays a unique microstructure resulting from<br />

<strong>the</strong> intergrowth of <strong>the</strong> hydraulic phases calcium<br />

mono-aluminate (CA) and calcium di-aluminate<br />

(CA 2<br />

) with MA phases during clinker <strong>for</strong>mation in<br />

<strong>the</strong> rotary kiln (Fig. 9). The hydraulic properties<br />

of this new CMA cement are described by Assis<br />

et al. [16] . Both binders have been ground to a<br />

specific surface area of approx. 4000cm 2 /g<br />

(Blaine) with a median grain size d50 <strong>for</strong> both<br />

cements of about 15µm.<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 8/13<br />

Table 10 : Chemical and mineralogical<br />

compositions.<br />

Chemistry Al 2<br />

O 3<br />

CaO MgO SiO 2<br />

SECAR ® 71 68.7-70.5 28.5-30.5


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 9/13<br />

The corrosion and penetration resistance<br />

against different slag compositions was tested<br />

in a laboratory scale rotary kiln according to<br />

ASTM C874-99. Here, <strong>the</strong> test specimens were<br />

prepared using a bigger mixer than those <strong>for</strong><br />

<strong>the</strong> physical property tests. The higher mixing<br />

energy of <strong>the</strong> larger mixer allowed a fur<strong>the</strong>r<br />

reduction of water. The water was reduced to<br />

3.9% <strong>for</strong> <strong>the</strong> alumina-spinel castables (MA) and<br />

to 4.0% <strong>for</strong> <strong>the</strong> alumina-magnesia <strong>for</strong>mulations<br />

(M). The vibrated samples were cured at 20°C<br />

<strong>for</strong> 24h, dried at 110°C, and <strong>the</strong>n pre-fired to<br />

1550°C <strong>for</strong> 5h. The specimens were installed in<br />

<strong>the</strong> pilot rotary kiln where <strong>the</strong>y were heated up<br />

to 1550°C again and kept at this temperature <strong>for</strong><br />

30 minutes prior to <strong>the</strong> first addition of 900g of<br />

slag. 1.7kg/h of fresh slag was introduced into<br />

<strong>the</strong> kiln during <strong>the</strong> following 5h at 1550°C.<br />

The furnace rotated at a constant speed of 2½<br />

rpm. The furnace was tilted 3º axially towards<br />

an oxy-acetylene flame burner at <strong>the</strong> lower end<br />

of <strong>the</strong> kiln. The slag pellets were charged into<br />

<strong>the</strong> upper end of <strong>the</strong> tilted rotary kiln. In this way,<br />

<strong>the</strong> molten slag washed over <strong>the</strong> lining, finally<br />

dripping off at <strong>the</strong> lower end of <strong>the</strong> kiln. Two<br />

different slag compositions were used (Tab. 12).<br />

The dimensions of <strong>the</strong> castable specimens were<br />

measured be<strong>for</strong>e and after <strong>the</strong> test to quantify<br />

<strong>the</strong> degree of wear.<br />

Table 12 : Slag compositions (Slag A: Al-killed<br />

steel slag, Slag B: BOF-slag).<br />

Corrosion tests were also conducted in a<br />

laboratory induction furnace. Samples of <strong>the</strong><br />

test <strong>for</strong>mulations lined <strong>the</strong> wall of <strong>the</strong> induction<br />

furnace which was charged with steel and<br />

covered with one of <strong>the</strong> slags (composition in<br />

Tab. 12). The test temperature was 1600°C. The<br />

steel contained 0.08% C, 1.9% Si, 0.3% Mn,<br />

0.01% S, and 0.02% P. The wear was quantified<br />

by determining <strong>the</strong> ratio between <strong>the</strong> original<br />

cross sectional area of <strong>the</strong> specimens and <strong>the</strong><br />

cross sectional area remaining after <strong>the</strong> test. The<br />

areas were measured using image analyzing<br />

software. Fur<strong>the</strong>rmore, SEM techniques were<br />

used to study <strong>the</strong> microstructure of <strong>the</strong> castables<br />

and to quantify <strong>the</strong> depth of penetration of <strong>the</strong><br />

slag.<br />

5 Experimental Results & Discussion<br />

5.1 Thermo-physical castable properties<br />

The difference between <strong>the</strong> castables with pre<strong>for</strong>med<br />

