17.04.2015 Views

Download the document - SECAR®, solutions for refractories

Download the document - SECAR®, solutions for refractories

Download the document - SECAR®, solutions for refractories

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Technical Paper<br />

Reference : TP-GB-RE-LAF-085<br />

Page : 1/9<br />

NEW STRONGER BONDS FOR MONOLITHIC CASTABLES<br />

THROUGH SURFACE REACTIVE CALCIUM ALUMINATE<br />

AGGREGATES<br />

C. Wöhrmeyer, C. Parr, H. Fryda, E. Frier<br />

Kerneos GmbH, Oberhausen, Germany, www.kerneos.com<br />

Presented at The International Colloqium on Refractories, AACHEN, Germany, September 8 th and 9 th , 2010.<br />

8 rue des Graviers – 92521 Neuilly sur Seine Cedex<br />

Tel : 33 (0) 1 46 37 90 00 Fax : 33 (0) 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-085<br />

Page : 2/9<br />

ABSTRACT<br />

This investigation studies <strong>the</strong> influence of calcium aluminate aggregates on refractory castable<br />

properties in comparison to bauxite and fireclay aggregates. Calcium aluminate aggregates with a<br />

mineralogical composition similar to CAC are able to develop stronger bonding <strong>for</strong>ces with <strong>the</strong><br />

cement than aggregates from <strong>the</strong> alumina-silica system. The chemical affinity between <strong>the</strong> calcium<br />

aluminate aggregates and <strong>the</strong> matrix enables direct chemical linkages via calcium aluminate<br />

hydrate bridges. During <strong>the</strong> de-hydration period and <strong>the</strong> re-crystallisation of anhydrous calcium<br />

aluminate phases, <strong>the</strong> linkages between <strong>the</strong> calcium aluminate matrix and <strong>the</strong> surface of <strong>the</strong><br />

calcium aluminate aggregates remain stronger since <strong>the</strong> aggregates are of a similar mineralogical<br />

nature as <strong>the</strong> anhydrous cement. This effect results in higher strength compared to bauxite even<br />

though <strong>the</strong> density is lower with <strong>the</strong> fused calcium aluminate aggregate R50. For a given furnace<br />

design, 10% less material is needed to fill <strong>the</strong> <strong>for</strong>ms, and better insulation properties and energy<br />

savings are expected. This makes R50 interesting <strong>for</strong> many applications where good heat<br />

containment, abrasion resistance and low liquid penetration in combination with low accretion<br />

build-up are required. In aluminium contact areas, it can even be used with less or without antiwetting<br />

additives which makes it more temperature resistant.<br />

The sintered calcium aluminate aggregate R60 has a higher intrinsic open porosity than R50. It<br />

makes castables even lighter than with fireclay but without negative effects with respect to bending<br />

strength.<br />

Both R50 and R60 are calcium aluminate aggregates which suit applications up to 1350°C-<br />

1400°C, <strong>for</strong> example, in secondary aluminium furnaces, back-up linings in many industrial<br />

furnaces, DRI-production, boilers and re-heating furnaces.<br />

8 rue des Graviers – 92521 Neuilly sur Seine Cedex<br />

Tel : 33 (0) 1 46 37 90 00 Fax : 33 (0) 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-085<br />

Page : 3/9<br />

1 Introduction<br />

In recent years, <strong>the</strong> refractory raw material<br />

situation has become a critical and even political<br />

subject mainly driven by <strong>the</strong> high demand <strong>for</strong><br />

refractory aggregates as consequence of <strong>the</strong><br />

booming steel industry in China. In 2009, China<br />

counted <strong>for</strong> 47% of <strong>the</strong> global crude steel<br />

production (568 Mio t out of global steel output of<br />

1220 Mio t) vs. only 15% just 10 years back when<br />

China produced only 127 Mio t of <strong>the</strong> total of 848<br />

Mio t [1]. On <strong>the</strong> o<strong>the</strong>r hand, China is one of <strong>the</strong><br />

very few countries with very important geological<br />

reserves <strong>for</strong> refractory grade bauxite [2]. Only 10<br />

years ago, a large amount of this bauxite was<br />

available <strong>for</strong> <strong>the</strong> global refractory industry at low<br />

