12.07.2015 Views

nuclear physics in poland 1996 – 2006

nuclear physics in poland 1996 – 2006

nuclear physics in poland 1996 – 2006

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NUCLEAR PHYSICSIN POLAND<strong>1996</strong>-<strong>2006</strong>3


EURONS REPORT___________________________DECEMBER 2007___________________________NUCLEAR PHYSICS IN POLAND<strong>1996</strong> – <strong>2006</strong>edited byRafał Broda, Jacek Dobaczewski, Jerzy Jastrzębski (Chair), Marc<strong>in</strong> Palacz,Jan StyczeńPOLISH NUCLEAR PHYSICS NETWORKPNPN1


Report of Polish Nuclear Physics Networkwww.slcj.uw.edu.pl/pnpnEdited by Heavy Ion Laboratory, Warsaw UniversityUl. Pasteura 5a, 02-093 Warszawa, PolandPhone +48 (22) 822 123, +48 (22) 55 46 000Fax. +48 (22) 659 27 14email slcj@nov.slcj.uw.edu.plEditorial StaffJerzy Jastrzębski, Marc<strong>in</strong> Palacz, Iwona Tomaszewska, Kamil SteczkiewiczWarsaw UniversityHeavy Ion LaboratoryISBN 978-83-926674-0-72


NUCLEAR PHYSICS IN POLAND<strong>1996</strong>-<strong>2006</strong>Contents1. Editors note 072. Polish Nuclear Physics Network 093. Overview papers3.1 Nuclear structure 153.2 Hadron <strong>physics</strong> 213.3 Nuclear theory 293.4 Applied <strong>nuclear</strong> <strong>physics</strong> 333.5 Project of the Underground Neutr<strong>in</strong>o Laboratory 374. Contributions4.1 Ground state properties• Global properties of nuclei 43• Masses and fission barriers of atomic nuclei 45• Antiprotonic atoms 47• Nuclear symmetry energy and neutron sk<strong>in</strong>s derived from pygmy dipoleresonances <strong>in</strong> 130,132 Sn isotopes 49• Nuclear structure near the drip l<strong>in</strong>es 514.2 Super-heavy nuclei• Super-heavy nuclei 53• Theoretical <strong>in</strong>vestigations of properties and synthesis of super-heavy nuclei 55• Reaction mechanism and cross sections for production of super-heavynuclei 57• Experimental search for super-heavy elements 594.3 Excited states• Nuclear structure studies with deep-<strong>in</strong>elastic heavy ion reactions 61• S<strong>in</strong>gle-particle and strongly deformed structures <strong>in</strong> f 7/2 nuclei 63• Quest of chiral symmetry break<strong>in</strong>g <strong>in</strong> atomic nuclei 65• Nuclear structure close to N=Z=50 67• Octupole deformation <strong>in</strong> the act<strong>in</strong>ide and lanthanide regions 69• Nuclear shape coexistence studied by Coulomb Excitations 71• A study of the violation of K-selection rules 73• Polarizational-directional correlation from oriented nuclei 75• Level density parametr 77• The "quadrupole plus pair<strong>in</strong>g" collective model 79• Exotic <strong>nuclear</strong> symmetries 81• High sp<strong>in</strong> states of strongly deformed configurations <strong>in</strong> medium-massnuclei 83• Self-consistent treatment of quadrupole excitations 853


4• The isoscalar bosons <strong>in</strong> <strong>nuclear</strong> collective excitations 087• Quadrupole excitations of transact<strong>in</strong>ide nuclei 0894.4 Resonances• Giant Dipole Resonance as a probe of shapes of hot rotat<strong>in</strong>g atomic nuclei 091• Giant Dipole Resonance as a probe of isosp<strong>in</strong> mix<strong>in</strong>g <strong>in</strong> hot nuclei 093• Low-ly<strong>in</strong>g dipole strength and pygmy resonance <strong>in</strong> unstable neutron-richisotopes <strong>in</strong> the mass region of doubly-magic 132 Sn nucleus 095• Isosp<strong>in</strong> mix<strong>in</strong>g <strong>in</strong> deuteron-<strong>in</strong>duced reactions at very low energies 0974.5 Proton emission• Proton emission 099• Two-proton radioactivity 1014.6 Nuclear forces• Nuclear open quantum system many-body problem 103• Three-nucleon force effects <strong>in</strong> nucleon – deuteron reactions 105• Relativistic effects <strong>in</strong> three-nucleon cont<strong>in</strong>uum 107• Electron and photon scatter<strong>in</strong>g on three-nucleon states 109• Experimental studies of three-nucleon system <strong>in</strong> various k<strong>in</strong>ematicalconditions 1114.7 Neutr<strong>in</strong>o <strong>physics</strong>• A search for Majorana neutr<strong>in</strong>o 113• Double beta decay matrix elements <strong>in</strong> the RPA approach 115• Neutr<strong>in</strong>oless double beta decay <strong>in</strong> supersymmetric models 1174.8 Low energy <strong>nuclear</strong> reactions• Fusion barrier distributions 119• Nuclear optical potential from light-particle reactions 121• Reactions with loosely bound projectiles 123• Neutron - <strong>in</strong>duced reactions 125• Nuclear fusion and fission <strong>in</strong> mean-field models 125• Fission and fusion of nuclei with<strong>in</strong> the skyrme hartree-fock theory 129• Enhanced electron screen<strong>in</strong>g <strong>in</strong> deuteron fusion reactions 1314.9 Intermediate – and high – energy <strong>nuclear</strong> collisions• Experimental approaches to heavy ion reactions at <strong>in</strong>termediate energies 133• Heavy ion experiments at LNS Catania with 4π CHIMERA multidetector 135• Heavy ion reaction mechanisms at Fermi energy doma<strong>in</strong> 137• Hard photons from nucleus-nucleus and proton-nucleus collisions 139• Neutral meson production and baryonic resonance excitation<strong>in</strong> subthreshold nucleus-nucleus collisions 141• Correlations and fluctuations <strong>in</strong> heavy ion reactions at energiesbetween 100 and 2000 AMeV 143• Mass and isotopic effects <strong>in</strong> <strong>nuclear</strong> multifragmentation 145• Nuclear matter at liquid-gas phase transition energy doma<strong>in</strong> 147• Heavy-ion collisions: geometry and dynamics 149


• Multifragmentation <strong>in</strong> heavy-ion collisions at relativistic energies:The source of <strong>in</strong>formation on thermodynamics of <strong>nuclear</strong> matter 151• Ultra-relativistic reactions between heavy ions and nucleons 153• Investigation of hadron properties <strong>in</strong> <strong>nuclear</strong> matter with proton-nucleus,antiproton-nucleus and nucleus-nucleus reactions 155• Spallation and fragmentation of atomic nuclei with protons 157• Strange-particle production <strong>in</strong> nucleus-nucleus and pion-nucleuscollisions at near-threshold energies 159• Phase transitions <strong>in</strong> highly excited <strong>nuclear</strong> matter 161• Nuclear s<strong>in</strong>gle particle sum rules <strong>in</strong> the EMC effect 163• Fluctuations and search for the critical po<strong>in</strong>t at SPS energies 165• Between <strong>nuclear</strong> and elementary <strong>in</strong>teractions: relativistic ion collisions 1674.10 Pions, mesons, hyperons, antiprotons• Investigation of charge and isosp<strong>in</strong> symmetry break<strong>in</strong>g 169• Nuclear states of η, k mesons, Σ hyperons & antiprotons 171• Hyperon resonances produced <strong>in</strong> proton-proton collisions 173• Nonmesonic decay of Lambda-hyperon <strong>in</strong> heavy hypernuclei 175• Interaction of the eta and eta' mesons with nucleons 177• Investigation of the hyperon-nucleon <strong>in</strong>teraction 179• Eta and eta' meson production <strong>in</strong> d-p collisions 181• K+ production <strong>in</strong> proton-nucleus reactions 183• Interaction of K+K- mesons 185• Production of K+ and K- mesons <strong>in</strong> heavy-ion collisions 1874.11 At the borders…• At the border between atomic and <strong>nuclear</strong> <strong>physics</strong> 189• Atomic <strong>physics</strong> <strong>in</strong> heavy ion - atom collisions 191• Precision tests of the Standard Model <strong>in</strong> the decay of polarized muons 193• Search for Time Reversal Violation effects <strong>in</strong> beta-decay of nucleiand neutrons 195• High <strong>in</strong>tensity ultra-cold neutron source for fundamental <strong>physics</strong> 197• Nuclear <strong>physics</strong> with ultra cold atomic gases 1994.12 Examples of experimental set – ups• Forward Spectrometer for PANDA 201• Design studies of harmonium detection via J/ψ→2µ decays <strong>in</strong> CBM 203• Onl<strong>in</strong>e event selection method <strong>in</strong> CBM experiment 205• Development of a fast data readout system for medium size experiments 207• New technologies of silicon detectors 2094.13 Examples of applications• Nuclear reactions <strong>in</strong> the acceleration therapy by the high-energyX-rays and electrons 211• Natural radioactivity studies <strong>in</strong> soil, water and air 2135


6• Application of the Mössbauer Spectroscopy on <strong>in</strong>vestigation of ironm<strong>in</strong>erals 215• Positron annihilation lifetime spectroscopy studies performedfor polymeric systems 217• Validation of <strong>nuclear</strong> data and models for the spallation targetcalculations 2195. Look to the future: Nuclear Physics Long Range Plan 2236. Institution <strong>in</strong>dex 2317. Author <strong>in</strong>dex 2328. Units of Polish Nuclear Physics Network 2379. Nuclear Physics community <strong>in</strong> Poland – list of electronic addresses• Institution order 241• Alphabetic order 249


EDITORS NOTEThis Report is a result of the PolishNuclear Physics Network (PNPN) action hav<strong>in</strong>gas objective the mapp<strong>in</strong>g study of the basic andapplied research <strong>in</strong> this doma<strong>in</strong> <strong>in</strong> Poland. In theoften employed slang it constitutes one of the“deliverables” of the EWON (East-West Outreach)Network, operat<strong>in</strong>g with<strong>in</strong> the I3- (IntegratedInfrastructure Initiative) EURONS, one of theNuclear Physics projects <strong>in</strong> the Six FrameworkProgramme (FP6). However, although preparedwith<strong>in</strong> the <strong>nuclear</strong> structure EURONS framework,this mapp<strong>in</strong>g study also reports on the activities<strong>in</strong> the hadron <strong>physics</strong> <strong>in</strong> Poland (organized <strong>in</strong> theFP6 with<strong>in</strong> a second Nuclear Physics project I3-Hadron Physics) as well as <strong>in</strong> Nuclear Theory andApplications of Nuclear Physics. The Reportconta<strong>in</strong>s references to activities and publishedpapers from the last ten years: <strong>1996</strong> – <strong>2006</strong>. Insome cases also slightly older data are <strong>in</strong>cluded, ifnecessary, for the completeness of the reportedsubjects.The Report is organized as follows. After the<strong>in</strong>formation on Polish Nuclear Physics Network(a part of the EWON Network), a few overviewpapers describe the ma<strong>in</strong> doma<strong>in</strong>s of the PNPNscientific activity. The contents of these paperswere previously presented dur<strong>in</strong>g the NuPECCmeet<strong>in</strong>g, held <strong>in</strong> Kraków June 9, <strong>2006</strong>.A number (89) of more detailed contributions(together with appropriate references) emanat<strong>in</strong>gfrom various research groups follows the reviewarticles. Some of the contributions provide concisesummaries of wide research activities. Otherauthors preferred to report separately or<strong>in</strong>dividually on narrower topics. Most of thepresented activities were conducted with<strong>in</strong> the<strong>in</strong>ternational collaborations. However, theadopted policy was that only Polish researchersare <strong>in</strong>dicated as authors of the contributions,whereas the <strong>in</strong>ternational collaborations arereflected by (all) authors of cited publications.The Polish Nuclear Physics Long-Range Planprepared recently by the Nuclear PhysicsCommittee of the National Atomic EnergyAgency articulates an outlook to the future <strong>in</strong>Section 5. Indices of contribut<strong>in</strong>g <strong>in</strong>stitutions andauthors are provided <strong>in</strong> Sections 5 and 6. A list ofaddresses and other practical <strong>in</strong>formation on unitsbelong<strong>in</strong>g to PNPN is provided <strong>in</strong> Section 8.F<strong>in</strong>ally, two lists (<strong>in</strong>stitution and alphabeticalorder) of Polish <strong>nuclear</strong> physicists, <strong>in</strong>clud<strong>in</strong>g PhDstudents, with their affiliation and e-mail addressclose this Report.The Editorial Committee wish to thank allauthors of review articles and contributedcommunications for their effort and collaboration.Help of Mrs. Iwona Tomaszewska <strong>in</strong> the editorialtasks is highly appreciated. The edition of thisReport was supported by the grant no. 115/E-343/SPB/MSN/PO3/DWM724/2003/2005 fromthe M<strong>in</strong>istry of Sciences and Higher Educationand by the EWON network<strong>in</strong>g funds.Editors7


