21.04.2015 Views

Giant Dipole Resonance – tool for hot nuclei studies Giant Dipole ...

Giant Dipole Resonance – tool for hot nuclei studies Giant Dipole ...

Giant Dipole Resonance – tool for hot nuclei studies Giant Dipole ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Giant</strong> <strong>Dipole</strong> <strong>Resonance</strong><br />

– <strong>tool</strong> <strong>for</strong> <strong>hot</strong> <strong>nuclei</strong><br />

<strong>studies</strong><br />

Maria Kmiecik<br />

Instytut Fizyki Jądrowej PAN, Kraków<br />

International Workshop on Acceleration<br />

and Applications of Heavy Ions,<br />

Warszawa, 27.02 – 12.03.2011<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


The properties of <strong>Giant</strong> <strong>Dipole</strong> <strong>Resonance</strong>s<br />

GDR as a <strong>tool</strong> <strong>for</strong> excited <strong>nuclei</strong> <strong>studies</strong><br />

The results of the measurements:<br />

<br />

<br />

<br />

GDR width as a function of spin and temperature<br />

of nucleus<br />

The exotic shapes investigation<br />

Isospin mixing<br />

Perspectives<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


<strong>Giant</strong> Nuclear <strong>Resonance</strong>s<br />

Collective excitations of atomic <strong>nuclei</strong><br />

consisting in oscillations of nucleons.<br />

Called giant resonances (giant vibrations) because<br />

of large cross sections, close to maximum allowed<br />

<strong>for</strong> all nucleons participating in excitation<br />

At the microscopic level giant resonances can<br />

be described in terms of correlated particle-hole<br />

excitations<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


<strong>Giant</strong> Nuclear <strong>Resonance</strong>s<br />

Usually classified in terms of three characteristic quantum numbers:<br />

L, S, and T, where L - the orbital angular momentum,<br />

S - the (intrinsic) spin,<br />

T - the isospin carried by the resonance oscillation.<br />

∆L=0<br />

∆L=1<br />

∆L=2<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Electric <strong>Giant</strong> <strong>Resonance</strong>s<br />

Isoscalar<br />

Isovector<br />

Monopole<br />

1977<br />

1983<br />

<strong>Dipole</strong><br />

1996<br />

1948<br />

Quadrupole<br />

1971<br />

1980<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


<strong>Giant</strong> <strong>Dipole</strong> <strong>Resonance</strong><br />

The giant electric dipole isovector resonance –<br />

giant dipole resonance (GDR) is the oldest and best<br />

known of the nuclear giant resonances.<br />

Observed <strong>for</strong> the first time in 1947 and 1948<br />

by Baldwin and Klaiber in (γ,fission) and (γ,n)<br />

reactions<br />

Measured using p<strong>hot</strong>oabsorbtion<br />

reactions <strong>for</strong> different <strong>nuclei</strong><br />

from 3 He to 238 U<br />

(Berman and Fultz 1975)<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Ground state GDR<br />

σ(E γ )<br />

P<strong>hot</strong>oabsorbtion cross section –<br />

GDR strength<br />

function:<br />

Γ<br />

A<br />

E GDR<br />

Strength σ 0 =1 (S GDR )<br />

(maximum corresponding to 100% of nucleons<br />

participating in oscillations<br />

calculated from Energy Weighted Sum Rule –<br />

giant vibration, large collectivity)<br />

A<br />

Energy – centroid (E GDR ):<br />

energy of oscillations ~ 1/R<br />

Width (Γ GDR )<br />

Γ ~ -1/t<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


GDR lineshape – de<strong>for</strong>med nucleus<br />

superposition<br />

of two Lorentzian function<br />

σ ( E<br />

γ<br />

σ ( E<br />

k<br />

) = σ ( E<br />

γ<br />

) =<br />

1<br />

( E<br />

2<br />

γ<br />

γ<br />

) + σ ( E<br />

σ Γ<br />

− E<br />

2<br />

2<br />

0 k<br />

2 2<br />

k<br />

)<br />

E<br />

2<br />

γ<br />

γ<br />

+ Γ<br />

Hill-Wheeler parameterization<br />

E<br />

E<br />

k<br />

= E<br />

GDR<br />

GDR<br />

R<br />

R<br />

≈ 79A<br />

k<br />

1<br />

−<br />

3<br />

= E<br />

GDR<br />

),<br />

2<br />

k<br />

E<br />

⎡<br />

exp⎢−<br />

⎣<br />

2<br />

γ<br />

5 2πk<br />

⎤<br />

β cos( γ + ) ⎥,<br />

4π<br />

3 ⎦<br />

quadrupole de<strong>for</strong>mation parameter β<br />

β =<br />

E<br />

4π<br />

E<br />

5 E<br />

0.5<br />

E<br />

2<br />

1<br />

2<br />

1<br />

−1<br />

+ 0.87<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


GDR in excited <strong>nuclei</strong><br />

GDR can be built on excited state of nucleus - Brink hypothesis, , 1955<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Fusion – evaporation reaction.<br />