spinel (MA1, MA2) and those with in-situ<br />

spinel <strong>for</strong>mation (M1, M2) can easily be seen in<br />

Fig. 13.<br />

While both MA1 and MA2 keep high volume<br />

stability, those with free MgO (namely M1 &<br />

M2) show a significant permanent linear change<br />

after firing to 1550°C due to <strong>the</strong> in-situ spinel<br />

<strong>for</strong>mation. However, mix M2, which contains<br />

less free MgO than M1, shows lower expansion.<br />

Mass % Al 2<br />

O 3<br />

SiO 2<br />

FeO MnO CaO MgO<br />

Slag A 30 5 0.8 0.2 57 7<br />

Slag B 2 15 19 6 53 5<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 10/13<br />

Fig. 13 : Permanent linear change of castables.<br />

The measurement of <strong>the</strong> <strong>the</strong>rmo-physical<br />

properties (Fig. 14) also indicates that <strong>the</strong><br />

permanent expansion with M2 is lower than with<br />

M1 when a load of only 0.05 MPa is applied on<br />

<strong>the</strong> sample during <strong>the</strong> first heat-up and during<br />

1h soaking at 1550°C followed by cooling to<br />

1000°C.<br />

After this pre-firing procedure, <strong>the</strong> application<br />

of a load of 0.2 MPa results in an excellent<br />

refractoriness under load with a T 2<br />

of 1680°C<br />

<strong>for</strong> <strong>the</strong> CMA containing M2. While <strong>the</strong> silica<br />

free castables MA1 and MA2 show very high<br />

hot modulus of rupture (HMOR), <strong>the</strong> values are<br />

quite low in <strong>the</strong> case of M1 and M2 at 1350°C<br />

and 1550°C respectively (Fig. 15) due to <strong>the</strong><br />

silica content. However, <strong>the</strong> lower permanent<br />

expansion of M2 and <strong>the</strong> presence of <strong>the</strong><br />

microcrystalline spinel in CMA indicate that an<br />

optimization step of this <strong>for</strong>mulation with respect<br />

to silica and periclase content could improve <strong>the</strong><br />

hot properties of this <strong>for</strong>mulation.<br />

Fig. 14 : Thermo-physical properties of model<br />

castable M1 (SECAR ® 71) and M2 (CMA 72).<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 11/13<br />

5.2 Castable microstructure<br />

SEM micrographs of polished matrix samples<br />

fired at 1550°C are shown in Fig. 16. These<br />

matrix samples were derived from <strong>the</strong> castable<br />

<strong>for</strong>mulations given in Tab. 11 after <strong>the</strong> removal<br />

of any aggregate coarser than 300µm. The<br />

micrographs clearly show that <strong>the</strong> pores in<br />

<strong>the</strong> CAC containing matrices are significantly<br />

larger than <strong>the</strong> pores in <strong>the</strong> CMA 72 containing<br />

matrices.<br />

HMOR (MPa)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

MA1 (CAC) MA2 (CMA) M1 (CAC) M2 (CMA)<br />

1000 1350 1550<br />

Temperature (°C)<br />

Fig. 15 : Hot modulus of rupture of model<br />

castables.<br />

Fur<strong>the</strong>rmore, in <strong>the</strong> latter case, <strong>the</strong> microcrystalline<br />

phases of spinel and calcium<br />

aluminate are more homogeneously distributed.<br />

For <strong>the</strong> CAC matrices, a certain area in <strong>the</strong><br />

microstructure is occupied by calcium aluminates<br />

alone, but <strong>the</strong> corresponding area is occupied by<br />

ultra-fine spinel and calcium aluminate phases<br />

in <strong>the</strong> CMA 72 containing matrices.<br />

5.3 Thermo-chemical castable properties<br />

The following results show quite clearly that<br />

<strong>the</strong> CMA 72 containing castables achieve both<br />

better corrosion and penetration resistance to<br />

<strong>the</strong> slag chemistries tested. In <strong>the</strong> induction<br />

furnace, <strong>the</strong> corrosion of <strong>the</strong> CMA containing<br />

mixes was around 50% lower than <strong>the</strong> CAC<br />

containing reference mixes. The castables<br />

based on CMA 72 resisted both of <strong>the</strong> slags tested<br />

better than <strong>the</strong> CAC containing <strong>for</strong>mulations (Fig.<br />