POLISH NUCLEAR PHYSICS NETWORKJerzy JastrzębskiHeavy Ion Laboratory, Warsaw University, WarszawaIn 2001-2002 the European <strong>nuclear</strong><strong>physics</strong> community was <strong>in</strong>volved <strong>in</strong> preparationof two large proposals with the <strong>in</strong>tention tosubmit them for f<strong>in</strong>anc<strong>in</strong>g with<strong>in</strong> the SixFramework Programme (FP6) as so calledIntegrated Infrastructure Initiatives (I3). The firstof these proposals was prepared by FINUPHY(“Frontiers <strong>in</strong> Nuclear Physics”) – an organizationcomposed of European Large Scale Facility (LFS)heads and representatives of LSF usercommunity. The submitted I3 – EURONS wasma<strong>in</strong>ly directed toward the <strong>nuclear</strong> structureresearch. In parallel a less formal group ofphysicists <strong>in</strong>volved <strong>in</strong> research <strong>in</strong> hadron <strong>physics</strong>submitted a second <strong>nuclear</strong> <strong>physics</strong> I3 proposal,named I3 – Hadron Physics. The activities of bothgroups were supported by NuPECC – an ExpertCommittee of the European Science Foundation.Both I3 proposals were accepted by EC.Dur<strong>in</strong>g the preparatory phase ofEURONS the contribution of Polish groups to theEuropean <strong>nuclear</strong> <strong>physics</strong> landscape was clearlyrecognized by both NuPECC and FINUPHY(cf. Fig. 1). It was suggested that Poland can enterto EURONS as a whole, form<strong>in</strong>g one of thenetworks of this I3.In June 2002 the representatives ofthirteen Polish <strong>nuclear</strong> <strong>physics</strong> units (see Sect. 8for the list) decided to create Polish NuclearPhysics Network (PNPN) and to contact CzechRepublic, Hungary and Slovakia with asuggestion to establish a larger network of <strong>nuclear</strong><strong>physics</strong> laboratories <strong>in</strong> these countries and <strong>in</strong>Poland. In spr<strong>in</strong>g 2003 North-East EuropeanNetwork (NEEN) was established. Its plannednetwork<strong>in</strong>g activities, their objectives andexpected outcomes were submitted to EURONSCoord<strong>in</strong>ator.Dur<strong>in</strong>g the same period the <strong>nuclear</strong><strong>physics</strong> laboratories from Bulgaria, Croatia,Greece, Romania, Serbia and Turkey formedSouth-East European Network (SEEN) and alsoapplied for EURONS support. Eventually,follow<strong>in</strong>g the EURONS advice, the merge ofNEEN and SEEN was decided by representativesof both networks and, <strong>in</strong> 2004, a common networkEWON (East – West Outreach) was <strong>in</strong>cluded <strong>in</strong>the EURONS <strong>in</strong>itiative.Table I summarizes the participation ofPolish teams <strong>in</strong> the 6FP <strong>nuclear</strong> <strong>physics</strong> activities.NuPECC <strong>in</strong>formation to ESF (PESC)Jan. 2001 (prepared 1998)Fig. 1. The European human potential <strong>in</strong> <strong>nuclear</strong> <strong>physics</strong>. Informationcollected by NuPECC <strong>in</strong> 1998.The <strong>in</strong>dicated EU f<strong>in</strong>ancial contribution to EWON<strong>in</strong>cludes only the support of NEEN, whereasSEEN, for practical reasons, is f<strong>in</strong>anced separately.9


The <strong>nuclear</strong> <strong>physics</strong> activity <strong>in</strong> Poland can beconveniently divided <strong>in</strong>to a few subgroups:- experimental <strong>nuclear</strong> <strong>physics</strong> us<strong>in</strong>g localfacilities;- experimental <strong>nuclear</strong> <strong>physics</strong> us<strong>in</strong>gexternal facilities;- theoretical <strong>nuclear</strong> <strong>physics</strong>;- applications of <strong>nuclear</strong> <strong>physics</strong> to otherdoma<strong>in</strong>s of science;- medical applications.Polish Polish NP participation NP In <strong>in</strong>FP6VIProgramI3 EURONSI3 HP - HadronPhysicsSSA – DesignStudy DIRAC –secondary-BeamsEURISOLSpecific SupportActionResearch or Network ActivityJRA 2 AGATAJRA 6 INTAGNetwork EAST/WEST - OUTREACHJRA 9 RHIBJRA2: Fast compact EMcalorimetersJRA5: Generalized partondistributionsTask 5: PANDA 4Feasibility study to demonstrate the<strong>physics</strong> performance of PANDATask 5: Safety and radioprotectionTask 10: Physics and<strong>in</strong>strumentationTask 11: Beam <strong>in</strong>tensity calculationPolishInstitutionHIL WUINP - KHIL WUINP - KHIL WUJAG UINSINSINSHIL WUTotalEU f<strong>in</strong>ancialContribution€45 00036 00080 00075 00027 00042 50033 90072 000411 400Fig. 2. The Kmax=160 heavy ion cyclotron of the Warsaw University.around 3000 h of heavy ion beams yearly rang<strong>in</strong>gfrom B to Ar with energies between 2 and10MeV/nucleon. The current research programcomprises <strong>nuclear</strong> <strong>physics</strong>, atomic <strong>physics</strong>,material sciences, solid state <strong>physics</strong>, biology,particle detectors development and test<strong>in</strong>g.Table IMost of these activities are presented <strong>in</strong> thisreport, at least partly, <strong>in</strong> the form of reviewarticles and short communications. Somesupplementary <strong>in</strong>formation is given below.Table II lists the ma<strong>in</strong> <strong>nuclear</strong> experimentalfacilities <strong>in</strong> Poland. With the exception of 30MW<strong>nuclear</strong> reactor (see www.cyf.gov.pl/reaktor.htmland sect. 3.4) all other facilities are operated byPNPN units.Local experimental facilitiesWarsaw - Heavy Ion CyclotronKraków - Light Particle CyclotronKraków - Micro – Beam FacilityKraków - Atomic Force MicroscopyWarsaw - VdG electrostatic acceleratorŚwierk - Proton CyclotronWarsaw - PET Radiopharmaceuticals Production Centre(<strong>in</strong> construction)Świerk - Production of medical electron l<strong>in</strong>ear acceleratorsŚwierk - 30MW <strong>nuclear</strong> reactorTable IIThe Warsaw University Heavy Ion Cyclotron (seeFig. 2) is the largest of them. It is operated byHeavy Ion Laboratory (Fig. 3), a user facility witharound 100 national and foreign users per year.The isochronous K max =160 cyclotron deliversFig. 3. Heavy Ion Laboratory build<strong>in</strong>g, the Kmax=160 cyclotron andits beam l<strong>in</strong>es layout and the prelim<strong>in</strong>ary project of the PETRadiopharmaceuticals Production Centre.10


Fig. 4. AIC-144, K=60 light particles cyclotron operat<strong>in</strong>g at Instituteof Nuclear Physics <strong>in</strong> Kraków.The Heavy Ion Laboratory is currently <strong>in</strong> itstransformation phase to become the WarsawUniversity accelerator centre, operat<strong>in</strong>g twocyclotrons. The second commercial protondeuteroncyclotron (E p = 16.5 MeV) will soon be<strong>in</strong>stalled <strong>in</strong> the Laboratory build<strong>in</strong>g for theproduction of- and research on theradiopharmaceuticals for the Positron EmissionTomography (PET). Production of long–livedradiopharmaceuticals for other medical and life –science applications is also foreseen.The second K=60, AIC-144 cyclotronaccelerates light particles. It is operated by theInstitute of Nuclear Physics (INP), PolishAcademy of Science <strong>in</strong> Kraków (Fig. 4). Presentlyit is ma<strong>in</strong>ly used for medical isotope production.In its new experimental hall (see Fig. 5) the eyemelanoma proton radiotherapy stand is <strong>in</strong>preparatory phase and will be operational <strong>in</strong> 2008.It is worth not<strong>in</strong>g, that the AIC-144 is an<strong>in</strong>termediate solution, which will be followed bythe <strong>in</strong>stallation <strong>in</strong> Kraków of a K=240 protoncyclotron for material science research and protonradiotherapy (see also sect. 3.4 and 5).Another experimental set-up <strong>in</strong> INP is the3.0 MV electrostatic generator with micro-beamfacility. It is currently used for such<strong>in</strong>terdiscipl<strong>in</strong>ary research as <strong>in</strong>vestigation of cellsbehavior under s<strong>in</strong>gle ion hit (SIH), microparticleelemental analysis, rock dat<strong>in</strong>g etc.Fig. 6 and Fig. 7 presents two other lowenergy accelerators, Warsaw 3 MeV van de Graaffand Świerk 30MeV proton cyclotron, respectively.Both these facilities are used for material scienceand solid state research.New experimental hallBend<strong>in</strong>gmagnet M3QuadrupolelensOld experimental hallStand for izotopesproductionQuadrupo lelensStand forexperimental worksChamber of theAIC144 cyclotronMk1 levelMk2 verticalBeam chatterBend<strong>in</strong>gmagnet M1Bend<strong>in</strong>gmagnet M2Melanoma protonradiotheraphy hallStandfor tumorstherapy by meansof neutron beamsPart of theAIC144 cyclotron vaultFig. 5. The scheme of the transport of the Kraków cyclotron beams.11


Fig. 7. Świerk near Warsaw, A. Sołtan Institute of NuclearSciences – 30 MeV proton cyclotron.summer schools, long range plann<strong>in</strong>gpreparation, visit<strong>in</strong>g professor positions, various<strong>in</strong>ternational reports redaction are a fewexamples.Ma<strong>in</strong> Large Scale Facilities used by Polishexperimental teamsFig. 6. Warsaw 3 MV Van de Graaf accelerator.The fundamental research experimentsperformed us<strong>in</strong>g the Warsaw Cyclotron constituteonly a small part of the experimental <strong>nuclear</strong><strong>physics</strong> activity of Polish groups. Table III lists the<strong>nuclear</strong> facilities which were used dur<strong>in</strong>g last tenyears by <strong>in</strong>dividual researchers or work<strong>in</strong>g teamsworld-wide.More <strong>in</strong>formation is given <strong>in</strong> sect. 4 and issummarized <strong>in</strong> sect. 5.The special place <strong>in</strong> the Polish <strong>nuclear</strong><strong>physics</strong> landscape occupies the theoretical<strong>physics</strong>. Not limited by severe f<strong>in</strong>ancialrestrictions which affects local experimentalfacilities, the flourish<strong>in</strong>g of this doma<strong>in</strong> isespecially evident <strong>in</strong> the <strong>nuclear</strong> structure theory.The participation of Polish theoretical physicists<strong>in</strong> the European ECT* activities, AmericanTable IIIAGORATLASCERNCOSYDESYGANILGRAN SASSOGSIIRESJINRK 5OOLEGNAROLNSORNLRHICSINQGron<strong>in</strong>genArgonneGeneveJuelichHambourgCaenItalyDarmstadtStrasbourgDubnaTexas A+MPadovaCataniaOak RidgeBrookhavenVilligenVill<strong>in</strong>genThe organization and activities of thePolish Nuclear Physics Network can be found atthe PNPN web page: www.slcj.uw.edu.pl/pnpn.12