prices. But now, China needs a large portion of this<br />

bauxite <strong>for</strong> its own aluminium and steel production.<br />

China’s steel production has more than quadrupled<br />

during <strong>the</strong> last 10 years. This situation has even<br />

become a political issue. The Commission of <strong>the</strong><br />

European Communities launched a position paper<br />

in 2008 with <strong>the</strong> title “The raw materials initiative –<br />

Meeting our critical needs <strong>for</strong> growth and jobs in<br />

Europe” [3]. However, political processes need<br />

<strong>the</strong>ir time and can only try to improve <strong>the</strong> trade<br />

rules and stimulate research in new raw materials.<br />

The European refractory and raw materials<br />

industries need to develop strategies to adjust to<br />

<strong>the</strong> dramatically changed global situation and need<br />

to turn it into new opportunities. An example <strong>for</strong> <strong>the</strong><br />

use of new calcium aluminate aggregate based<br />

products was given by [4] which proposed calcium<br />

aluminate aggregates <strong>for</strong> tin bath bottom bricks to<br />

overcome problems with alkalis when aggregates<br />

from alumina-silica systems are used. O<strong>the</strong>r<br />

publications discussed <strong>the</strong> application of calcium<br />

aluminate aggregates in bricks [5] and castables<br />

[6, 7] <strong>for</strong> non-ferrous and o<strong>the</strong>r industries. This<br />

present paper will specifically study <strong>the</strong> calcium<br />

aluminate aggregates and <strong>the</strong>ir surface reaction<br />

with <strong>the</strong> binder phase. When calcium aluminate<br />

aggregates consist of hydraulic phases like CA<br />

and CA2, <strong>the</strong>y can interact chemically during<br />

hydration and de-hydration with <strong>the</strong> calcium<br />

aluminate binder, unlike those calcium aluminate<br />

aggregates which consist of CA6, corundum or<br />

mullite. Specifically, <strong>the</strong> effect of this stronger bond<br />

on <strong>the</strong> physical properties of castables will be<br />

investigated in this paper, in comparison to bauxite<br />

and fireclay in similar <strong>for</strong>mulations.<br />

Calcium Aluminate Aggregates<br />

Calcium aluminate cement is well-known <strong>for</strong> many<br />

years as <strong>the</strong> binder <strong>for</strong> refractory castables. Also,<br />

calcium aluminate aggregates are known from<br />

peri-refractory applications (ALAG ® ) and from<br />

fluxing applications <strong>for</strong> metallurgical slags (LDSF ® ).<br />

Both are fused materials and start to melt below<br />

1400°C, ALAG ® due to its relatively high iron oxide<br />

content combined in different aluminate phases<br />

and LDSF ® due to its high C12A7 mineral phase<br />

content (Tab. 1, 2). ALAG ® is, <strong>for</strong> example, used in<br />

<strong>the</strong> back-up zones of blast furnace cast houses<br />

and <strong>the</strong> blast furnace slag granulation station.<br />

O<strong>the</strong>r fields of application are <strong>the</strong> ramps in coke<br />