17). A similar trend can be seen in <strong>the</strong> results from<br />

<strong>the</strong> rotary kiln tests where an improvement in <strong>the</strong><br />

range of 20% was measured between <strong>the</strong> MA1<br />

and MA2 samples, and again between <strong>the</strong> M1 and<br />

M2 <strong>for</strong>mulation samples (Fig. 18). In all cases, <strong>the</strong><br />

iron oxide rich slag B caused more corrosion<br />

than slag A. CMA-based castable M2 showed<br />

<strong>the</strong> highest resistance to wear and <strong>the</strong> lowest<br />

corrosion with <strong>the</strong> typical ladle slag A. Slag<br />

penetration was lowest in <strong>the</strong> MA2 castable,<br />

even with <strong>the</strong> iron rich slag B (Fig. 19).<br />

This improved resistance to slag penetration<br />

could be significant <strong>for</strong> functional pre-cast<br />

products where adhering slag and steel is<br />

often cleaned from <strong>the</strong> working surface by<br />

oxygen lance. This cleaning method creates<br />

very aggressive iron-rich slags which could be<br />

resisted more effectively by CMA containing<br />

<strong>for</strong>mulations.<br />

100 µm<br />

MA1 ((Secarr 71))<br />

MA2 ((CMA 72))<br />

Fig. 16 : Matrix microstructure of model castables<br />

with Secar 71 and CMA 72 (1550°C, 3h).<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 12/13<br />

Corroded cross section area (%)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Slag B<br />

Slag A<br />

MA1 (CAC) MA2 (CMA) M1 (CAC) M2 (CMA)<br />

Fig. 17 : Corrosion of <strong>the</strong> model castables in<br />

a laboratory scale induction furnace with <strong>the</strong><br />

two slag compositions.<br />

Wear (mm)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Slag B<br />

Slag A<br />

MA1 (CAC) MA2 (CMA) M1 (CAC) M2 (CMA)<br />

Fig. 18 : Corrosion of <strong>the</strong> model castables in<br />

laboratory scale rotary kiln with <strong>the</strong> two slag<br />

compositions.<br />

Penetration (µm)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Slag B<br />

Slag A<br />

6 Conclusions<br />

Novel calcium aluminate containing products can<br />

not only provide <strong>the</strong> binder function but also add<br />

to and enhance <strong>the</strong> final refractory per<strong>for</strong>mance<br />

as measured by corrosion resistance.<br />

The fused calcium aluminate aggregate, R50,<br />

displays enhanced bonding properties due<br />

to <strong>the</strong> physical and chemical bonds <strong>for</strong>med<br />

between <strong>the</strong> refractory matrix and <strong>the</strong> reactive<br />

surface of <strong>the</strong> R50 aggregate. When applied<br />

in microsilica-free medium cement castables<br />

<strong>for</strong> aluminium applications, R50 facilitates new<br />

<strong>for</strong>mulation options to improve <strong>the</strong> operating<br />

temperature resistance. Compared with <strong>the</strong><br />

traditional bauxite-based MCC containing barium<br />

sulphate, <strong>the</strong> R50-based <strong>for</strong>mulation without <strong>the</strong><br />

anti-wetting agent displays equivalent infiltration<br />

and corrosion resistance but provides increased<br />

<strong>the</strong>rmal stability and lining integrity up to 1350°C.<br />

CMA, <strong>the</strong> new calcium magnesium aluminate<br />

cement significantly improves <strong>the</strong> corrosion and<br />

penetration resistance of monolithics <strong>for</strong> steel<br />

ladle applications. This is based on <strong>the</strong> innovative<br />

microstructure of CMA which provides microcrystalline<br />

spinel within <strong>the</strong> matrix, minimising<br />

<strong>the</strong> pore size and improving penetration<br />

resistance. Homogeneous distribution of <strong>the</strong><br />

microcrystalline spinel within <strong>the</strong> castable<br />

matrix enhances <strong>the</strong> in-situ life of both spinel<br />

containing and spinel-<strong>for</strong>ming castables.<br />

0<br />

MA1 (CAC) MA2 (CMA) M1 (CAC) M2 (CMA)<br />

Fig. 19 : Slag penetration of model castables<br />

in laboratory rotary kiln.<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-097<br />