OVERVIEW PAPERS13


EXPERIMENTAL LOW ENERGY NUCLEAR PHYSICSIN POLANDBogdan FornalH. Niewodniczański Institute of Nuclear Physics PAN, KrakówEarly days of <strong>nuclear</strong> science <strong>in</strong> Poland, aswell as its later history, owe a lot to MariaSkłodowska-Curie - one of the greatest scientistsof the 20’th century. Born <strong>in</strong> Warsaw, at age of 25emigrated to Paris, studied <strong>physics</strong> andmathematic at Sorbonne and, while work<strong>in</strong>g onher PhD thesis, discovered Polonium andRadium. She then performed pioneer<strong>in</strong>g studiesof those radioactive elements. She was the first touse the term “radioactivity” and she was the firstto realize that radioactivity is a phenomenonrelated to the deep <strong>in</strong>terior of the atomThere is no doubt that Maria’s fame<strong>in</strong>fluenced the development of <strong>nuclear</strong> <strong>physics</strong> <strong>in</strong>Poland. Already <strong>in</strong> the 30’s we had two centersfor studies of radioactivity: the WarsawUniversity, equipped with the cascade generatorthat could deliver ions accelerated to energies ofhundreds kiloelectronovolts, and the StefanBatory University <strong>in</strong> Vilno where advanced<strong>in</strong>vestigations of radioactivity, us<strong>in</strong>g the Rasource, were conducted.After the World War II the <strong>nuclear</strong> science<strong>in</strong> Poland was brought back to life by two greatscientists: Andrzej Sołtan <strong>in</strong> Warsaw and HenrykNiewodniczański <strong>in</strong> Kraków. They begun theprocess of restoration of research activity <strong>in</strong> thefield of <strong>nuclear</strong> <strong>physics</strong> already <strong>in</strong> the 40’s. By thebeg<strong>in</strong>n<strong>in</strong>g of the 50’s there was a 1 MV acceleratorwork<strong>in</strong>g <strong>in</strong> Warsaw; <strong>in</strong> Kraków <strong>in</strong>stead the homebuilt cyclotron U-48 started the operation.In 1955 the National Institute for NuclearResearch was created. Poland purchased from theSoviet Union two large devices: the <strong>nuclear</strong>reactor EWA and the U-120 cyclotron. They were<strong>in</strong>stalled <strong>in</strong> the newly built <strong>in</strong>stitutes <strong>in</strong> Świerk-Warszawa and <strong>in</strong> Kraków, respectively. The eraof <strong>in</strong>tense studies <strong>in</strong> the experimental <strong>nuclear</strong><strong>physics</strong> began.Present location of the research<strong>in</strong>stitutions, <strong>in</strong> which low energy experimental<strong>nuclear</strong> <strong>physics</strong> is an active field, was determ<strong>in</strong>edto a large extent by history. Warsaw, togetherwith nearby Świerk, and Kraków are the biggestcenters. The Warsaw center <strong>in</strong>cludes NuclearPhysics Division (ZFJA), Nuclear SpectroscopyDivision (ZSJ UW), Heavy Ion Laboratory (SLCJUW) of the Warsaw University as well as A.Sołtan Institute for Nuclear Studies (IPJ) located<strong>in</strong> Świerk and partly <strong>in</strong> Warsaw. In Kraków lowenergy Nuclear Physics groups work at theHenryk Niewodniczański Institute of NuclearPhysics of Polish Academy of Sciences (IFJ PAN)and at the Institute of Physics of the JagiellonianUniversity (IF UJ).There are also very active groups at theInstitute of Physics of the University of Silesia <strong>in</strong>Katowice, at the Institute of Physics of theUniversity of Łódź and at the Maria Curie-Skłodowska University <strong>in</strong> Lubl<strong>in</strong>.The research activity of Polish <strong>nuclear</strong>physicists follows the ma<strong>in</strong> l<strong>in</strong>es of <strong>in</strong>quiry oftoday’s <strong>nuclear</strong> <strong>physics</strong> research. We studystructure of exotic nuclei, nuclei under extremeconditions, new symmetries <strong>in</strong> nuclei, nucleonnucleonforces, superheavy nuclei, dynamics ofnucleus-nucleus collisions, double beta-decay andneutron decay with the focus on time reversalconservation. Many experiments are carried out <strong>in</strong>the frame of <strong>in</strong>ternational collaborations atvarious <strong>nuclear</strong> <strong>physics</strong> facilities around theworld. Very important part of research is alsobe<strong>in</strong>g done at our home facility – at the cyclotron<strong>in</strong> SLCJ UW.Most of the <strong>in</strong>ternational collaborationstarted already <strong>in</strong> the 60’s, 70’s and 80’s. The listof scientific activities performed by each of thesecollaborations is very long. Let us only mentionsome major projects, <strong>in</strong> chronological order, thathave been pursued recently with the lead ofPolish physicists and delivered <strong>in</strong>terest<strong>in</strong>g results.15


A successfulstudy on the decay ofproton drip-l<strong>in</strong>enuclei was completedby the group ofPolish physicistsfrom the NuclearSpectroscopyDivision UW. Thisgroup, work<strong>in</strong>g <strong>in</strong>frame of acollaboration at GSIDarmstadt, observed for the first time two protonground state radioactivity. It was done for thedecay of 45 Fe ground state <strong>in</strong>to 43 Cr, <strong>in</strong> which theemission of a s<strong>in</strong>gle proton is energeticallyforbidden and the 2p emission is an alternative tothe β-decay.Fruitful <strong>in</strong>vestigations on the structure ofpreviously <strong>in</strong>accessible neutron-rich nuclei havebeen performed by the Kraków group from theInstitute of Nuclear Physics PAN. This teamdeveloped a new technique for spectroscopicstudies of neutron-rich species that relies on us<strong>in</strong>gdeep-<strong>in</strong>elastic reactions and highly efficientgamma-ray detector arrays – the group is widelyrecognized as one of the leaders <strong>in</strong> gamma-rayspectroscopy <strong>in</strong> the hard-to-reach regions of the<strong>nuclear</strong> chart. The Kraków physicists, work<strong>in</strong>g <strong>in</strong>close collaboration with the American colleagues,proved the existence of a new neutron magicnumber at N=32 <strong>in</strong> neutron-rich nuclei. This wasdone <strong>in</strong> a series of experiments performed atArgonne National Laboratory which identifiedthe yrast structure of the 52-56 Ti isotopes.Important results concern<strong>in</strong>g the neutrondensity distribution <strong>in</strong> nuclei were obta<strong>in</strong>ed bythe research group from the Heavy IonLaboratory <strong>in</strong> Warsaw, who proposed anexperimental procedure allow<strong>in</strong>g for studies ofE(MeV)8642<strong>nuclear</strong> periphery with antiprotons. In theexperiments that were done at CERN, the Warsawphysicists showed that the neutron densitydistribution is rather of a halo type and not of ask<strong>in</strong>-type. The method, supplemented later by the<strong>in</strong>-beam antiprotonic X-rays studies, providedanother <strong>in</strong>terest<strong>in</strong>g outcome: the systematics ofthe differences between the neutron and protondistribution radii as a function of the asymmetryparameter (N-Z)/A.Successful studies of hot and rotat<strong>in</strong>gnuclei were carried out by the group from theInstitute of Nuclear Physics PAN, who is one ofthe world leaders <strong>in</strong> study<strong>in</strong>g the giant dipoleresonance (GDR) at high excitation energy andhigh sp<strong>in</strong>. This group, work<strong>in</strong>g with thecolleagues from Milan, used gamma rays from thedecay of GDR <strong>in</strong> fast rotat<strong>in</strong>g compound 46 T<strong>in</strong>ucleus to trace the shape evolution at high sp<strong>in</strong>.They showed for the first time evidence for theJacobi shape transition, i.e. the drastic shape„neutron sk<strong>in</strong>”124 Sn 124 Snprotonsneutrons„neutron halo”change from oblate to prolate occurr<strong>in</strong>g <strong>in</strong> anucleus at high rotational velocity. Moreover, <strong>in</strong>the course of <strong>in</strong>vestigations they observed also theCoriolis splitt<strong>in</strong>g of the GDR strength, and it isaga<strong>in</strong> the first f<strong>in</strong>d<strong>in</strong>g of such an effect.16


Very important part of the <strong>in</strong>volvement ofPolish physicists <strong>in</strong> the <strong>in</strong>ternationalcollaborations regards detector constructions. Forexample, physicists from the Institute of NuclearPhysics PAN, <strong>in</strong>cooperation withthe colleaguesfrom HMI Berl<strong>in</strong>,built the RecoilFilter Detector(RFD). Theapplication of RFDas an ancillarydetector forEUROBALL madefeasible X-rayspectroscopicstudies of fastrecoil<strong>in</strong>g nuclei <strong>in</strong>the light massregion, wheredeformed andhighly deformedbands have been observed, as well as of heavynuclei produced <strong>in</strong> fusion-evaporation reactionswith a very low cross section.A large amount of crucial experimental<strong>in</strong>formation on hot and fast rotat<strong>in</strong>g nuclei hasbeen provided by the HECTOR detector arrayconstructed <strong>in</strong> the frame of collaboration betweenthe Institute of Nuclear Physics PAN and INFN,Milano. The <strong>in</strong>strument consists of 8 large BaF2crystals and a multiplicity filter composed of 38smaller BaF2 crystals. HECTOR is primarilydesigned for measurements of high energygamma rays (5


visible light and a CCD camera will record a 2-Dimage of the decay process. Drift time of primaryionization charge towards the amplification stagewill provide the third coord<strong>in</strong>ate.Recently, the research team from theInstitute of Nuclear Physics PAN, who specializes<strong>in</strong> the studies of GDR <strong>in</strong> hot nuclei at high sp<strong>in</strong>s,proposed to develop and build a novel gammacalorimeter, which simultaneously measure thehigh energy gamma rays (3-40 MeV) from theGDR gamma decay as well as the multiplicity,sum energy and low energy gamma-ray spectra.Such a device will partly consist of the exist<strong>in</strong>gEuropean detectors, but a significant part of it willbe constructed from the new detectors. To designsuch a novel gamma-ray calorimeter it isnecessary to <strong>in</strong>vestigate possibilities which areoffered by recent advances <strong>in</strong> sc<strong>in</strong>tillatortechnology. The project is lead by the Krakówphysicists and gathers researchers from morethan 10 European countries.Last two decades showed that manyprojects <strong>in</strong> the low energy <strong>nuclear</strong> <strong>physics</strong> have tobe pursued with<strong>in</strong> large <strong>in</strong>ternationalcollaborations. Polish research teams contribute toall major <strong>in</strong>ternational collaborations that havebeen created <strong>in</strong> Europe <strong>in</strong> that field. For examplePoland is one of the eleven partners <strong>in</strong> theAdvanced Gamma Track<strong>in</strong>g Array (AGATA)project, where our responsibility ma<strong>in</strong>ly regardsthe development of the AGATA ancillarydetectors <strong>in</strong>terface (AGAVA) analysis of AGATAperformance <strong>in</strong> connection to ancillary detectorsand data analysis. Polish <strong>in</strong>stitutions contributesignificantly to the Rare ISotope INvestigation(RISING) at GSI that gathers 16 countries - ourcommitment relies on the contribution to therunn<strong>in</strong>g cost <strong>in</strong> amount of 7%. Poland and sixother countries are <strong>in</strong>volved <strong>in</strong> the ION Catchercollaboration which is aimed at develop<strong>in</strong>gtechniques of the effective slow<strong>in</strong>g-down,stopp<strong>in</strong>g <strong>in</strong> a gas cell and extraction of radioactiveions. In this case Polish participants areresponsible for development of a heliumthermalization gas cell and optimization of anion extraction at WIGISOL. CHIMERA is anotherlarge project that <strong>in</strong>volves 7 countries with thePolish participation – it is oriented towardsstudies of the isosp<strong>in</strong> effects and one-body vs.two-body dissipation mechanism <strong>in</strong> nucleusnucleuscollisions. Many Polish research groupsare look<strong>in</strong>g forward to take part <strong>in</strong> theconstruction and experiments at the plannedradioactive beam facility SPIRAL2 at GANIL(France) – the letters of <strong>in</strong>tent are be<strong>in</strong>g preparedwhich will be followed by sign<strong>in</strong>g thememorandum of understand<strong>in</strong>g and later theconsortium agreement. Also a few laboratoriesare <strong>in</strong>terested <strong>in</strong> contribut<strong>in</strong>g to the Facility forLow Antiproton Ion Research (FLAIR) at GSI(Germany) that is a part of the FAIR project.The community of <strong>nuclear</strong> physicists <strong>in</strong>Poland, <strong>in</strong> spite of be<strong>in</strong>g so much <strong>in</strong>volved <strong>in</strong> the<strong>in</strong>ternational collaborations, a large part of itsscientific activity devotes to research at the heavyion cyclotron located at Heavy Ion LaboratoryUW. The cyclotron is a K=160 heavy-ion mach<strong>in</strong>e<strong>in</strong> operation s<strong>in</strong>ce 1994. It provides beams rang<strong>in</strong>gfrom boron to argon with energies from 2 to 10MeV/amu and <strong>in</strong>tensities up to a few hundredspnA. The beam-on-target time has recentlyreached about 3000 hours/year. Permanent setups<strong>in</strong>stalled on the beam l<strong>in</strong>es <strong>in</strong>clude: JANOSIK– multidetector system consist<strong>in</strong>g of a largeNaI(Tl) crystal with passive and active shieldsand 32-element multiplicity filter, CUDAC – PINdiodearray particle detection system, WIGISOL –Scand<strong>in</strong>avian type on-l<strong>in</strong>e separator, OSIRIS II – acrystal ball consist<strong>in</strong>g of 12 compton-shieldedHPGe detectors, charged particle 4π mutiplicityfilter (Si-ball), 50-element BGO γ multiplicity filterand sectored HPGe polarimeter, SYRENA - alarge universal scatter<strong>in</strong>g chamber and ICARE -recently <strong>in</strong>stalled multidetector system for lightcharged particle spectroscopy.In the last months a new <strong>in</strong>itiative hasbeen proposed at Heavy Ion Laboratory of UWaimed at creat<strong>in</strong>g a collaboration of various Polishgroups specialized <strong>in</strong> the studies ofelectromagnetic transition probabilities <strong>in</strong> nuclei.The idea is to comb<strong>in</strong>e the two methods: Coulombexcitation method and Doppler Shift Attenuationand Recoil Distance technique. To this end, aproposal is be<strong>in</strong>g prepared to build a newmultidectetcor system EAGLE consist<strong>in</strong>g of GeCompton suppressed spectrometers, BaF2detectors as a multiplicity filter, COULEXchamber with PIN silicon detectors, Si <strong>in</strong>ner ballfor proton and alpha multiplicity, and a few Gepolarimeters. The new <strong>in</strong>strument will be largelybased on the exist<strong>in</strong>g equipment from OSIRIS andCUDAC.The research at the cyclotron has provento be successful <strong>in</strong> several doma<strong>in</strong>s. Outstand<strong>in</strong>gresults came from the <strong>in</strong>vestigations of shapecoexistence <strong>in</strong> nuclei, from Giant DipoleResonance studies, from fusion barrierdistributions experiments. Very valuable resultswere also delivered by <strong>in</strong>vestigations of high-sp<strong>in</strong>state structures (the confirmation of chirality),light nuclei reaction processes and themechanisms of “hot” nuclei decay. Out of theseries of achievements a few were selected formore extended presentation.Recent theoretical and experimental worksattracted attention to a phenomenon of chirality <strong>in</strong>18