oven plants and industrial floors in <strong>the</strong> aluminium<br />

industry where high abrasion resistance is<br />

required. A low iron oxide, fused calcium aluminate<br />

aggregate (R50) <strong>for</strong> castables has been presented<br />

by [6]. Compared to ALAG® <strong>the</strong> R50 product<br />

contains more Al 2 O 3 . This results, unlike what is<br />

stated in [8], in a very low C12A7 phase content<br />

(


Technical Paper<br />

Reference : TP-GB-RE-LAF-085<br />

Page : 4/9<br />

Tab.1: Chemistry and mineralogy of aggregates<br />

Calcium aluminate Fireclay Bauxite<br />

R60 R50 ALAG ® LDSF ® FC B<br />

Sintered Fused Fused Fused Sintered Sintered<br />

Chemistry<br />

Al 2O 3 62 52,5 39,5 41 45,6 89,5<br />

SiO 2 6 5,5 4,5 3,5 51,5 4<br />

CaO 26 37 37,5 50,5 0 0,1<br />

Fe 2O 3 2,5 2 15,5 2 0,9 1,5<br />

TiO 2 2,5 2 2 2 1,7 3,7<br />

Mineralogy (A= Al 2O 3, S=SiO 2, C=CaO, F=Fe 2O 3)<br />

A - - - - - XXX<br />

A3S2<br />

S<br />

CA2<br />

CA<br />

C12A7<br />

C3A<br />

C2S<br />

C2AS<br />

C4AF<br />

- - - - XXX X<br />

- - - - XX X<br />

XXX - - - - -<br />

X XXX XXX - - -<br />

- - X XXX - -<br />

- - - X - -<br />

- - - X - -<br />

XX XX X - - -<br />

- - X - - -<br />

XXX= main phase, XX=secondary phase,<br />

X= minor phase, - = below 1%<br />

2 Test Methods<br />

Classical castable test methods such as vibration<br />

flow, porosity by water immersion and strength<br />

measurements have been used to study <strong>the</strong> basic<br />

castable properties. Quantitative chemical and<br />

mineralogical analyses have been conducted using<br />

XRF and XRD methods. Model regular castables<br />

(Tab. 2, 3) and deflocculated medium cement<br />

castables (MCC) have been investigated (Tab. 4).<br />

Tab. 2: Model regular castable recipes CC-FC and<br />

CC-R60<br />

mm CC-FC CC-R60<br />

R60 3-6 % - 28<br />

R60 1-3 % - 25<br />

R60 0-1 % - 22<br />

Fireclay 3-6 % 28 -<br />

Fireclay 1-3 % 25 -<br />

Fireclay 0-1 % 22 -<br />

Secar 51 % 25 25<br />

H 2O % 8,5 10,5<br />

Working time min 240 220<br />

3 Test Results<br />

Calcium aluminate aggregate (R60) in regular<br />

castable<br />

The R60 aggregate is a sintered calcium aluminate<br />

with about 30% open porosity, higher than <strong>for</strong><br />

bauxite or dense fireclay aggregates. Fig. 1<br />

compares <strong>the</strong> rheology of <strong>the</strong> fireclay-based<br />

castable CC-FC with <strong>the</strong> R60-based CC-R60. Both<br />

need <strong>the</strong> same amount of water to reach identical<br />

initial flow properties. While fluidity under vibration<br />

slightly increases during <strong>the</strong> first 30 minutes and<br />

<strong>the</strong>n stays almost stable when fireclay is used, <strong>the</strong><br />

flow decays in <strong>the</strong> case of CC-R60 due to <strong>the</strong><br />

higher pore volume into which <strong>the</strong> water can<br />

migrate over time. Then, less water is available to<br />

fluidise <strong>the</strong> cement matrix and <strong>the</strong> castable starts<br />

to stiffen. It is assumed that <strong>the</strong> drop in flow is not<br />

caused by <strong>the</strong> mineralogy of R60 since it contains<br />

mineral phases which have low hydraulic<br />

properties at 20°C (Tab. 1). The observed<br />

stiffening effect with R60 could be of interest <strong>for</strong><br />

gunning mixes but has not been fur<strong>the</strong>r studied<br />

here.<br />

After firing at 800, 1100 and 1350°C, <strong>the</strong> bulk<br />

density of CC-R60 is about 5% lower than CC-FC<br />

(Fig. 2) and <strong>the</strong> open porosity is almost 40% higher<br />

(Fig. 3). With classical aggregates from <strong>the</strong><br />

8 rue des Graviers – 92521 Neuilly sur Seine Cedex<br />

Tel : 33 (0) 1 46 37 90 00 Fax : 33 (0) 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-085<br />

Page : 5/9<br />

alumina-silica system, one would expect a drop in<br />

strength [9]. But in this case, despite <strong>the</strong> lower bulk<br />

density and higher porosity, flexural strength is <strong>the</strong><br />

same as CC-FC (Fig. 4).<br />

Vibration flow (mm)<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

CC-FC<br />

0 30 60 90<br />

Time (min)<br />

CC-R60<br />

Fig. 1: Vibration flow of regular castables CC-FC and<br />

CC-R60 at 20°C<br />

Bulk density (g/cm3)<br />

2,5<br />

2,3<br />

2,1<br />

1,9<br />

1,7<br />

1,5<br />

CC-FC<br />

CC-R60<br />

800 1100 1350<br />

Temperature (°C)<br />

Fig. 2: Bulk density of regular castables CC-FC and<br />

CC-R60<br />

Open porosity (Vol.%)<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

CC-FC<br />

CC-R60<br />

800 1100 1350<br />

Temperature (°C)<br />

Fig. 3: App. porosity of regular castables CC-FC and<br />

CC-R60<br />

CMOR (MPa)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

CC-FC<br />

CC-R60<br />

800 1100 1350<br />

Temperature (°C)<br />

Fig. 4: CMOR of regular castables CC-FC and CC-<br />

R60<br />

R50 in regular castables<br />

The fused and dense R50-aggregate has been<br />

compared with Chinese bauxite aggregate in a<br />

model recipe as shown in Tab. 3. As can be seen<br />

in Fig. 5, both casables exhibit a very similar flow<br />

profile with <strong>the</strong> same amount of mixing water. Due<br />

to <strong>the</strong> dense R50-grains, no flow decay has been<br />

observed. The dense grains, toge<strong>the</strong>r with <strong>the</strong><br />