Excerpt from the © Jerzy Grebosz movie „Mysterious World of Atomic Nuclei”<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Decay of compound nucleus<br />

E * [MeV]<br />

p<br />

p<br />

90<br />

t<br />

t<br />

jądro złożone<br />

80<br />

σ(L)<br />

70<br />

n<br />

60<br />

GDR γ<br />

Statistical decay<br />

50<br />

n<br />

α<br />

T ∝ E<br />

* − E yrast<br />

40<br />

n GDR γ<br />

n<br />

30<br />

n<br />

20<br />

E yrast<br />

10<br />

E yrast<br />

+ B n<br />

0<br />

0 10 20 30 40 50 60 70<br />

n<br />

L [h]<br />

p<br />

GDR γ<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Energy spectrum of emitted γ rays<br />

37<br />

Ar<br />

1<br />

2<br />

3<br />

4<br />

Continous spectrum<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Extraction of GDR parameters<br />

10 2<br />

σ<br />

( E )<br />

γ<br />

=<br />

2 2<br />

2 2<br />

( E − E ) + Γ E<br />

γ<br />

SΓE<br />

GDR<br />

γ<br />

2<br />

γ<br />

0.10<br />

Zliczenia [a. u.]<br />

Y γ<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

CASCADE<br />

detector’s response<br />

function<br />

0.06<br />

0.02<br />

Γ<br />

6 10 14 18 22<br />

E [MeV]<br />

γ<br />

10 -4<br />

χ 2 - minimization<br />

10 -5<br />

5 10 15 20 25<br />

E γ [MeV]<br />

0.10<br />

σ<br />

( E )<br />

de<strong>for</strong>mation parameter<br />

of nucleus<br />

γ<br />

=<br />

1<br />

1<br />

2 2<br />

2 2 2 2<br />

2 2<br />

( E − E ) + Γ E ( E − E ) + Γ E<br />

γ<br />

S Γ E<br />

GDR 1<br />

2<br />

γ<br />

1<br />

γ<br />

+<br />

γ<br />

S<br />

2<br />

Γ<br />

2<br />

GDR 2<br />

E<br />

2<br />

γ<br />

2<br />

γ<br />

0.06<br />

0.02<br />

E − E<br />

β ≈ 106 .<br />

2 1<br />

6 10 14 18 22<br />

E GDR E [MeV] γ<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Thermal shape fluctuations<br />

probability of existing a nucleus<br />

at given shape (described by β and γ)<br />

⎡<br />

P ( T , ϖ ; β , γ ) ∝ exp −<br />

⎣⎢<br />

F ( T , ϖ ; β , γ ) ⎤<br />

T ⎦⎥<br />

Shapes ensemble<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Thermal shape fluctuations<br />