<strong>nuclear</strong> spectroscopy. In nuclei <strong>in</strong> which the totalsp<strong>in</strong> is built out of mutually perpendicular sp<strong>in</strong>sof a valence proton, of a valence neutron and ofthe even core, one can expect the presence of twoidentical partner collective bands associated withthe left-handed and right handed orientation ofthose sp<strong>in</strong>s. In a real system, such symmetry willbe broken, although the bands should reta<strong>in</strong> verysimilar properties <strong>in</strong> terms of energies, paritiesand electromagnetic probabilities. In anexperiment with the OSIRIS array performed atthe heavy ion cyclotron, physicists from theNuclear Physics Division of the WarsawUniversity determ<strong>in</strong>ed the transition probabilities<strong>in</strong> the two partner bands <strong>in</strong> 128 Cs, and showedthat they were by far the best candidates for chiralbands <strong>in</strong> nuclei. It is a first demonstration of sucha phenomenon <strong>in</strong> <strong>nuclear</strong> structure.states show pronounced deformation and the thisdeformation quickly <strong>in</strong>creases as compared to98 Mo.Excit<strong>in</strong>g results are com<strong>in</strong>g from theworks of the Warsaw Coulex group from HeavyIon Laboratory. This group has recently beenengaged <strong>in</strong> the study of structural changes of thelowest 0 + excitations <strong>in</strong> Mo isotopes. By us<strong>in</strong>gCUDAC particle detector system they performeda series of Coulomb excitation measurements andsucceeded <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the quadrupolemoments of the 0 + g.s. and of the second 0 + state<strong>in</strong> 96 Mo and 98 Mo. In 96 Mo the ground state wasfound to be significantly deformed, whereas thesecond 0 + state exhibits spherical properties. In98 Mo both 0 + excitations are deformed. Similarsituation occurs <strong>in</strong> 100 Mo, aga<strong>in</strong> both low ly<strong>in</strong>g 0 +In a series of experiments performed forvarious projectile-target comb<strong>in</strong>ations, statisticaldecay of GDR, built on highly excited states <strong>in</strong>self-conjugate nuclei, was studied by researchersfrom the Warsaw University with the objective ofestablish<strong>in</strong>g the isosp<strong>in</strong> mix<strong>in</strong>g. The JANOSIKdetection system was employed. The team provedthat the isosp<strong>in</strong> mix<strong>in</strong>g probability <strong>in</strong> conjugatenuclei at high excitation and at similartemperature <strong>in</strong>creases with atomic number Z. Thedependence was confirmed for atomic numbersrang<strong>in</strong>g from 16 to 30.The Coulomb barrier height “felt” by thereaction partners approach<strong>in</strong>g each other varies. Itcan be characterized by a distribution whichdepends on the structure of the collid<strong>in</strong>g nuclei.The collaboration lead by physicists from NuclearSpectroscopy Division UW studied the reactions<strong>in</strong>duced by a 20 Ne beam on Sn and Ni targets.While a fair agreement between calculated andmeasured distributions was observed for the Nitarget, a significant discrepancy was noticed whenSn target was used. A hypothesis has been putforward that <strong>in</strong> case of Sn the distribution issmoothed out by the neutron transfer channels –these channels cannot be neglected for the Sntarget, whereas they are not important for the NitargetsPhysicists, with the ma<strong>in</strong> participantsfrom the A. Sołtan Institute for Nuclear Studies,performed the <strong>in</strong>vestigation of the reactions<strong>in</strong>duced by the 10 B, 11 B, 12 C, 14 N and 18 O ions from19


the heavy ion cyclotron up to an energyof 5-10 MeV/A on the 6,7 Li, 9 Be, 12,13,14 C targets.The experimentally obta<strong>in</strong>ed angulardistributions of the reaction products wereanalyzed by means of the coupled-reactionchannelsmethod. The parameters describ<strong>in</strong>g thestructure of the nuclei and mechanisms of <strong>nuclear</strong>reactions as well as nucleus-nucleus <strong>in</strong>teractionswere deduced. One of the spectacular outcomeswas the determ<strong>in</strong>ation of the quadrupoledeformation parameter to the 7.012 MeV (2 + )excited state <strong>in</strong> 14 C.One has to admit that the experimentallow energy <strong>nuclear</strong> <strong>physics</strong> <strong>in</strong> Poland is a veryactive field of research. We have groups that carryout various studies <strong>in</strong> the frontiers of the area <strong>in</strong>collaboration with most of the major laboratories<strong>in</strong> the world. We have a good experimentalpotential at home. We are <strong>in</strong>volved <strong>in</strong> many large<strong>in</strong>ternational collaborations and we have plans todevelop new <strong>in</strong>strumentation at our labs.However, we have to cont<strong>in</strong>ue mak<strong>in</strong>g efforts toattract young people. We can do it by advertis<strong>in</strong>gattractiveness of the low energy <strong>nuclear</strong> science.This attractiveness arises from both the closeperspective for reach<strong>in</strong>g very exotic neutron-richnuclei that may reveal unexpected phenomena,and from the fact that our field, <strong>in</strong> spite of thecomplexity of experiments and the most advancedtechnologies and techniques used, it is still an area<strong>in</strong> which one person is able to follow the wholeproject from the beg<strong>in</strong>n<strong>in</strong>g to the very end.While plann<strong>in</strong>g our research, our<strong>in</strong>volvement <strong>in</strong> collaborations, or prepar<strong>in</strong>g thefuture projects, we cannot forget that the success<strong>in</strong> scientific studies relies first of all on theappropriate attitude of the researcher towardsresearch. It was nicely expressed by MariaSkłodowska-Curie: “A scientist <strong>in</strong> his laboratory isnot a mere technician: he is also a childconfront<strong>in</strong>g natural phenomena that impress himas though they were fairy tales”.20


HADRON PHYSICS IN POLANDP. SalaburaM. Smoluchowski Institute of Physics, Jagiellonian University, KrakówIn this report I would like to present, frommy po<strong>in</strong>t of view, ma<strong>in</strong> activities andachievements <strong>in</strong> hadron <strong>physics</strong> of Polish groupsover last 10 -15 years. I will also shortly discussplans and perspectives for the nearest future.The basic aim of the hadron <strong>physics</strong> is tounderstand the structure of hadrons and their<strong>in</strong>teractions as well <strong>in</strong> elementary <strong>in</strong>teractions as<strong>in</strong> complex heavy ion collisions <strong>in</strong> the energyregime where quark and hadronic degrees offreedom <strong>in</strong>terleave. The underly<strong>in</strong>g theory isquantum chromodynamics (QCD), which iscommonly accepted as the fundamental theory ofthe strong <strong>in</strong>teraction. This theory is wellunderstood on the short distance scales (0-1 fm)which are probed, e.g., <strong>in</strong> reactions at highmomentum transfer (Q 2 >1 GeV 2 ) where the basicquark-gluon <strong>in</strong>teractions are weak andperturbation theory is applicable. At high energydensities quarks and gluons are predicted to movefreely without coalesc<strong>in</strong>g <strong>in</strong>to hadrons. Highenergy strong <strong>in</strong>teraction processes can thus bedescribed quantitatively and analytically byperturbative QCD. This energy regime isexperimentally explored by means of high energye + e - annihilation, lepton–nucleon scatter<strong>in</strong>g orproton-proton reactions at CERN, DESY, Fermilabor RHIC.As the energy scale drops nonperturbativeprocesses like conf<strong>in</strong>ement and chiralsymmetry break<strong>in</strong>g set <strong>in</strong>. In this doma<strong>in</strong> a quitedifferent realization of QCD is observed, namelybound states classified accord<strong>in</strong>g to their quarkcontent as baryons, like protons and neutrons, andmesons like the pion. At sufficiently low energies,it is safe to regard these physically observedparticles as the relevant degrees of freedom, anduse them <strong>in</strong> the description of hadron <strong>in</strong>teractions.Here, the application of effective field theories,account<strong>in</strong>g for the symmetries of QCD, is a verypromis<strong>in</strong>g step <strong>in</strong> this direction with a highscientific potential. Nevertheless, theoreticalpredictions are necessarily model-dependent, andprogress <strong>in</strong> this field has been, and will cont<strong>in</strong>ueto be, driven by experiment for the near future.Indeed, look<strong>in</strong>g <strong>in</strong>to available experimental dataone can quickly realize that 20 years after firstpioneer<strong>in</strong>g experiments performed <strong>in</strong> 60 and 70'iesat CERN, Berkeley or Dubna new generation ofhadron mach<strong>in</strong>es and dedicated detectors startedto provide numerous and precise data exactly forthis purpose.Polish groups took active part <strong>in</strong> thissecond generation experiments with broadresearch programs which can be grouped <strong>in</strong>tothree <strong>in</strong>terconnected topics:• Interaction and structure of hadrons• Hadron properties <strong>in</strong> <strong>nuclear</strong> matter• Properties of hadronic matter under extremeconditionsPrecise spectroscopy of hadronic states,<strong>in</strong>vestigation of their properties (as decay modes)<strong>in</strong> vacuum and the strong <strong>in</strong>teraction of hadrons<strong>in</strong> two or three-body f<strong>in</strong>al states is the ma<strong>in</strong>subject of the first topic. In particular precisemeasurements of hadron production cross sections(total and differential) <strong>in</strong> p-p, d-p reactions neark<strong>in</strong>ematic threshold provided valuable resultsfrom which many still awaits theoreticalexplanation. So far, most of these activitiesconcentrated on hadrons build from light (u,d,s)quarks and used proton or deuterium beamsprovided by SATURNE, CELSIUS or COSYmach<strong>in</strong>es. With the future PANDA detector atFAIR these <strong>in</strong>vestigations will be extended on thecharm sector by means of proton-antiprotonannihilation reactions.The strong <strong>in</strong>teractions experienced byhadrons <strong>in</strong> a compressed <strong>nuclear</strong> medium (e.g.created <strong>in</strong> course of heavy ion collisions) canmodify the basic hadron properties as masses, lifetimes (widths) because of <strong>in</strong>creased temperatureand/or density. Such changes have been predictedby various theoretical models and are oftendiscussed <strong>in</strong> connection to spontaneous chiralsymmetry breakdown, a phenomenon offundamental importance for our understand<strong>in</strong>g ofQCD and nature of hadron mass generation.Experimental studies are on-go<strong>in</strong>g and ma<strong>in</strong>lyconcentrate on kaon and vector meson propertiesprobed <strong>in</strong> heavy ion and proton <strong>in</strong>duced reactions.Obta<strong>in</strong>ed results demonstrate sizable effects whichhave stimulated large theoretical <strong>in</strong>terest andprovided motivation for upcom<strong>in</strong>g newexperiments facilities as FAIR at GSI, withPANDA and CBM detectors or J-PARC <strong>in</strong> Japan.Hadronic matter can be compressedand heated by means of heavy ion collisions. Atlow energies phase transition from liquid tohadron gas has been established by study<strong>in</strong>gfragmentation processes. At even higher energies,available at SPS and RHIC, a new form of the<strong>nuclear</strong> matter, Quark Gluon Plasma has beensought. At highest available on the earth energiesof LHC this new state of the <strong>nuclear</strong> matter will be21