mineralogy of R50, with its high calcium<br />

monoaluminate and low C12A7-content (


Technical Paper<br />

Reference : TP-GB-RE-LAF-085<br />

Page : 6/9<br />

Tab. 3: Model regular castable recipes CC-R50 and<br />

CC-BX<br />

Vibration flow (mm)<br />

mm CC-R50 CC-BX<br />

R50 3-5 % 31 -<br />

R50 1-3 % 20 -<br />

R50 0-1 % 29 -<br />

Bauxite 3-6 % - 31<br />

Bauxite 1-3 % - 20<br />

Bauxite 0-1 % - 29<br />

Secar 51 % 20 20<br />

H 2O % 9.7 9.7<br />

Working time min 240 240<br />

230<br />

220<br />

210<br />

200<br />

190<br />

180<br />

170<br />

160<br />

CC-R50<br />

T0 T30 T60 T90 T120<br />

Time (min)<br />

CC-BX<br />

Fig. 5: Vibration flow of regular castables CC-R50<br />

and CC-BX at 20°C<br />

Bulk density (g/cm3)<br />

2,8<br />

2,7<br />

2,6<br />

2,5<br />

2,4<br />

2,3<br />

2,2<br />

CC-R50<br />

CC-BX<br />

CMOR (MPa)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

CC-R50<br />

CC-BX<br />

20 (6 h) 20 (24h) 110 800 1200<br />

Temperature (°C)<br />

Fig. 7: CMOR of regular castables CC-R50 and CC-<br />

BX<br />

delta L (%)<br />

1<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

CC-R50<br />

CC-BX<br />

0<br />

0 200 400 600 800 1000 1200 1400<br />

Temperature (°C)<br />

Fig. 8: Refractoriness under load (0.2 MPa) of regular<br />

castables CC-R50 and CC-BX<br />

R50 in deflocculated medium cement castables<br />

(MCC)<br />

The effect of R50 in a medium cement containing<br />

model recipe (MCC) with different amounts of<br />

barium sulphate (as an anti-wetting material <strong>for</strong><br />

aluminium contact areas) is shown in Tab. 4.<br />

Whilst <strong>the</strong> barium sulphate is absolutely necessary<br />

to get <strong>the</strong> required anti-wetting effect <strong>for</strong> <strong>the</strong><br />

bauxite mix, <strong>the</strong> amount can be reduced or even<br />

completely eliminated when R50 is used [6].<br />

2,1<br />

110 800 1200<br />

Temperature (°C)<br />

Fig. 6: Bulk density of regular castables CC-R50 and<br />

CC-BX<br />

8 rue des Graviers – 92521 Neuilly sur Seine Cedex<br />

Tel : 33 (0) 1 46 37 90 00 Fax : 33 (0) 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-085<br />