P( β , γ )<br />

∝<br />

e<br />

− F ( β , γ )<br />

T<br />

β eq<br />

0.4<br />

0.3<br />

106-110 Sn T~1.8 MeV<br />

β eq<br />

∆β<br />

0.2<br />

0.1<br />

∆β<br />

0.0<br />

0 10 20 30 40 50 60<br />

I [h]<br />

β eq<br />

eq<br />

~ I<br />

∆β ~ T<br />

β equilibrium<br />

(the<br />

most probable)<br />

f<br />

GDR strength function (average – measured):<br />

av<br />

GDR<br />

∫∫<br />

−F<br />

( T , I ; β , γ )/ T ( I ; β , γ ) 4<br />

( T,<br />

I ) = f ( β,<br />

γ , ω)<br />

e<br />

β sin(3γ<br />

) dβdγ<br />

GDR<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


HECTOR (High Energy gamma-ray deteCTOR) array:<br />

(Copenhagen)-Milano-Kraków collaboration since 1989<br />

HECTOR - 8 large BaF 2 detectors<br />

high energy<br />

γ-ray spectra<br />

10 2<br />

10 1<br />

10 0<br />

Zliczenia<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

5 10 15 20 25<br />

E γ [MeV]<br />

neutron discrimination using time of flight<br />

time<br />

time<br />

HELENA multiplicity filter (38 small BaF 2 )<br />

counts<br />

sum energy<br />

fold (measured<br />

multiplicity)<br />

σ [mb]<br />

22<br />

18<br />

14<br />

10<br />

E lab<br />

= 170 MeV<br />

E lab<br />

= 165 MeV<br />

E lab<br />

= 160 MeV<br />

fold 5-30<br />

fold 8-30<br />

channel<br />

spin distributions<br />

6<br />

2<br />

fold 5-7<br />

0 10 20 30 40 50 60<br />

l [h]<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Measurements<br />

EB IV + HECTOR + EUCLIDES exp.<br />

HECTOR + NORDBALL<br />

<br />

<br />

<br />

<br />

HECTOR – GDR<br />

EUROBALL,<br />

NORDBALL, PEX –<br />

discrete transitions<br />

multiplicity filter<br />

(spin) HELENA<br />

light charged<br />

particles<br />

(EUCLIDES,<br />

GARFIELD)<br />

HECTOR + PEX<br />

GARFIELD<br />

HECTOR<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


The dependence<br />

of the GDR width<br />

on angular momentum<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


GDR width Γ and de<strong>for</strong>mation parameter β<br />

<strong>for</strong> 147 Eu<br />

M. Kmiecik et al. Nucl. Phys. A674 (2000) 29<br />

Γ [MeV]<br />

10.5<br />

10.0<br />

9.5<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

0.4<br />

0.3<br />

170 MeV, 165 MeV, 160 MeV<br />

Γ (T=1.2)<br />

Γ (T=1.4)<br />

Γ global (T=1.3)<br />

β av (T=1.2)<br />

β av (T=1.4)<br />

β<br />

av<br />

∆β<br />

=<br />

F<br />

D α −<br />

−1<br />

[ ] β<br />

T<br />

= Z ∫ 3<br />

e , Z =<br />

2<br />

I<br />

β<br />

2<br />

<strong>for</strong> ∆β<br />

> β<br />

<strong>for</strong> β<br />

eq<br />

eq<br />

> ∆β<br />

− β<br />

β<br />

β<br />

2<br />

av<br />

av<br />

av<br />

∫<br />

slightly ↑<br />

D[ α]<br />

3<br />

e<br />

2<br />

I<br />

<strong>for</strong><br />

I<br />

↑ strongly with<br />

↑<br />

I<br />

F<br />

−<br />

T<br />

↑<br />

β<br />

0.2<br />

0.1<br />

β eq (T=1.2)<br />

β eq (T=1.4)<br />

0.0<br />

0 10 20 30 40 50 60<br />

< I > [h]<br />

The GDR width increases<br />

due to de<strong>for</strong>mation increase<br />

and thermal shape fluctuations<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Isomer gated GDR 96 MeV 18 O + 198 Pt → 216 Rn *<br />

M. Kmiecik et al. PR C70, 064317 (2005)<br />

E * =56MeV, L max =39h<br />

Γ [MeV]<br />

β<br />

9<br />

8<br />

7<br />

6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

exp. fold gated<br />

exp. isomer gated<br />

calc. Kusn.<br />

calc. LSD<br />

β eq<br />

<br />

<br />

0 10 20 30 40 50<br />

I [h]<br />

fission<br />

no significant increase<br />

of GDR width observed<br />

small de<strong>for</strong>mation<br />

up to the fission limit<br />

gating on isomers –<br />

choosing <strong>nuclei</strong><br />

at highest spins<br />

surviving fission<br />

0.0<br />

0.0<br />

0.5<br />

0.5<br />

1.0<br />

1.0<br />

β 2<br />

cos(γ+30 o )<br />

1.5 -0.5 0.0 0.5 0.0 0.5<br />

1.5 -0.5 0.0 0.5 0.0 0.5<br />

1.0<br />

1.0<br />

1062<br />

63/2 - 201 ns<br />

687<br />

769<br />

1299<br />

43/2 - 854<br />

14 ns<br />

211 Rn<br />

1.5 -0.5 0.0 0.5 0.0 0.5<br />

1.5 -0.5 0.0 0.5 0.0 0.5<br />

30 +<br />

I = 10 I = 16 I = 22<br />

β eq<br />

I = 28 I = 34<br />

<br />

22 + 212 Rn<br />

924<br />

1117<br />

701<br />

736<br />

154 ns<br />

968<br />

109 ns<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011<br />

1.0<br />

1.0<br />

1.5 -0.5 0.0 0.5<br />

I = 40<br />

1.5 -0.5 0.0 0.5<br />

β 2<br />

sin(γ+30 o )