<strong>in</strong>vestigated by means of ALICE and also ATLASdetectors. However, detailed knowledge of the<strong>nuclear</strong> matter phase diagram is still far frombe<strong>in</strong>g complete and needs more detailed<strong>in</strong>vestigations, as for example planned at lowerenergy by second generation experiments as CBMat FAIR or Na49 at SPS.Table 1 shows contribution of Polishexperimental groups to the three topics discussedabove. Middle column presents ma<strong>in</strong>collaborations, experimental and acceleratorfacilities where the projects are performed. Onlyexperiments with a significant contribution fromthe Polish groups have been selected. One shouldemphasize that <strong>in</strong> all listed cases dedicateddetector systems were developed, constructed and<strong>in</strong>stalled to large extend by the Polish groups.Furthermore, contribution to <strong>physics</strong> analysisresulted <strong>in</strong> many important results. Similarsituation is expected for the future projects whichare presented by italic.In the next three chapters I will shortlypresent selected scientific highlights obta<strong>in</strong>ed sofar and will discuss perspectives for the upcom<strong>in</strong>gexperimentsINTERACTIONS AND STRUCTURE OFHADRONSThe <strong>in</strong>teraction of hadrons is caused bythe strong color forces act<strong>in</strong>g between constituentquarks and gluons. At low energies, regime ofnon-perturbative QCD, the <strong>in</strong>teraction iscommonly described by meson exchange but it isalso often discussed <strong>in</strong> context of the underly<strong>in</strong>gquark-gluon structure. Here the most difficult isthe study of the low energy <strong>in</strong>teractions betweenthe flavour-neutral mesons like η, η΄, ω, φ andnucleons and between the nucleons and e.g.hyperons, as for example Σ. The short life time ofthese particles makes impossible direct scatter<strong>in</strong>gexperiments and allows to <strong>in</strong>vestigate f<strong>in</strong>al state<strong>in</strong>teractions. Hence, the experiments are based onthe production of a meson or a hyperon <strong>in</strong> thenucleon-nucleon collisions close to the k<strong>in</strong>ematicalthreshold (exclusive reactions) or <strong>in</strong> the k<strong>in</strong>ematicsregions where the outgo<strong>in</strong>g particles possess smallrelative velocities and rema<strong>in</strong> <strong>in</strong> the distance offew femtometers, long enough to experience thestrong <strong>in</strong>teraction. The strength of the <strong>in</strong>teractionbetween particles depends on their relativemomenta. Therefore, the mutual <strong>in</strong>teractionamong the outgo<strong>in</strong>g particles manifests itself <strong>in</strong>the modification of the distributions of differentialcross sections as well as <strong>in</strong> the magnitude andenergy dependence of the total reaction rate[1,2,3].22PhysicsInteractions andstructure ofhadronsHadron properties<strong>in</strong> <strong>nuclear</strong> matterProperties ofhadronic matterunder extremeconditionsExperimentsCOSY:COSY11,GEM, PISA,WASA@COSYSATURN: DISTOCELSIUS: WASAGSI : PANDAGSI:KAOS,FOPI,HADESGSI/SIS:FOPI, CBMCERN/SPS: Na49(+)RHIC: PHOBOS,BRAMSLHC: ALICE, ATLASPolishGroups 1JU, USJU, ,INS, USJUINS,UWJU, INS,USJU, UWUW, UW, JU, US,INSUW, IPSA, INPINP, JUINP, WITTable 1. Contribution of Polish groups to second generationexperiments.From the experimental po<strong>in</strong>t of view,measurement of the energy dependence of thetotal cross section for the production of mesons orhyperons close to the k<strong>in</strong>ematical threshold israther challeng<strong>in</strong>g. This is because the studiedcross sections are by orders of magnitude smalleras compared to the total yield of the nucleonnucleonreactions, and also because they vary by afew orders of magnitude <strong>in</strong> a few MeV range ofthe excess energy. This is visualized <strong>in</strong> Figure 1(top) on example of the total cross sections for theη and η΄ meson production <strong>in</strong> proton-protoncollisions conducted dur<strong>in</strong>g the last decade at theCELSIUS, COSY and SATURNE laboratories [4].Compar<strong>in</strong>g the data to the arbitrarily normalizedphase space <strong>in</strong>tegrals (dashed l<strong>in</strong>es) reveals thatthe <strong>in</strong>teraction among <strong>in</strong>volved hadrons enhancesthe total cross section by more than an order ofmagnitude for low excess energies. In the case ofthe η΄ meson the data are described very wellassum<strong>in</strong>g that the square of the proton-protonscatter<strong>in</strong>g amplitude exclusively determ<strong>in</strong>es thephase space population. This <strong>in</strong>dicates that theproton-η΄ <strong>in</strong>teraction is too small to manifest itself<strong>in</strong> the excitation function with<strong>in</strong> the achievedstatistical accuracy. In contrary <strong>in</strong> the case of the ηmeson the <strong>in</strong>teraction between outgo<strong>in</strong>g nucleonsis not sufficient to describe the shape of theexcitation function. This is even more obviouswhen one looks <strong>in</strong>to distribution of the pp→ ppηevents <strong>in</strong> the Dalitz representation, shown <strong>in</strong>Figure 1 (bottom), at an excess energy ofQ=15.5 MeV. In this figure one recognizes a steep1 INP - Institute of Nuclear Physics (Kraków),IPSA - Institute of Physics Świetokrzyska Academy(Kielce),INS - Institute of Nuclear Studies (Warszawa),JU - Jagiellonian University (Kraków),WIT - Warsaw Institue of Technology (Warszawa)US - University of Silesia (Katowice),UW- Warsaw University (Warszawa )


growth of the population density at the regionwhere the protons have small relative momenta(black area) and the rather homogenousdistribution outside this area. However, whentak<strong>in</strong>g the proton-proton f<strong>in</strong>ite state <strong>in</strong>teraction<strong>in</strong>to account a gradual decrease of the abundanceis expected towards the large values of the protonproton<strong>in</strong>variant masses <strong>in</strong> contrast to theexperimental data. Such discrepancy between theempirical distributions and predictions based onthe assumption that the phase space abundance isdue to the proton-proton <strong>in</strong>teraction only,<strong>in</strong>dicates that the observed enhancement is due tothe proton-η <strong>in</strong>teraction.The precise data on η and η΄ mesonsproduction <strong>in</strong> proton-proton collisions collectedover last years allowed to settle the generalfeatures of the production processes and revealedthe sensitivity of discussed observables to theproton-meson <strong>in</strong>teraction. A quantitativederivation of the proton-η and proton-η΄<strong>in</strong>teraction requires, however, a development ofthe sophisticated theoretical approach based onthe three-body formalism <strong>in</strong>clud<strong>in</strong>g the complexmeson-baryon hadronic potential. The observedlarge difference <strong>in</strong> the total cross sections betweenthe η and η΄ meson production shows that thesemesons are created via different mechanisms,s<strong>in</strong>ce comparable coupl<strong>in</strong>g constants are expectedfor both of them at least <strong>in</strong> the SU(3)-flavour limit.The different production mechanisms reflectdifferences <strong>in</strong> the structure of these mesons. Dueto the large momentum transfer needed for theproduction at threshold the reaction occurs at thedistances of about 0.3 fm. This might suggests thatthe quark-gluon degrees of freedom play asignificant role <strong>in</strong> the production dynamics. Inparticular, the η΄ meson can be efficiently createdfrom the glue excited <strong>in</strong> the <strong>in</strong>teraction region anda subsequent hadronization of gluons to the η΄meson via its gluonic or flavour-s<strong>in</strong>glet quarkcomponent [5]. The creation through the colours<strong>in</strong>gletobject is isosp<strong>in</strong> <strong>in</strong>dependent and henceshould lead to the same production amplitudes forthe pp→ ppη΄ and pn → pnη΄ reactions. At theCELSIUS laboratory it was determ<strong>in</strong>ed that the ηmeson is by more than an order of magnitudeenhanced if the total isosp<strong>in</strong> of collid<strong>in</strong>g nucleonsis equal to zero (pn). Correspond<strong>in</strong>g <strong>in</strong>vestigationsof the isosp<strong>in</strong> dependence for the η΄mesonproduction are presently conducted at COSY.Another example of the experimentssensitive to the quark degrees of freedom arestudies of the flavour symmtery break<strong>in</strong>gprocesses. The isosp<strong>in</strong> symmetry break<strong>in</strong>g via π 0 -η mix<strong>in</strong>g <strong>in</strong> pd→ 3 Heπ + /π 0 reactions close to the ηproduction threshold was studied by the GEMcollaboration [6]. In the lowest order chiralperturbation theory the π 0 - η mix<strong>in</strong>g angledepends on the u,d quark mass difference whichbreaks isosp<strong>in</strong> symmetry [7]. Study of the isosp<strong>in</strong>symmetry break<strong>in</strong>g <strong>in</strong> the η ' decays (i.e via π + π - π 0 )is also one of the ma<strong>in</strong> parts of the WASAprogramme at COSY which is just com<strong>in</strong>g <strong>in</strong>tooperation [8]. In this experiment also the flavourconserv<strong>in</strong>g η→π+π - e + e - decays will be studied totest CP symmetry conservation where StandardModel predictions are very small.The production cross section ratio of the φ/ωmesons <strong>in</strong> NN reactions have been proposed as asensitive observable for strangeness content of thenucleon. In the SU(3) flavour nonet the φ mesonconsists almost entirely of strange and the ωmeson of light quarks. As a results φ mesonproduction is expected to be suppressed relative tothe ω <strong>in</strong> NN reactions (OZI rules). Interest<strong>in</strong>gresults on φ/ω cross section ratio <strong>in</strong> NN reactionshave been obta<strong>in</strong>ed by ANKE at COSY and DISTOat SATURNE. Significant (~7-10) enhancementover the OZI rule predictions have beenestablished <strong>in</strong> the p-p and p-n reactions close theproduction threshold [9,10]. It may <strong>in</strong>dicateimportant, not yet understood, role of thestrangeness <strong>in</strong> the nucleon which was proposedsome time ago <strong>in</strong> order to expla<strong>in</strong> large φ/ωenhancement measured <strong>in</strong> proton-antiprotonannihilation at rest.Hadron spectroscopy will be extended oncharmed mesons with the PANDA detector atfuture FAIR facility. Antiproton beams ofmomentum 1.4-15 GeV/c from High EnergyStorage R<strong>in</strong>g will be used to study structure ofhadrons up to masses of 5.5 GeV/c 2 [11]. Inparticular charmed mesons consist<strong>in</strong>g of light(u,d) and heavy (c) quarks are ideally suited forstudies of basic QCD properties like conf<strong>in</strong>ementand chiral symmtery break<strong>in</strong>g and its role <strong>in</strong> thehadron mass generation.HADRON PROPERTIES IN NUCLEARMATTERIt is commonly accepted that only a smallpart of the nucleon mass is furnished by the restmass of it constituents. Indeed, tak<strong>in</strong>g an averagecurrent mass of the u,d quarks of 10 MeV/c 2 onearrives to conclusion that ~97% of the nucleonmass is dynamically created by the strong<strong>in</strong>teraction. The ma<strong>in</strong> mechanism responsible forthis spectacular phenomenon is related to thespontaneous chiral symmtery break<strong>in</strong>g, a basicfeature of the vacuum structure of QCD, signaledby appearance of quark and gluon condensates.Formation of the condensates is a non-pertubativeQCD phenomenon and its studies are verydifficult and possible only via lattice QCD or23


and/or baryon density of the <strong>nuclear</strong> matter.Although the quark and gluon condensates are notan experimental observable QCD sum rules relatetheir expectation values to the <strong>in</strong>tegral over hadronicspectral functions and therefore open a possibility(though not direct) to study their behavior <strong>in</strong> the<strong>nuclear</strong> matter. Brown and Rho suggested scal<strong>in</strong>glow which relates dropp<strong>in</strong>g of the quark condensatewith hadron masses as a function of the <strong>nuclear</strong>density. This suggestion has triggered widespreadtheoretical [13] and experimental activities withspectacular results. Enhanced low mass (M < 1AGeV/c 2 ) dilepton (e + e - and µ + µ - ) pair production <strong>in</strong>nucleus-nucleus collisions at the CERN Super-Proton-Synchrotron (SPS) were reported by CERES[14] and NA60 collaborations [15]. These f<strong>in</strong>d<strong>in</strong>gshave been successfully expla<strong>in</strong>ed by theoreticalmodels assum<strong>in</strong>g substantial broaden<strong>in</strong>g of the <strong>in</strong>mediumρ-meson spectral function. At lower beamenergies of 1-2 AGeV similar enhancements weremeasured by the DLS and HADES at GSI [16], but,<strong>in</strong> contrast to the SPS energies, they are still lack<strong>in</strong>gfull theoretical explanation. Figure 3 showsdielectron <strong>in</strong>variant mass distribution measured byHADES <strong>in</strong> C+C collisions at 2 AGeV together withLQCD [Bowman et. al ‘02]Instanton model1fmrFigure 1: Top: Total cross section as a function of the excess energyQ for the reactions pp→ppη (squares) and pp→ppη΄ (circles). Thedotted l<strong>in</strong>es <strong>in</strong>dicate a 3-body phase space <strong>in</strong>tegral normalizedarbitrarily. The solid l<strong>in</strong>es show the phase space distribution with<strong>in</strong>clusion of the proton-proton f<strong>in</strong>al state <strong>in</strong>teraction. The result ofcalculations tak<strong>in</strong>g <strong>in</strong>to account additionally the <strong>in</strong>teractionbetween the η meson and the proton is presented by the red dottedl<strong>in</strong>e Bottom: Dalitz plot distribution for the pp→ppη reactiondeterm<strong>in</strong>ed at the excess energy of Q = 15.5 MeV. It showsenhancement due to strong pp f<strong>in</strong>al state <strong>in</strong>teractions (black) anddue to p-η <strong>in</strong>teractions [4]models based on effective field theories. As anexample of such calculations [12] Figure 2 showslight quark constituent mass as a function of fourmomentum transfer, which can be related todistance probed for example by photon <strong>in</strong>electron-nucleon scatter<strong>in</strong>g experiment. As onecan see at distance of ~ 1 fm quark mass obta<strong>in</strong>s itsconstituent mass of ~350 MeV/c 2 .QCD <strong>in</strong>spired models predict decrease ofthe quark condensate <strong>in</strong> a function of temperatureFigure 2. Mass of light quark as function of four momentum transferobta<strong>in</strong>ed from lattice QCD.expected contributions from hadron decays atchemical freeze-out (l<strong>in</strong>e A). A strong enhancement(shown <strong>in</strong> the bottom figure) over these sources isseen for the <strong>in</strong>variant masses M>0.15 GeV/c 2 (π 0mass). It can only partially be expla<strong>in</strong>ed byadditional dielectron decays from short livedresonances (∆ and ρ) populated <strong>in</strong> the early collisionphase (dashed l<strong>in</strong>e B) assum<strong>in</strong>g vacuum spectralfunctions. This observation suggests significant <strong>in</strong>mediumeffects due to collision dynamics and/or <strong>in</strong>mediumspectral function modification. Follow-upexperiments with heavy collision systems (fromAr+KCl to Au+Au) will provide <strong>in</strong> next 2-3 yearsmore <strong>in</strong>formation on the nature of the enhancement.Furthermore, precise measurements of the ω and ρmeson spectral functions <strong>in</strong> nucleus will be24