Page : 7/9<br />

Tab. 4: Model MCC recipes with bauxite (B1-B3) and<br />

R50 (R1-R3) with different barium sulphate contents.<br />

Bauxite<br />

R50<br />

B1 B2 B3 R1 R2 R3<br />

R50 3-5 mm % - 33<br />

R50 1-3 mm % - 12<br />

R50 0-1 mm % - 20<br />

SECAR ® 51 % - - 5 5<br />

Bauxite 3-6 mm % 21 -<br />

Bauxite 1-3 mm % 22 -<br />

Bauxite 0-1 mm % 22 -<br />

Bauxite 0-0.09 % - 5 5 -<br />

Calc. Alumina % - - 5 - - 5<br />

BaSO 4 % 10 5 - 10 5 -<br />

React. Alumina % 10 10<br />

SECAR ® 71 % 15 15<br />

PP fibres % 0.05 0.05<br />

Peramin® AL 200 % 0.15 0.12<br />

H 2O % 5 4.5<br />

containing mix B1 with 10% BaSO 4 (which can be<br />

seen as a reference <strong>for</strong> this type of application). In<br />

<strong>the</strong> case of R50, less barium sulphate can be used<br />

(R2, R3) which has a positive effect in that <strong>the</strong><br />

castable can be heated to higher temperatures<br />

without drastic volume changes (caused by <strong>the</strong><br />

disintegration of <strong>the</strong> barium sulphate as in case of<br />

B1). Even R50 with 10% barium sulphate (mix R1)<br />

shows only moderate volume expansion at<br />

1400°C, whilst <strong>the</strong> mix with bauxite (mix B1)<br />

expands strongly. Heated to 1400°C, <strong>the</strong> MCC with<br />

R50 keeps a significant lower porosity level than<br />

<strong>the</strong> bauxite based mixes (Fig. 13). It offers an<br />

additional safety measure should unexpectedly<br />

high temperatures occur in <strong>the</strong> course of<br />

aluminium production.<br />

Vibration flow (mm)<br />

230<br />

220<br />

210<br />

200<br />

190<br />

180<br />

170<br />

160<br />

150<br />

0 30 60<br />

Time (min)<br />

Fig. 9: Flow of MCC with R50 (R1-R3) and bauxite<br />

(B1-B3)<br />

R1<br />

R3<br />

R2<br />

B1<br />

B3<br />

B2<br />

A microsilica-free MCC has been chosen to<br />

minimise <strong>the</strong> potential reactions between <strong>the</strong><br />

aluminium melt and <strong>the</strong> castable matrix. The<br />

polycarboxylate e<strong>the</strong>r-based deflocculant<br />

(Peramin® AL 200) fluidifies <strong>the</strong> mixes very<br />

efficiently with 5% water in case of bauxite and<br />

only 4.5% in case of R50. With R50, <strong>the</strong> dosage of<br />

<strong>the</strong> superplasticizer could even be reduced.<br />

Despite <strong>the</strong> lower water addition and lower<br />

deflocculant content, better flow properties have<br />

been achieved <strong>for</strong> all R50 containing MCC’s (R1-<br />

R3) as can be seen in Fig. 9. Here, open porosity<br />

after heating at 800 and 1200°C, <strong>the</strong> critical<br />

temperature range <strong>for</strong> <strong>the</strong> aluminium application,<br />

is, in all cases, significantly lower with R50 despite<br />

<strong>the</strong> lower bulk density (Fig. 10, 11). The cold<br />

crushing strength is, independently of <strong>the</strong> barium<br />

sulphate content, higher than with <strong>the</strong> bauxite<br />

App. Porosity (Vol.%)<br />

21<br />

19<br />

17<br />

15<br />

13<br />

11<br />

9<br />

7<br />

5<br />

800°C 1200°C<br />

B1 B2 B3 R1 R2 R3<br />

Castable<br />

Fig. 10: App. Porosity of MCC with R50 (R1-R3) and<br />

bauxite (B1-B3)<br />

8 rue des Graviers – 92521 Neuilly sur Seine Cedex<br />

Tel : 33 (0) 1 46 37 90 00 Fax : 33 (0) 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-085<br />

Page : 8/9<br />

Bulk density (Vol.%)<br />

3<br />

2,95<br />

2,9<br />

2,85<br />

2,8<br />

2,75<br />

2,7<br />

2,65<br />

2,6<br />

2,55<br />

2,5<br />

800°C 1200°C<br />

B1 B2 B3 R1 R2 R3<br />

Castable<br />

Fig. 11: Bulk density of MCC with R50 (R1-R3) and<br />

bauxite (B1-B3)<br />

CCS (MPa)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

800°C 1200°C<br />

B1 B2 B3 R1 R2 R3<br />

Castable<br />

Fig. 12: Cold crushing strength of MCC with R50 (R1-<br />

R3) and bauxite (B1-B3)<br />

App. Porosity (Vol. %)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

B3<br />

R3<br />

R2<br />

B2<br />

R1<br />

0<br />

-2,00 -1,00 0,00 1,00 2,00 3,00 4,00 5,00<br />

Permanent linear change 110°C --> 1400°C (%)<br />

Fig. 13: Permanent linear change and open porosity<br />

after firing at 1400°C of MCC with R50 (R1-R3) and<br />

bauxite (B1-B3)<br />

B1<br />

4 Summary<br />

Calcium aluminate aggregates show very particular<br />

bonding properties due to <strong>the</strong>ir surface reaction<br />

with <strong>the</strong> cement. Despite <strong>the</strong> lower density and<br />