The GDR width at finite temperature<br />

Γ [MeV]<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

147 Eu T=1.3<br />

106<br />

Sn T=1.8<br />

176<br />

W T=1.5<br />

194<br />

Hg T=1.3<br />

216<br />

Rn T=0.75<br />

0 10 20 30 40 50 60<br />

< I > [h]<br />

Ι = I⋅ϖ<br />

I ∝<br />

A 5/<br />

3<br />

larger de<strong>for</strong>mation increase<br />

(at the same spin)<br />

<strong>for</strong> <strong>nuclei</strong> of smaller mass<br />

effect of rotational frequency<br />

M.Mattiuzzi et al. Nucl. Phys. A612 (1997) 262<br />

M. Kmiecik et al. Nucl. Phys. A674 (2000) 29<br />

M. Kmiecik et al., Phys. Rev. C70, 064317 (2005)<br />

F. Camera et al. Phys. Rev. C60 (1999) 014306<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


The GDR width Γ behaviour<br />

as a function of <strong>nuclei</strong><br />

temperature<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


The temperature evolution of GDR width<br />

Γ GDR saturation?<br />

G. Enders et al., PRL 69 (1992) 249<br />

A. Bracco et al., PRL 62 (1989) 2080<br />

T=2.5<br />

T=3.5<br />

Possible explanations:<br />

- saturation of the transferred<br />

angular momentum<br />

- preequilibrium emission<br />

P.M.Kelly et al. PRL82 (1999) 3404<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


The temperature evolution of GDR width<br />

Calculations <strong>for</strong> 132 Ce<br />

Shape probability<br />

distribution<br />

Effective GDR width<br />

increases with T<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


The GARFIELD+HECTOR experiment<br />

(γ rays and charged particles measured)<br />

132<br />

Ce<br />

O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006)<br />

The GDR width increases with temperature (up to 4 MeV).<br />

The results are in agreement with calculations based on thermal<br />

shape fluctuation model including compound nucleus life time.<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Jacobi shape transition<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Theoretical shapes of rotating gravitating body<br />

Colin MacLaurin (1742) showed that, as the angular momentum increases, the spherical body (Earth)<br />

will become more flat (oblate). It changes it’s s shape to an ellipsoid with two equal long axes,<br />

rotating around the short axis.<br />

McLaurin McLaurin shapes: spherical → oblate → more flat oblate<br />

24h 2,3h<br />

Jacobi shapes:<br />

Carl Gustav Jacob Jacobi in 1834<br />

calculated that at certain angular<br />

velocity the rotating body<br />

(gravitating mass rotating<br />

synchronously) may change abruptly<br />

the shape from MacLaurins oblate<br />

shape to triaxial and then more<br />

elongated. (Jacobi(<br />

bifurcation).<br />

Jacobi shapes<br />

2.4h<br />

oblate → triaxial → prolate<br />

Poincare shapes:<br />

2,4h 3,8h<br />

Poincare shapes<br />

2.5h<br />

Henri Poincare (1885) described new shapes that<br />

could be obtained by rotating mass at the Jacobi<br />

path at given angular velocity. The body having<br />

Jacobi elongated triaxial shape can change it at<br />

multiple bifurcation point a pear shape<br />

triaxial →<br />

pear shape<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Evolution of the shape of <strong>hot</strong> nucleus<br />

as a function of spin<br />

R L<br />

/R S<br />

2.0<br />

1.5<br />

1.0<br />

β<br />

168<br />

Hf<br />

2<br />

126 Ba Ba<br />

168 Hf<br />

0 10 20 30 40 50 60 70 80<br />

spherical<br />

oblate<br />

fission<br />

0.2<br />

0.1<br />

0.0<br />

R L<br />

/R S<br />

2.0<br />

1.5<br />

1.0<br />

spherical<br />

oblate<br />

triaxial<br />

prolate<br />

fission<br />

β 2<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0 10 20 30 40 50 60 70 80<br />