measured by HADES collaboration and will providecomplementary data on <strong>in</strong>-medium spectralfunction at T=0 and normal <strong>nuclear</strong> matter density.Studies of charged Kaon production <strong>in</strong>heavy ion collisions at beam energies close toproduction threshold <strong>in</strong> NN reactions provideanother, though not direct, possibility to study <strong>in</strong>mediumhadron properties. Multi-step processes ofthe type NN→NNπ Nπ→KY (Y denotes hyperon)are driv<strong>in</strong>g production reactions and are conf<strong>in</strong>ed toa high density phase of a fireball. Consequently,K + /K - production ratio appears very sensitive to <strong>in</strong>mediumpotential of kaons which is predicted to beslightly repulsive for K + and attractive for K - . Thisfeature leads to the lower<strong>in</strong>g of K - productionthreshold <strong>in</strong> <strong>nuclear</strong> matter and to the <strong>in</strong>crease of theK - /K + ratio over the value known from NNreactions.This phenomenon was for the first timemeasured by the KAOS collaboration [17] andconfirmed by <strong>in</strong>dependent measurement by theFOPI experiment at GSI [18]. Moreover, Kaonproduction at this energy also appears very sensitiveto <strong>nuclear</strong> matter compressibility and is related tothe <strong>nuclear</strong> matter Equation Of State (EOS). Inparticular excitation function of the K + production <strong>in</strong>Au+Au collisions when compared to the measuredfor lighter C+C system allows to discrim<strong>in</strong>atebetween two dist<strong>in</strong>ct EOS: soft and hard, favor<strong>in</strong>gthe first one as shown <strong>in</strong> the bottom part of [19].Further measurements of <strong>in</strong>-medium kaonproperties are planned with the upgraded FOPIdetector with the ma<strong>in</strong> aim to measure flow of K -mesons <strong>in</strong> heavy ion collisions to p<strong>in</strong> down detailsof the <strong>in</strong>-medium kaon potential.Kaon production will also be cont<strong>in</strong>uedwith new Compressed Barionic Matter (CBM)experiment at FAIR at higher beam energies(8-40 AGeV) [20]. Ma<strong>in</strong> emphasis <strong>in</strong> studies ofhadron properties <strong>in</strong> <strong>nuclear</strong> matter, however, willbe placed on D and J/ψ mesons, for a first time <strong>in</strong>the same experiment. Production of D ± mesons,which consist of light (u,d) quarks and heavy cquark, is predicted to exhibit <strong>in</strong>-medium masssplitt<strong>in</strong>g of the order of 50 MeV/c 2 and hence canbe probed experimentally. In-medium propertiesof charmed mesons and charmonium states willalso be probed at normal <strong>nuclear</strong> matter byantiproton-nucleus collisions by the PANDAexperiment at High Energy Storage R<strong>in</strong>g at futureFAIR.Figure 3. Top: Invariant e+e- mass distribution measured <strong>in</strong>C+C collisions at 2 AGeV by HADES collaborationcompared to contributions expected from decays of: (i) longlived hadrons after chemical freeze-out (coctail A) and (ii)short lived resonances (ρ,∆) (coctail B). Bottom: Ratio of dataand coctail A, and coctail A and B (dashed l<strong>in</strong>e). The lattershows contribution from ρ,∆ decays <strong>in</strong>side fireball.NUCLEAR MATTER UNDER EXTREMECONDITIONSHeavy ion collisions give uniqueopportunity to <strong>in</strong>vestigate <strong>nuclear</strong> matter underextreme temperatures and/or densities <strong>in</strong> earthboundlaboratories. The ma<strong>in</strong> goal is to search forand explore <strong>nuclear</strong> matter phase transition fromhadron gas to Quark Gluon Plasma (QGP), a stateof <strong>nuclear</strong> matter which existed ~1√s after the BigBang. Nuclear matter phase diagram is shown <strong>in</strong>Figure 4 (top) together with exploration regionscovered by SIS/ Bevelac (√s


Figure 5. Top: K - /K + ratio <strong>in</strong> Ni+Ni collisions as function ofnormalized rapidity <strong>in</strong> nucleus-nucleus C M frame: y 0 = (y/Y cm -1)compared to model predictions with (solid l<strong>in</strong>e) and without(dashed l<strong>in</strong>e) <strong>in</strong>-medium kaon mass modification: -K + mass<strong>in</strong>crease, K - mass decrease. Bottom: Ratio of K + multiplicity <strong>in</strong>Au+Au and C+C collisions as function of beam energy comparedto predictions based on soft (red) and hard(blue) <strong>nuclear</strong> matterequation of state.what are then the properties of the <strong>nuclear</strong> matter<strong>in</strong> such extreme conditions? Have we established anew form of <strong>nuclear</strong> matter <strong>in</strong> our laboratories?First strik<strong>in</strong>g feature observed by theBRAHMS collaboration at RHIC is that the netproton rapidity distributions around centralregion (y cm ~0) are significantly smaller, ascompared to AGS and SPS, what <strong>in</strong>dicated largermatter transparency (see Figure 4 and note thatbeam rapidity at the RHIC top energy is around5.4). BRAHMS estimated the average rapidity lossto be equal 2.0±0.4. This value is significantlylower than predicted by the empirical l<strong>in</strong>earscal<strong>in</strong>g from lower AGS and SPS energies [24].Nevertheless, the absolute energy loss <strong>in</strong>creasesappreciably from SPS to RHIC reach<strong>in</strong>g the valueFigure 4. Top: Nuclear matter phase diagram (temperature vsbaryonic chemicl potential). Solid l<strong>in</strong>e <strong>in</strong>dicates temperature ofchemical freeze-out determ<strong>in</strong>ed from particle ratios measured <strong>in</strong> heavyion collisions at various accelerators <strong>in</strong>dicated <strong>in</strong> upper panel). Shadedarea presents predicted phase border between hadronic and QuarkGluon Plasma and critical po<strong>in</strong>t (E). Bottom: Net proton (protonantiproton)rapidity distributions measured at top AGS, SPS andRHIC energies. Beam rapidities are <strong>in</strong>dicated by dotted l<strong>in</strong>es.of about 72 GeV per participant<strong>in</strong>g nucleon [25].Furthermore, at mid-rapidity the anti-proton toproton ratio is on the level of 0.75 which <strong>in</strong>dicatesthat there is still a significant contribution fromparticipant baryons over the entire rapidity range[26]. On the other hand, the anti-particle to particleratios for mesons, that dom<strong>in</strong>ate the producedmatter, are consistent with unity.The above observations clearly show thatstudies of high energy nucleus-nucleus collisionshave moved to a qualitatively new <strong>physics</strong>doma<strong>in</strong> characterized by a high degree of reactiontransparency lead<strong>in</strong>g to the formation of a nearbaryon free central region with approximatebalance between matter and anti-matter.26


Several observables have been proposedfor RHIC and SPS energies as possible signals forthe formation of QGP. One of the most importantones is a jet suppression quench<strong>in</strong>g seen directlyas a suppression of high transverse momentumhadrons (p ⊥ > 2 GeV/c) produced <strong>in</strong> HI collisionsas compared to nucleon-nucleon reactions. Thiseffect can be quantified by the <strong>nuclear</strong>modification factor R AA [27]. It is displayed <strong>in</strong>Figure 4 for 2 pseudo-rapidity regions (η) andvarious centrality selections (central and semiperipheral)for the BRAHMS data. The apparenthigh p ⊥ suppression <strong>in</strong> central collisions has been<strong>in</strong>terpreted as a consequence of bremsstrahlunglosses of high p ⊥ partons travers<strong>in</strong>g deconf<strong>in</strong>edmedium created <strong>in</strong> HI collisions. Accord<strong>in</strong>g toQCD colored objects may lose energy by radiat<strong>in</strong>ggluons as bremsstrahlung [28]. Due to the colorcharge of the gluons, the energy loss isproportional to the square of the length of colormedium traversed. Such a mechanism wouldstrongly degrade the energy of lead<strong>in</strong>g partonsresult<strong>in</strong>g <strong>in</strong> a reduced transverse momentum oflead<strong>in</strong>g particles <strong>in</strong> the jets and the effect isexpected to <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g collisionenergy, system size and centrality, as observed <strong>in</strong>the experiments [29].Unique feature of the BRAHMS andPHOBOS spectrometers are a large acceptance atforward η regions accompanied by excellentparticle identification. Surpris<strong>in</strong>gly large R AAsuppression at forward η region is observed bothfor Au+Au and d+Au collid<strong>in</strong>g systems (see alsoFigure 6). For Au+Au this observation led to asuggestion that suppress<strong>in</strong>g medium extends also<strong>in</strong> the longitud<strong>in</strong>al direction, however, for d+Authe suppression has been attributed to the <strong>in</strong>itialconditions of the collid<strong>in</strong>g Au nucleus, <strong>in</strong>particular, to the possible existence of the ColorGlass Condensate (CGC)- another new form of<strong>nuclear</strong> matter [30].Anisotropy of emitted hadrons withrespect to the reaction plane (flow) is an importantobservable which characterizes the gradient ofpressure build <strong>in</strong> the reaction zone at early stageof the collision. Figure 6 shows anisotropiesmeasured for 200 AGeV central Au+Au collisionsobta<strong>in</strong>ed by the PHOBOS collaboration [31]. Solidl<strong>in</strong>e shows result of hydrodynamical calculationwhich assumes ideal fluid nature (no viscosity) ofthe matter and which for first time reproducesanisotropy strength measured at RHIC energies.This surpris<strong>in</strong>g result <strong>in</strong>dicates that <strong>in</strong> contrast toformer predictions <strong>nuclear</strong> matter created <strong>in</strong> thesecollisions is not consistent with a model of weakly<strong>in</strong>teract<strong>in</strong>g gas of partons but rather strongly<strong>in</strong>teract<strong>in</strong>g fluid.v 20.20.150.10.0500 0.5 1 1.5 2 2.5 3 3.5 4(GeV/c)p T200 GeV Au+Au (0-50%)Hydrodynamic calculationFigure 6. Top: Nuclear modification factor (R AA ) <strong>in</strong> function oftransverse momentum for 2 pseudo-rapidity b<strong>in</strong>s and reaction classes(central and semi-peripheral) measured by BRAHMS <strong>in</strong> 200 AGeVAu+Au collisions. Lower row shows ratio of R AA central to semiperipheralcollsions. Bottom: Eliptic flow (ν 2 ) for same collisionsmeasured by PHOBOSFurther measurements are certa<strong>in</strong>lynecessary to understand nature of the mattercreated <strong>in</strong> these collisions. The programme will becont<strong>in</strong>ued at upcom<strong>in</strong>g LHC by the dedicatedheavy ion experiment ALICE and also ATLAS,which was designed to study pp <strong>in</strong>teractions. AtLHC energy densities will <strong>in</strong>crease to 15-40GeV/fm 3 and estimated life time of the QGP willbe <strong>in</strong> the order of 5-10 fm (by the volume size ofthe fireball at the freeze-out of 2000 fm 3 !).At lower energies (30-40 AGeV) upgradeof the Na49 experiment is planned to search forthe onset of the deconf<strong>in</strong>ment and critical po<strong>in</strong>t ofthe <strong>nuclear</strong> matter. The <strong>in</strong>dications of the first onehas been proposed by the Na49 experiment as theexplanation for the pronounced peak <strong>in</strong>kaon/pion ratio observed <strong>in</strong> HI collisions, but not<strong>in</strong> pp, at SPS energies [32].27