Page : 13/13<br />

7 Acknowledgements<br />

We would like to thank <strong>the</strong> Kerneos laboratories<br />

in France and China, <strong>the</strong> Wuhan University<br />

of Science and Technology, China, <strong>the</strong> ITMA<br />

institute, Spain, <strong>the</strong> ICAR institute, France, and<br />

<strong>the</strong> BCMC institute, Belgium, <strong>for</strong> <strong>the</strong> support of<br />

this study.<br />

8 References<br />

[1] C. Wöhrmeyer, C. Parr, H. Fryda, E. Frier:<br />

Stronger bonds <strong>for</strong> monolithic castables<br />

through surface reactive calcium aluminate<br />

aggregates. Aachen congress, Germany,<br />

(2010).<br />

[2] C. Wöhrmeyer, N. Kreuels, C. Parr, T. Bier:<br />

The use of calcium aluminate <strong>solutions</strong> in<br />

<strong>the</strong> aluminium industry. Unitecr congress,<br />

Berlin, (1999).<br />

[3] T. Yamamura et al.: Development of<br />

alumina-spinel castables <strong>for</strong> steel ladles.<br />

Taikabutsu 42, 8 pp 427-434 (1990).<br />

[4] S. Asano et al.: Mechanism of slag<br />

penetration in alumina-spinel castable <strong>for</strong><br />

steel ladle: Taikabutsu 43, 4, pp 193-199<br />

(1991).<br />

[5] H. Naaby, O. Abbildgaard, G. Stallmann, C.<br />

Wöhrmeyer and J. Meidell: Refractory wear<br />

mechanisms and influence on metallurgy,<br />

37 th Int. Colloquium on Refractories,<br />

Aachen, Germany, pp. 198-204 (1994).<br />

[6] K.H. Dott: Monolithic ladle lining at SSAB<br />

Tunnplåt in Luleå, Sweden. RHI Bulletin, 1,<br />

pp 34-37 (2008).<br />

[7] T. Kanatani, Y. Imaiida : Application of an<br />

alumina-spinel castable to <strong>the</strong> teeming ladle<br />

<strong>for</strong> stainless steelmaking. UNITECR’93, pp<br />

1255-1266, (1993).<br />

[8] M. Nakashima, T. Isobe, S. Itose:<br />

Improvement in corrosion of alumina-spinel<br />

castable by adding ultra fine spinel powder.<br />

Taikabutsu, 52,2, pp 65-72, (2000).<br />

[9] T. Bier, C. Parr, C. Revais, M. Vialle : Spinel<br />

<strong>for</strong>ming castables : Physical and chemical<br />

mechanisms during drying. Refractories<br />

Application 4, pp 3-4, (2000).<br />

[10] Y.C. Ko: Development and production of<br />

Al2O3-MgO and AlsO3-spinel castables <strong>for</strong><br />

steel ladles. Mining and Metallurgy, Taipei, 47,<br />

1, pp 132-140.<br />

[11] A. Braniski, T. Jonescu, N. Deica, Patent<br />

(PV no. 145.441, No 1575633), Romania.<br />

[12] Y. Koya, Y. Sasagawa, Denki Kagaku<br />

Kôgyô Ltd., Patent (HEI 8-198649), Japan.<br />

[13] A.H. De Aza, P. Pena, S. De Aza: Ternary<br />

system Al2O3-MgO-CaO: Paper I, J. Am<br />

Ceram Soc., Vol 82 [8], (1999).<br />

[14] D. Feng, et al.: Preparation & application of<br />

aluminate cements containing magnesiaalumina<br />

spinel, J. Naihuo Cailiao 41(1),<br />

(2007).<br />

[15] J.P. Falaschi et al. : Liant du type clinker,<br />

utilisation et procede de fabrication d’un<br />

tel liant. Demand de brevet d’invention,<br />

FR2788762A1, (1999).<br />

[16] G. Assis et al.: Castables with improved<br />

corrosion resistance <strong>for</strong> steel making<br />

applications, Unitecr’11, (2011).<br />

[17] C. Wörhmeyer et al.: New spinel containing<br />

calcium aluminate cement <strong>for</strong> corrosion<br />

resistant castables, Unitecr’11, (2011).<br />

Kerneos<br />

8, Rue des Graviers - 92521 Neuilly sur Seine Cedex, France<br />

Tel. : +33 1 46 37 90 00 - Fax : +33 1 46 37 92 00

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!