0.2<br />

I [h]<br />

”Oblate”→fission<br />

I [h] „Jacobi shapes”<br />

„Oblate” →3-axial→<br />

→”prolate”→fission<br />

0.2<br />

0.16<br />

0.16<br />

σ<br />

0.12<br />

0.08<br />

σ<br />

0.12<br />

0.08<br />

0.04<br />

0.04<br />

0<br />

5 10 15 20 25 25<br />

30 30 35<br />

30 35<br />

35<br />

E γ [MeV]<br />

0<br />

5 10 15 20<br />

20 25 25<br />

30 30<br />

35<br />

35<br />

35<br />

E γ [MeV]<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Jacobi shape transition - theoretical predictions<br />

potential energy calculated<br />

with LSD (Lublin-Strasbourg Drop) model:<br />

Dudek & Pomorski Phys. Rev. C67 (2003) 044316<br />

equilibrium shape evolution<br />

60<br />

50<br />

46 Ti<br />

40<br />

30<br />

γ<br />

20<br />

Jacobi shape transition<br />

28 29<br />

1826<br />

30<br />

10<br />

0<br />

32 34 36<br />

0<br />

0.0 0.5 1.0 1.5<br />

average shape<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011<br />

β<br />

10


Jacobi shape transition – GDR strength function<br />

0.28<br />

0.24<br />

0.20<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

0.00<br />

triaxial<br />

I=27 h<br />

0 5 10 15 20 25 30 35<br />

E [MeV]<br />

0.28<br />

0.24<br />

0.20<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

0.00<br />

prolate<br />

I=34 h<br />

0 5 10 15 20 25 30 35<br />

E [MeV]<br />

0.28<br />

0.24<br />

0.20<br />

oblate<br />

I=25 h<br />

60<br />

0.16<br />

0.12<br />

50<br />

0.08<br />

0.04<br />

0.00<br />

0 5 10 15 20 25 30 35<br />

E [MeV]<br />

46 Ti<br />

40<br />

30<br />

γ<br />

0.28<br />

0.24<br />

0.20<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

0.00<br />

spherical<br />

I=0 h<br />

0 5 10 15 20 25 30 35<br />

E [MeV]<br />

28 29<br />

1826<br />

30<br />

10<br />

0<br />

32 34 36<br />

20<br />

10<br />

0<br />

0.0 0.5 1.0 1.5<br />

β<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


First signatures<br />

of Jacobi shape<br />

transition<br />

predictions<br />

<br />

M. Kicińska<br />

ska-Habior et al.,<br />

Phys. Lett. B308 (1993) 225:<br />

Seattle exp. - Possible<br />

signature of the Jacobi shape<br />

transition <strong>for</strong> 45 Sc in the<br />

inclusive GDR spectrum<br />

0.28<br />

0.24<br />

0.20<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

triaxial<br />

I=27 h<br />

0.00<br />

0 5 10 15 20 25 30 35<br />

E γ [MeV]<br />

E [MeV]<br />

β = 0.4, γ = -30 o<br />

5 10 15 20 25<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.4<br />

0.2<br />

<br />

A. Maj et al,<br />

Nucl. Phys. A687 (2001) 192:<br />

NBI exp. – Possible signatures<br />

of the Jacobi shape transition<br />

<strong>for</strong> 46 Ti in the multiplicity<br />

gated GDR spectra and angular<br />

distributions<br />

0.0<br />

-0.2<br />

-0.4<br />

5 10 15 20 25 30<br />

E γ [MeV]<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


HECTOR+EUROBALL experiment<br />

105 MeV 18 O + 28 Si ⇒ 46 Ti*<br />

L max ≈ 35 h<br />

E* = 85 MeV<br />

0.12<br />

A. Maj et al., Nucl. Phys. A731 (2004) 319c.<br />

0.12<br />

fold 2<br />

fold 6<br />

folds 11-20<br />

multiplicity<br />

gated<br />

0.08<br />

high spin<br />

folds 11-20<br />

0.08<br />

low spin<br />

fold 2<br />

[arb. units]<br />

10 4<br />

10 3<br />

[arb. units]<br />

Y γ<br />

0.04<br />

[arb. units]<br />

Y γ<br />

0.04<br />

Y γ<br />

10 5 E γ [MeV]<br />

10 2<br />

0.00<br />

4 8 12 16 20 24 28<br />

0.00<br />

4 8 12 16 20 24 28<br />

10 1<br />

E γ [MeV]<br />

E γ [MeV]<br />

4 8 12 16 20 24<br />

low energy component increasing with spin<br />

gated with<br />

γ transitions<br />

in 42 Ca residuum<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Coriolis splitting of the GDR components<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