Acknowledgements: I would like to thankP.Moskal and P. Staszel for many valuablediscussions and for read<strong>in</strong>g this manuscript. I amgrateful for help <strong>in</strong> preparation of my presentationto: :M. Gaździcki, M. Kowalski, T. Matulewicz , Z.Majka, J. Pluta, B. Sikora , J. Smyrski, B.Wosiekand W. Zipper.[1] C. Hanhart , Phys. Rep. 397 (2004) 155[2] G. Faldt, T. Johansson, C. Wilk<strong>in</strong>, Phys. Scripta T99 (2002) 146[3] P. Moskal, M. Wolke, A. Khoukaz, W.Oelert, Prog. Part. Nucl. Phys. 49 (2002) 1.[4] P. Moskal et al., hep-ph/0408162, Phys. Rev. C 69 (2004) 025203[5] S. D. Bass, Phys. Lett. B 463 (1999) 286[6] M. Abdel-Mary et al., PRC68 (2003) 021603[7] H. Machner, Prog. Part. Nucl. Phys.50(2003) 605[8] WASA-at-COSY collaboration, H. H. Adam nucl-ex/0411038[9] F. Balestra et al., Phys. Rev. C 63 (2001) 024004.[10] M. Hartmann et al., Phys. Rev. Lett. 96 (<strong>2006</strong>) 242301[11] K. Peters, Nucl. Phys. Proc. Suppl (<strong>2006</strong>)154, J. Smyrski, Int. J. Mod. Phys. A20(2005)564[12] P. O. Bowman et. al., hep-lat/0203001[13] R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, (2000) 1[14] G. Agakichiev et al., Eur. Phys. J. C 41, (2005) 475[15] R. Arnaldi et al., Phys. Rev. Lett. 96, (<strong>2006</strong>) 162302[16] G. Agakichiev et al. Phys. Rev. Lett. 98 (2007) 052302[17] F. Laue et al. , Phys. Rev. Lett. 82(1999)[18] K. Wisniewski et al., Eur. Phys. J. A9 (2000) 515[19] C.Sturm et al., Phys. Rev. Lett. 86 (2001) 39 , C. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974[20] P. Senger, Acta Phys. Polon. B37 (<strong>2006</strong>) 115[21] P. Staszel et al. Int. J. Mod. Phys. A20, (2005) 4369.[22] I. G. Bearden et al. Phys. Rev. Lett. 94 (2005) 162301.[23] F. Karsch, Nucl. Phys. A698 (2002) 199.[24] F. Vedebaek and O. Hansen, Phys. Rev. C 52 (1995) 2684.[25] I.G. Bearden et al. Phys. Rev. Lett. 93, (2004) 102301.[26] I.G. Bearden et al. Phys. Rev. Lett. 90 (2003) 102301.[27] I. Arsene et al. Phys. Rev. Lett. 91 (2003) 072305.[28] M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B594 (2001) 371.[29] T.M. Larsen et al., Nucl. Phys. A774 (<strong>2006</strong>) 541.[30] I. Arsene et al., Phys. Rev. Lett. 93 (2004) 242303. D. Kharzeev, E. Lev<strong>in</strong> and L. McLerran,Phys. Lett. B 561 (2003) 93.[31] B. B Back et al., Nucl.Phys.A757(2005)28.[32] Na49: Proposal SPSC-P-26428


NUCLEAR ∗ THEORY IN POLANDJ. Dobaczewski 1,21 Institute of Theoretical Physics, Warsaw University, Warszawa2 Department of Physics, University of Jyväskylä, F<strong>in</strong>landThe goal of this short overview is to present asnapshot of Polish scientists’ activity <strong>in</strong> theory of<strong>nuclear</strong> structure, <strong>nuclear</strong> astro<strong>physics</strong>, and<strong>nuclear</strong> reactions. In short, this doma<strong>in</strong> of <strong>physics</strong>will be below called <strong>nuclear</strong>*. The time span I amgo<strong>in</strong>g to cover is limited to exactly five years,between 2001 and 2005.The def<strong>in</strong>ition of boundaries of this doma<strong>in</strong> of<strong>physics</strong> is, as always, a difficult task. There arecerta<strong>in</strong>ly numerous connections, by which thisbranch of science extends towards atomic orcondensed matter <strong>physics</strong> on one side, andtowards particle and high energy <strong>physics</strong> on theother. For the sake of adopt<strong>in</strong>g a precise and welldef<strong>in</strong>ed methodology, I am go<strong>in</strong>g to look atpublications that appeared <strong>in</strong> specific journals orspecific sections of these journals. The selection Ihave made is supposed to cover the ma<strong>in</strong>streamscientific journals, <strong>in</strong> which papers <strong>in</strong> this doma<strong>in</strong>of <strong>physics</strong> are published, although the completelist would certa<strong>in</strong>ly be longer and probably moredesirable.By this token, the numbers of reported papersundoubtedly constitute a lower limit; the totalnumber of papers is significantly higher.Nevertheless, by look<strong>in</strong>g at lists of authors ofthese papers, I was able to identify Polishphysicists who actively contribute to the scientificresearch <strong>in</strong> this doma<strong>in</strong> of <strong>physics</strong>.The analysis presented below is based on publications thatappeared <strong>in</strong>:• European Physical Journal A• Nuclear Physics A• Physical Review Letters, section NuclearStructure, page numbers xx25xx.• Physical Review C, sections Nucleon-Nucleon Interaction, Few-Body Systems(S=0), Nuclear Structure (S=3), NuclearReactions (S=6), Nuclear Astro<strong>physics</strong>(S=8), page numbers xxxSxx.• Physics Letters BAn automated search of electronic databases,performed for the above five journals andsections, revealed 838 papers with co-affiliationsfrom Poland. In case of Physics Letters B, papersare not divided <strong>in</strong>to sections, which excludes apossibility of simple identification of whetherthey belong to the class of <strong>nuclear</strong>* <strong>physics</strong>.Therefore 327 papers published <strong>in</strong> this journalwere manually scanned, and 24 of them wereattributed to <strong>nuclear</strong>* <strong>physics</strong>.Moreover, <strong>in</strong> case of European PhysicalJournal A, only the <strong>in</strong>formation on the affiliationof the so-called correspond<strong>in</strong>g author is available<strong>in</strong> electronic databases, which strongly limits thenumber of papers from Poland found <strong>in</strong> thisjournal.141210864206050403020100Eur. Phys. Jour. . A Nucl. Phys. . A Phys. Rev. Lett.only corresp. . auth.5010 4040302001 2002 2003 2004 20052001 2002 2003 2004 200560201008765432102001 2002 2003 2004 20052001 2002 2003 2004 2005121086420120100806040200only section 252001 2002 2003 2004 2005Phys. Rev. . C Phys. Lett. . B Totalonly <strong>nuclear</strong>*45only <strong>nuclear</strong>*571072001 2002 2003 2004 2005Fig. 1. Numbers of papers from Poland published <strong>in</strong> theoreticaland experimental <strong>nuclear</strong>* <strong>physics</strong> <strong>in</strong> five major journals.All <strong>in</strong> all, dur<strong>in</strong>g 2001-2005, 535 papers havebeen published, both <strong>in</strong> theory and experiment.With<strong>in</strong> the above methodology, results of searchesare presented <strong>in</strong> Fig 1, where numbers of papersare shown as functions of the publication year.Numbers <strong>in</strong> ovals and horizontal bars <strong>in</strong>dicate theaverage numbers of papers per year. The firststrik<strong>in</strong>g observation, which is revealed by thepresent analysis, is a great stability <strong>in</strong> time ofcontribution of Polish physicists to this doma<strong>in</strong> of<strong>physics</strong>, with at least 100 papers per year.Similarly, Fig. 2 shows the percent fractions ofpapers com<strong>in</strong>g from Poland, as compared to thetotal numbers of papers published 2 . It turns outthat about every 20 th paper published world-widewas coauthored by a scientist from Poland. It isparticularly gratify<strong>in</strong>g to see that about every 10 thpaper published <strong>in</strong> Physical Review Letters wascoauthored by a Polish author.2 For Physics Letters B, percentage of all papers fromPoland (not only <strong>nuclear</strong>*) is shown <strong>in</strong> the Figure.29


7%6%5%4%3%2%1%0%8%7%6%5%4%3%2%1%0%Eur. Phys. Jour. . A Nucl. Phys. . A Phys. Rev. Lett.3.4%2001 2002 2003 2004 20057%6%6. 9% 6.05%2001 2002 2003 2004 20056%5%4%3%2%1%0%4%3%2%1%0%2001 2002 2003 2004 20052001 2002 2003 2004 200514%12%4.7% 10%11.0%8%6%4%2%0%7%6%5%4%3%2%1%0%2001 2002 2003 2004 2005Phys. Rev. . C Phys. Lett. . B Total6.0%5.7%2001 2002 2003 2004 2005Fig. 2. Percent fractions of papers published with Polish coaffiliations<strong>in</strong> theoretical and experi-mental <strong>nuclear</strong>* <strong>physics</strong> <strong>in</strong> fivemajor journals.In order to put the above numbers <strong>in</strong>perspective, the analogous analysis, with<strong>in</strong> thesame methodology, was repeated for papersorig<strong>in</strong>at<strong>in</strong>g from France, the country, which by allmeans can be considered a scientific superpower<strong>in</strong> the research worldwide. Fig. 3 presents thedistributions of papers with Polish (535) andFrench (1016) co-affiliations, published <strong>in</strong> the fivemajor journals.POLAND 535 FRANCE 1016Physical Review CNuclear PhysicsEuropean Physical Journal APhysical Review LettersPhysics Letters Bcollaborations between theorists and experimentalists.With all the reservations such aqualification may carry, 158 theoretical paperswere selected for further analysis.93765Staff 63 Junior 3492 11615Publications 158 Output 2754 8 4 13 12 4 449511440103Sołtan Institute for Nuclear StudiesMa ria Curie -S kłodowska UniversityJagellonian UniversityWarsaw UniversitySilesian UniversityNiewodniczański Institute of Nuclear PhysicsNicolaus Copernicus Astronomical CenterWarsaw University of TechnologyFig. 4. Distributions of authors (upper left), junior authors(upper right), papers (lower left), and output (lower right) amongeight Polish scientific <strong>in</strong>stitutions <strong>in</strong> <strong>nuclear</strong>* theory.53361762926Fig. 3. Numbers of papers published with Polish and French coaffiliations<strong>in</strong> theoretical and experi-mental <strong>nuclear</strong>* <strong>physics</strong> <strong>in</strong> fivemajor journals.Although due to restrictions of the adoptedmethodology both total numbers of papers areprobably strongly underestimated, nonethelesstheir relative values illustrate important strengthof the Polish community <strong>in</strong> the doma<strong>in</strong> of<strong>nuclear</strong>* <strong>physics</strong>. It is important to add at thispo<strong>in</strong>t that the scientific collaboration betweenPoland and France is particularly strong, andhence a great deal of scientific papers arecoauthored by Polish and French scientists, thuscount<strong>in</strong>g towards figures of merit of bothcountries.The next step of the analysis requiresidentify<strong>in</strong>g papers that can be qualified astheoretical. This could not have been doneotherwise but by scann<strong>in</strong>g all the 535 papers oneby one, and tak<strong>in</strong>g decisions <strong>in</strong> each of the<strong>in</strong>dividual cases. The task was not easy, becausevery many papers result from close and fruitful30As shown <strong>in</strong> Fig, 4, among authors of theabove set of papers, I could identify 63 Polishtheorists affiliated with 8 scientific <strong>in</strong>stitutions. Itis very important to see that 34 of them, i.e. morethan a half, are young scientists (prior to theirD.Sc. degree). At this po<strong>in</strong>t, the largestuncerta<strong>in</strong>ty comes from the fact that it is oftendifficult to label a given author as a ‘theorist’ or‘experimentalist’. And aga<strong>in</strong>, the numbers shown<strong>in</strong> the Figure certa<strong>in</strong>ly do not exhaust the entirelist of Polish <strong>nuclear</strong>* theorists. However, thosewho have published dur<strong>in</strong>g five years at least onepaper <strong>in</strong> one of the five journals considered,probably belong to the class of the most activeones.Distribution of papers among the 8<strong>in</strong>stitutions shows that 4 of them provide themajority of publications. It is <strong>in</strong>terest<strong>in</strong>g to seethat the sum of numbers of publications <strong>in</strong> thisdistribution is equal to 160. This means thatpapers are coauthored by researchers work<strong>in</strong>g atdifferent <strong>in</strong>stitutions. This seems to be a typicalsituation <strong>in</strong> Polish science, where very <strong>in</strong>tensecollaborations exist between Polish and foreignphysicists, but very few <strong>in</strong>side Poland.