higher porosity of <strong>the</strong> sintered R60 aggregate<br />

compared to fireclay, equivalent strengths have<br />

been found with a regular castable. The fused R50<br />

aggregate has very little open porosity but reduced<br />

density when compared to bauxite due to its<br />

calcium aluminate nature. In addition, strength is<br />

even higher with R50 despite <strong>the</strong> lower density,<br />

due to <strong>the</strong> better bonding between <strong>the</strong> matrix and<br />

calcium aluminate aggregate. Thus a given<br />

furnace lining design could be cast with less<br />

material without sacrificing <strong>the</strong> strength and/or<br />

abrasion resistance. It is expected that <strong>the</strong> <strong>the</strong>rmal<br />

heat containment will also be improved, which<br />

would, in turn, save energy and costs. R50 used in<br />

microsilica-free medium cement castables <strong>for</strong><br />

aluminium applications offers new ways to<br />

<strong>for</strong>mulate <strong>the</strong> castable with better temperature<br />

resistance. R50 reduces <strong>the</strong> pore structure of <strong>the</strong><br />

castable, with very low open porosity recorded<br />

even after firing at 1400°C.<br />

Barium sulphate starts to decompose at 1200°C<br />

which leads to a massive volume expansion in<br />

bauxite containing castables at 1400°C. Volume<br />

stability is much better when R50 is used, even in<br />

combination with barium sulphate. However, due<br />

to <strong>the</strong> improved matrix/aggregate bonding<br />

properties and <strong>the</strong> low wettability of calcium<br />

aluminates with aluminium, <strong>the</strong> barium sulphate<br />

content can be reduced when R50 is used. This<br />

fur<strong>the</strong>r improves <strong>the</strong> temperature stability.<br />

Both R50 and R60 calcium aluminate aggregates<br />

can be used up to 1350°C to 1400°C depending on<br />

<strong>the</strong> castable type and <strong>the</strong> calcium aluminate<br />

cement and filler used.<br />

8 rue des Graviers – 92521 Neuilly sur Seine Cedex<br />

Tel : 33 (0) 1 46 37 90 00 Fax : 33 (0) 1 46 37 92 00


Technical Paper<br />

Reference : TP-GB-RE-LAF-085<br />

Page : 9/9<br />

5 References<br />

[1] World Steel Association (www.worldsteel.org)<br />

[2] G. Bardossy, P.J. Combes: Karst bauxites:<br />

Interfingering of deposition and<br />

paleowea<strong>the</strong>ring. Spec. Publication No. 27 of<br />

Int. Ass. Sedimentologists, p. 189-206, 1999.<br />

[3] Commission of <strong>the</strong> European Communities.<br />

Communication from <strong>the</strong> commission to <strong>the</strong><br />

European parliament and council: The raw<br />

materials initiative – meeting our critical<br />

needs <strong>for</strong> growth and jobs in Europe.<br />

Brussels, COM (2008)699, SEC(2008)2741,<br />

2008.<br />

[4] Patent US005420087A (Didier-Werke AG),<br />

1995.<br />

[5] K. Santowski, K. Gamweger, B.<br />

Schmalenbach, T. Weichert: Ceramic bonded<br />

<strong>refractories</strong> based on calcium aluminate<br />

minerals <strong>for</strong> <strong>the</strong> use in glass, aluminium and<br />

lime furnaces. Unitecr congress, p. 386-388,<br />

Dresden, 2007.<br />

[6] C. Wöhrmeyer, N.Kreuels, C.Parr, M.Vialle:<br />

Calcium aluminate: Zemente und neue<br />

Zuschlagstoffe für den Einsatz in der<br />

Aluminiumindustrie. 41st Int. Colloquium on<br />

Refractories, p. 80-86, Aachen, 1998.<br />

[7] C. Wöhrmeyer, N.Kreuels, C.Parr, T.Bier: The<br />

use of calcium aluminate <strong>solutions</strong> in <strong>the</strong><br />

aluminium industry. Unitecr congress, Berlin,<br />

1999.<br />

[8] Patent WO2005 021434 A2 (MCGOWAN),<br />

2005.<br />

[9] G. Routschka: Feuerfeste Werkstoffe, Vulkan<br />

Verlag, 1996.<br />

8 rue des Graviers – 92521 Neuilly sur Seine Cedex<br />

Tel : 33 (0) 1 46 37 90 00 Fax : 33 (0) 1 46 37 92 00

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!