I=0<br />

low E<br />

high E<br />

prolate<br />

β=0.5<br />

ω=0<br />

K. Neergård, Phys. Lett. 110B (1982) 7<br />

Ω<br />

2<br />

2,3<br />

∆ =<br />

2<br />

ω<br />

2<br />

=<br />

1<br />

4<br />

2<br />

+ ω<br />

3<br />

2<br />

2<br />

+ ω ±<br />

2 2 2 2 2 2<br />

( ω − ω ) + ω ( ω + ω )<br />

2 3<br />

2<br />

J.J. Gaardhøje, A. Maj et al.,<br />

Acta. Phys. Pol. B24 (1993) 139;<br />

T. Døssing, private communication<br />

∆<br />

2<br />

3<br />

0<br />

5 10 15 20 25 30<br />

E [MeV]<br />

ω<br />

Frequency<br />

= 0 ω<br />

><br />

0<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

I=30<br />

5 10 15 20 25 30<br />

E [MeV]<br />

ω=2.8<br />

(I=30 <strong>for</strong> A=46)<br />

ω 1<br />

ω 2<br />

ω 3<br />

ω<br />

1<br />

Ω 2<br />

Ω 2<br />

Ω 3<br />

Ω 3<br />

+ ω<br />

− ω<br />

+ ω<br />

− ω<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


LSD calculations<br />

thermal shape<br />

fluctuations +<br />

Coriolis splitting<br />

P(β,γ) ∝ exp(-F(b,g)/T)<br />

46<br />

Ti<br />

β 2<br />

sin(γ+30 o )<br />

γ = 60 o<br />

0.75<br />

0.50<br />

0.25<br />

0.00<br />

0.0<br />

0.5<br />

γ = 0 o<br />

I = 24<br />

1.0<br />

β 2<br />

cos(γ+30 o )<br />

γ = 60 o<br />

0.75<br />

0.50<br />

0.25<br />

1.5<br />

0.00<br />

0.0<br />

γ = 0 o<br />

I = 28 - 34<br />

1.0<br />

0.5<br />

β 2<br />

cos(γ+30 o )<br />

1.5<br />

f<br />

av<br />

GDR<br />

∫∫<br />

−F(<br />

T,<br />

I;<br />

γ γ<br />

T I f β γ ω e<br />

β , )/ T ( I;<br />

= β , ) 4<br />

( , ) ( , , )<br />

β sin(3 γ)<br />

dβdγ<br />

GDR<br />

Jacobi shape transition and<br />

indicated <strong>for</strong> the first time<br />

Coriolis effect<br />

[a. u.]<br />

Y γ<br />

Exp. LSD (I = 28-34) LSD (I = 24)<br />

with Coriolis<br />

A. Maj et al., Nucl. Phys. A731, 319c (2004)<br />

0 5 10 15 20 25 30 35<br />

E [MeV] γ<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


GDR built on superde<strong>for</strong>med<br />

nucleus<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


GDR built on superde<strong>for</strong>med nucleus - predictions<br />

60<br />

yrast ND<br />

β≈0.2<br />

50<br />

yrast SD<br />

β≈0.6<br />

E [MeV]<br />

40<br />

30<br />

20<br />

10<br />

F<br />

GDR<br />

ND<br />

5 10 15 20 25 30<br />

F<br />

GDR<br />

SD<br />

5 10 15 20 25 30<br />

B n<br />

B n<br />

0<br />

0 10 20 30 40 50 60<br />

l [h]<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


GDR built on superde<strong>for</strong>med nucleus - indications<br />

37<br />

Cl(165 MeV) on 110 Pd ⇒ 147 Eu*<br />

1000<br />

100<br />

SD Gated<br />

TD gated<br />

143<br />

Eu<br />

F. Camera et al., Acta Phys. Pol. B32 (2001) 807<br />

a.u.<br />

gated on SD band<br />

10<br />

110 Pd( 37 Cl,4n) 143 Eu<br />

SD / TD<br />

1<br />

6 8 10 12<br />

Energy [MeV]<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Feeding of highly de<strong>for</strong>med states by GDR -<br />

42 Ca case<br />

2.5<br />

2.0<br />

sd sd / sfer / spher<br />

nd nd / sfer / spher<br />

sd / ndsd / nd<br />

feeding of the highly de<strong>for</strong>med states<br />

by the low energy GDR component<br />

Ratio<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

2 4 6 8 10 12<br />

E γ [MeV]<br />

nd<br />

sd<br />

Exp. LSD (I = 28-34) LSD (I = 24)<br />

with Coriolis<br />

spher<br />

[a. u.]<br />

Y γ<br />

M. Kmiecik et al., Acta Phys. Pol. B36 (2005) 1169<br />

0 5 10 15 20 25 30 35<br />

E [MeV] γ<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Search <strong>for</strong> highly de<strong>for</strong>med states in 42 Ca using Coulomb<br />

excitation – AGATA Demonstrator experiment<br />

Experiment proposed by Adam Maj (IFJ PAN Krakow),<br />

Paweł Napiorkowski (HIL Wrasaw)<br />

and Faical Azaiez (IPNO Orsay)<br />

goal:<br />

investigate the de<strong>for</strong>mation of nucleus<br />

at states from the highly de<strong>for</strong>med band<br />

reaction:<br />

Coulomb excitation 42 Ca on 208 Pb target<br />

measured:<br />

•γ rays<br />

•back-scatered<br />

projectiles<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Isospin mixing <strong>studies</strong><br />

in Heavy Ion Laboratory<br />

in Warsaw<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


GDR <strong>studies</strong> in Warszawa<br />

<br />

JANOSIK set-up<br />

<br />

<br />

25 cm x 29 cm NaI(Tl)<br />

detector <strong>for</strong> high-energy<br />

γ-ray measurement<br />

with shield (plastic + 6 LiH<br />

+ lead) to reduce cosmic<br />

background<br />

Si-Ball – p and α detection<br />

M. Kicińska-Habior et al., Acta Phys. Pol. B27 (1996)547,<br />

Acta Phys. Pol. B28 (1997)219<br />

<br />

Isospin mixing investigations<br />

GDR measured <strong>for</strong> two neighbouring<br />

N=Z and N≠Z <strong>nuclei</strong> at similar excitation energies<br />

N≠Z – GDR parameters extracted<br />

– statistical model Cascade<br />

N=Z – α 2 (isospin mixing probabilty) obtained<br />

M. Kicińska-Habior et al., Acta Phys. Pol. B36 (2005) 1133<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Isospin mixing<br />

M. Kicińska-Habior et al., Nucl. Phys. A731c (2004) 138<br />

E. Wójcik et al., Acta Phys. Pol. B37 (2006) 207<br />

E. Wójcik et al., Acta Phys. Pol. B38 (2007) 1469<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Isospin mixing studied by HECTOR collaboration<br />

81<br />

Rb (N≠Z) 80<br />

Zr (N=Z)<br />

A. Corsi et al., to be published<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Perspectives<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Theoretical predictions <strong>for</strong> Jacobi shape transition<br />

- examples<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Zn<br />

71 71 Zn<br />

I = 40<br />

I = 48<br />

I = 62<br />

0 5 10 15 20 25 30 35 40<br />

E [MeV]<br />

44<br />

40<br />

30<br />

20<br />

10<br />

60<br />

50<br />

∆I=22<br />

40<br />

30<br />

46 48 50 54 56 60 64<br />

72 70 68<br />

20<br />

10<br />

0<br />

0.0 0.5 1.0 1.5<br />

β<br />

γ<br />

wide spin window <strong>for</strong> Jacobi shapes<br />

large spins<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Cd<br />

98 98 Cd<br />

I = 50<br />

I = 58<br />

I = 72<br />

0 5 10 15 20 25 30 35 40<br />

E [MeV]<br />

50<br />

40<br />

20<br />

0<br />

60<br />

50<br />

∆I=22<br />

40<br />

30<br />

54 58 62 6668 70 74 72<br />

0.0 0.5 1.0 1.5<br />

β<br />

20<br />

γ<br />

10<br />

0<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Cd<br />

120 120 Cd<br />

I = 66<br />

I = 72<br />

I = 92<br />

0 5 10 15 20 25 30 35 40<br />

E [MeV]<br />

68 66 60<br />

50<br />

40<br />

20<br />

60<br />

50<br />

∆I=32<br />

40<br />

30<br />

72 70 76 80 88 84 92 100 96<br />

20<br />

10<br />

0<br />

0.0 0.5 1.0 1.5<br />

β<br />

γ<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


I<br />

Future experiments<br />

Possible with high intensity radioactive beams<br />

that will be available at new facilities<br />

(e.g. SPIRAL2)<br />

68 28 Ni + 30 14 Si → 98 42 Mo;<br />

10 8 pps<br />

E b<br />

= 500MeV, I max<br />

= 85 h, E* = 150 MeV<br />

58 28 Ni + 28 14 Si → 86 42 Mo;<br />

stable<br />

E b<br />

= 400MeV, I max<br />

= 68 h, E* = 110 MeV<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

98 Mo<br />

I = 58<br />

I = 64<br />

I = 80<br />

0 5 10 15 20 25 30 35 40<br />

E [MeV]<br />

23 10 Ne + 48 20 Ca → 71 30 Zn;<br />

10 6 pps<br />

E b<br />

= 220MeV, I max<br />

= 70 h, E* = 160 MeV<br />

71 Zn<br />

I = 40<br />

I = 48<br />

I = 62<br />

Summary of the experimental<br />

programme <strong>for</strong> GANIL<br />

105<br />

120Cd<br />

98Cd<br />

95<br />

98Mo<br />

85<br />

86Mo<br />

71Zn<br />

75<br />

44Ti<br />

65<br />

55<br />

45<br />

35<br />

25<br />

15<br />

5<br />

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4<br />

ω= I / J<br />

94 36 Kr + 26 12 Mg → 120 48 Cd;<br />

10 10 pps<br />

E b<br />

= 900MeV, I max<br />

= 100 h, E* = 190 MeV<br />

40 20 Ca + 58 28 Ni → 98 48 Cd;<br />

stable<br />

E b<br />

= 250MeV, I max<br />

= 78 h, E* = 120 MeV<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

120 Cd<br />

0 5 10 15 20 25 30 35 40<br />

E [MeV]<br />

44 Ti<br />

I = 66<br />

I = 72<br />

I = 92<br />

12 6 C + 32 16 S → 44 22 Ti<br />

stable<br />

E b<br />

= 170MeV, I max<br />

= 38 h, E* = 130 MeV<br />

I = 26<br />

I = 30<br />

I = 36<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

E [MeV]<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

E [MeV]<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Poincare shapes investigations<br />

Poincare shapes predicted <strong>for</strong> the first time<br />

New calculations based on the LSD model,<br />

allowing odd-rank de<strong>for</strong>mation parameters<br />

30 , α 50 , α 70 ) be free:<br />

(α 30<br />

K. Mazurek, J. Dudek et al., Acta Phys. Pol. (2011) in print<br />

A.Maj, K. Mazurek, J. Dudek, M. Kmiecik, D. Rouvel<br />

“Shape evolution at high spins and temperatures: nuclear Jacobi<br />

and Poincare transition”, J. Mod. Phys. E19 (2010) 53<br />

to be observed in the GDR strength function<br />

At GANIL –SPIRAL2 (later stage: Phase2-Day2)<br />

94 Kr + 48 Ca → 142 Ba<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


New very efficient high-energy γ-ray detector<br />

PARIS desing concepts:<br />

- high efficiency detector consisting of phoswich detectors<br />

<strong>for</strong> medium resolution spectroscopy<br />

and calorimetry of γ rays in large energy range<br />

Phoswich detector will consit of new LaBr 3 (Ce) 5 x 5 cm<br />

crystals and conventional crystals NaI.<br />

The first stage will be the prototype made of 9 phoswich<br />

detectors.<br />

prototype<br />

PARIS will be used as a high and low-energy p<strong>hot</strong>on deterctor,<br />

multiplicity filter of high resolution and sum-energy detector<br />

(calorimeter),<br />

It will be mechanically compatible with other detectors: e. g.<br />

AGATA, GASPARD<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Summary<br />

The GDR strength functions (lineshape) measurements<br />

deliver in<strong>for</strong>mation on properties of nucleus (at ground and<br />

exited state)<br />

At given temperature the shape of the nucleus is described<br />

by the shape distribution<br />

The de<strong>for</strong>mation of nucleus increases with spin due to increase<br />

of angular momentum and it is larger <strong>for</strong> higher rotational frequency<br />

The thermal shape fluctuations are important in describing<br />

shapes of <strong>nuclei</strong> as a function of temperature<br />

At high temperatures the CN life time has to be taken into account<br />

The GDR can be built on superde<strong>for</strong>med structure, and low energy<br />

component feeds the highly de<strong>for</strong>med states.<br />

The GDR spectra measurements provide in<strong>for</strong>mation about isospin mixing<br />

coefficient<br />

Perspectives <strong>for</strong> future investigations concern Jacobi<br />

and Poincare shape transitions at new facilities<br />

with radioactive beams<br />

The new, very efficient detector PARIS is developed<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011


Thanks to<br />

Kraków: Adam Maj, Kasia Mazurek, Michał Ciemała, Mirek Ziębliński …….<br />

Milano: Angela Bracco, Franco Camera, Oliver Wieland, Silvia Leoni,<br />

Anna Corsi, ……….<br />

Warszawa: Marta Kicińska-Habior<br />

………..<br />

Maria Kmiecik<br />

International Workshop on Acceleration and Applications of Heavy Ions, Warszawa 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!