Another important observation is revealed bythe output <strong>in</strong>dex shown <strong>in</strong> Fig. 4. The output<strong>in</strong>dex is constructed by add<strong>in</strong>g numbers of papersof each author affiliated with a given <strong>in</strong>stitution.Therefore, it illustrates the degree of <strong>in</strong>ternalcollaboration and strength of research groups atvarious <strong>in</strong>stitutions. It turns out that, on average,between 1.2 and 3 authors work<strong>in</strong>g at the same<strong>in</strong>stitution cosign scientific papers <strong>in</strong> this doma<strong>in</strong>of <strong>physics</strong>.With<strong>in</strong> the analyzed set of publications, sixauthors have published ten or more papers. Itturns out that these six authors provide more thanone half of the output <strong>in</strong>dex def<strong>in</strong>ed above. Thisallows to identify three most active researchgroups <strong>in</strong> <strong>nuclear</strong>* theory <strong>in</strong> Poland. S<strong>in</strong>ce theirresearch is <strong>in</strong> more details described <strong>in</strong> other partsof the Report, here I only give a very brief accountof their activity, and cite their flagship publicationsand results.The group of K. Rusek (Sołtan Institute forNuclear Studies) with collaborators has published<strong>in</strong> years 2001–2005 over 20 papers <strong>in</strong> the doma<strong>in</strong>of nucleus-nucleus reactions, especially those<strong>in</strong>volv<strong>in</strong>g exotic species. Their very <strong>in</strong>terest<strong>in</strong>gresult concerns the dipole polarizability of 6 He [1],where the reduction of the 6 He+ 208 Pb elasticscatter<strong>in</strong>g cross section at forward angles wasshown to be caused by long-range dipoleCoulomb polarizability of the projectile.The group of H. Witała, J. Golak, andR. Skibiński (M. Smoluchowski Institute ofPhysics, Jagiellonian University) withcollaborators has published <strong>in</strong> years 2001–2005over 35 papers <strong>in</strong> the doma<strong>in</strong> of structure andreactions of few-body systems. Their pioneer<strong>in</strong>gstudy of the polarization transfer <strong>in</strong> d(p,p)d andd(p,d)p reactions [2], performed with modern<strong>nuclear</strong> forces, <strong>in</strong>clud<strong>in</strong>g the NNLO <strong>in</strong>teractionsobta<strong>in</strong>ed with<strong>in</strong> the chiral perturbation theory,reveals important role of three-body <strong>in</strong>teractions.The group of J. Dobaczewski, W. Nazarewicz,and W. Satuła (Institute of Theoretical Physics,Warsaw University) with collaborators haspublished <strong>in</strong> years 2001–2005 over 30 papers <strong>in</strong>the doma<strong>in</strong> of <strong>nuclear</strong> structure studied withenergy-density-functional methods. In their studyof deformation effects <strong>in</strong> nuclei near the neutrondrip l<strong>in</strong>e [3] they po<strong>in</strong>t out new possible shapecoexistenceeffects that may extend <strong>nuclear</strong>b<strong>in</strong>d<strong>in</strong>g due to the h<strong>in</strong>drance of neutron emissionbetween states hav<strong>in</strong>g different deformations.In summary, a brief <strong>in</strong>spection of Polishcontribution to theoretical studies <strong>in</strong> <strong>nuclear</strong>*<strong>physics</strong> (<strong>nuclear</strong> structure, <strong>nuclear</strong> astro<strong>physics</strong>and <strong>nuclear</strong> reactions) shows the strength andimportance of this doma<strong>in</strong> of research <strong>in</strong> Poland.This research is carried out <strong>in</strong> 4 lead<strong>in</strong>g scientific<strong>in</strong>stitutions, <strong>in</strong>volves more than 60 physicists, andbr<strong>in</strong>gs over 30 publications <strong>in</strong> major journals peryear. In spite of a weak collaboration betweenPolish <strong>in</strong>stitutions, strong and dynamic groupscarry out world-class research on several subjectsthat are <strong>in</strong>ternationally recognized as Polishtrademarks.[1] K. Rusek, N. Keeley, K.W. Kemper, and R. Raabe, Phys. Rev. C67, 041604 (2003).[2] H. Witała, J. Golak, R. Skibiński, W. Glöckle, A. Nogga, E. Epelbaum, H. Kamada, A. Kievsky, and M.Viviani, Phys. Rev. C73, 044004 (<strong>2006</strong>).[3] M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, D.J. Dean, Phys. Rev. C68, 054312 (2003)∗ Structure, Astro<strong>physics</strong>, and Reactions31


NUCLEAR PHYSICS IN POLAND – APPLICATIONS ANDINTERDISCIPLINARY RESEARCHPawel OlkoH. Niewodniczański Institute of Nuclear Physics PAN, KrakówThe general public frequently associates<strong>nuclear</strong> <strong>physics</strong> with the development of <strong>nuclear</strong>weapons or with the Chernobyl <strong>nuclear</strong> powerplant reactor accident. Less recognized are thenumerous beneficial applications of <strong>nuclear</strong><strong>physics</strong> and techniques which serve mank<strong>in</strong>d <strong>in</strong>technology, health care and environmentalprotection. In this short review, medical andradiation protection aspects of applied <strong>nuclear</strong>research <strong>in</strong> Poland, ma<strong>in</strong>ly based on accelerators,will be outl<strong>in</strong>ed.Table I. The statistical data on the number of employees, scientists,Ph.D. students and annual budget of some Polish <strong>in</strong>stitutions<strong>in</strong>volved <strong>in</strong> applied <strong>nuclear</strong> research. The acronyms of the<strong>in</strong>stitutions are expla<strong>in</strong>ed <strong>in</strong> the text.Employees ScientistsPh.D.studentsAnnualbudget(M€)ICHTJ 270 84 21 4.5IFJPAN450 200 55 7.0ŚLCJ 60 18 3 1.1Historically, Warszawa and Kraków werethe first Polish centers where systematic research<strong>in</strong> <strong>nuclear</strong> <strong>physics</strong> began at the beg<strong>in</strong>n<strong>in</strong>g of the50-ties of last century. The current list is muchlonger and <strong>in</strong>cludes universities and technicalschools <strong>in</strong> Katowice, Lubl<strong>in</strong>, Łódź, Poznań,Wrocław and several other Polish cities. The scaleof these activities should be viewed from theperspective of the budget available to universitiesand research <strong>in</strong>stitutes. As can be seen from datashown <strong>in</strong> Table 1, the average budget of threemajor Polish <strong>in</strong>stitutes <strong>in</strong>volved <strong>in</strong> <strong>nuclear</strong>research <strong>in</strong> 2004 ranged between 15 and24 kEuro/year/ per employee. This is clearly<strong>in</strong>adequate, be<strong>in</strong>g at least an order of magnitudebelow that available at most of scientific<strong>in</strong>stitutions <strong>in</strong> developed European countries.The Heavy Ion Laboratory (Polishacronym SLCJ) of the Warsaw University is a“User Facility” which operates an isochronousK max =160 cyclotron which delivers heavy ionbeams rang<strong>in</strong>g from B to Ar with energiesbetween 2 and 10 MeV/nucleon. In 2008 a secondcommercial proton – deuteron cyclotron (E p =16.5 MeV) will be <strong>in</strong>stalled there for productionand research on radiopharmaceuticals for PositronEmission Tomography (PET) – see Fig. 1.Production of long – lived radiopharmaceuticalsfor other medical and life – science applications isalso foreseen. The SLCJ coord<strong>in</strong>ates the work ofthe Warsaw Consortium for PET Collaboration (cf.Fig. 2), aimed at deliver<strong>in</strong>g fluorodeoxyglucose(FDG) for many cl<strong>in</strong>ics <strong>in</strong> Warsaw, us<strong>in</strong>g this newcyclotron. At present, some 20 <strong>in</strong>stitutions <strong>in</strong>Warsaw region expressed their <strong>in</strong>terest <strong>in</strong>receiv<strong>in</strong>g PET isotopes for diagnostics andresearch. This could improve the criticallyunderdeveloped <strong>nuclear</strong> medic<strong>in</strong>e facilities, whereonly a few hundred PET procedures per year areperformed to serve the 38 million population ofPoland.CYCLOTRONCHEMISTRYCHEMISTRYQCFig. 1. The prelim<strong>in</strong>ary layout of the new proton/deuteron cyclotron and chemistry units <strong>in</strong> Heavy Ion Laboratory of the WarsawUniversity.33


Fig. 4. The schematic view of the plans of the neutron beamdelivery system for BNCT facility at the MARIA reactor atIEA Świerk. The construction of the facility starts <strong>in</strong> 2008.Fig. 2. Distribution of the Warsaw Consortium for PETCollaboration on the city map.A. Sołtan Institute of Nuclear Studies <strong>in</strong>Warsaw – Świerk (Polish acronym IPJ) is a stateowned Laboratory, which carries out basicresearch on subatomic <strong>physics</strong>, i.e. elementaryparticle and <strong>nuclear</strong> <strong>physics</strong>, hot plasma <strong>physics</strong>and related fields. IPJ is well known as thedeveloper and producer of specialized equipmentfor various applications <strong>in</strong> medic<strong>in</strong>e andFig. 3. The prototype of X-ray needle, developed at the AndrzejA. Sołtan Institute of Nuclear Studies <strong>in</strong> Warsaw – Świerk.environmental radiation protection. TheEstablishment for Nuclear Equipment (Polishacronym ZdAJ) is IPJ’s production unit which hasdesigned and is manufactur<strong>in</strong>g l<strong>in</strong>ear electronaccelerators for cl<strong>in</strong>ical radiotherapy (deliver<strong>in</strong>gphoton and electron beams up to 15 MeV), for<strong>in</strong>dustrial radiography and for food preservation.22 radiotherapy units have been <strong>in</strong>stalled <strong>in</strong> Polishcl<strong>in</strong>ics <strong>in</strong> the last 10 years and 8 units wereexported. An <strong>in</strong>terest<strong>in</strong>g development of IPJ is am<strong>in</strong>iature X-ray irradiator, called the “X-rayneedle”, which can be used for local tumorirradiation Fig.3.The advantage of the system, as comparedto radioactive sources, is that radiation dose isdelivered locally, dose rate and beam energy canbe optimized, and that the source can be “turnedoff”, so it is safe for the personnel. Another uniqueexperimental setup available at the IPJ is the JETcounter, developed at IPJ to <strong>in</strong>vestigate the trackstructure of ioniz<strong>in</strong>g radiation. Data provided bythe JET counter, is essential <strong>in</strong> understand<strong>in</strong>g theaction of radiation at the molecular level. S<strong>in</strong>gleionization events produced by charged particlespass<strong>in</strong>g through the tissue-equivalent gasexpand<strong>in</strong>g at a pressure of 10-20 Torr, can bedetected and used to reconstruct the trackstructure <strong>in</strong> microscopic volumes represent<strong>in</strong>g theDNA scale.The Institute of Nuclear Energy (Polishacronym IEA) at Świerk-Otwock operates theMARIA research <strong>nuclear</strong> reactor, the only one <strong>in</strong>Poland. This 30 MW unit is used to produceradioisotopes, applied <strong>in</strong> studies of radiationmodification of materials and <strong>in</strong> research us<strong>in</strong>gneutron beams with a maximum fluence rate of4 10 14 n cm -2 s -1 . One of the planned applications ofthis reactor <strong>in</strong> the field of medic<strong>in</strong>e is BoronNeutron Capture Therapy, BNCT. Feasibilitystudies, performed a few years ago by aconsortium of several Polish <strong>in</strong>stitutions, havedemonstrated that a BNCT facility could beconstructed at the MARIA reactor. A neutronbeam delivery system has been proposed, bas<strong>in</strong>gon results of Monte Carlo model<strong>in</strong>g of radiationtransport (Fig.4). Construction of the BNCTfacility is to beg<strong>in</strong> <strong>in</strong> 2008, supported by Structural34


Funds of the European Union foreseen for Poland<strong>in</strong> 2007-2013. Another <strong>in</strong>terest<strong>in</strong>g application isneutron radiography, developed ma<strong>in</strong>ly formaterials science. Thermal neutrons are scatteredvery effectively by ord<strong>in</strong>ary liquids, which opensthe way to study at greater detail the migration ofliquids <strong>in</strong> many <strong>in</strong>organic porous materials bymeans of neutron radiography. Propagation ofwater <strong>in</strong> bricks used for hous<strong>in</strong>g construction hasbeen <strong>in</strong>vestigated by explor<strong>in</strong>g the differencebetween neutron scatter<strong>in</strong>g cross sections.The Henryk Niewodniczański Institute ofNuclear Physics (Polish acronym IFJ) with450 employees and 70 Ph.D. students is the largest<strong>in</strong>stitute of the Polish Academy of Science. Severalaccelerators at IFJ are applied <strong>in</strong> projects related tomedic<strong>in</strong>e and protection of the environment. TheAIC-144 isochronous cyclotron, <strong>in</strong>-house designedand built, is the only accelerator <strong>in</strong> Poland able toaccelerate a beam of protons to energies of about60 MeV. This cyclotron was used to produce apalette of radioisotopes and s<strong>in</strong>ce <strong>2006</strong> it is be<strong>in</strong>gadapted to develop the first Polish facility forproton radiotherapy of eye cancer. The facility willbe completed <strong>in</strong> 2007 (see Fig.5) and aftercommission<strong>in</strong>g <strong>in</strong> 2008, the first patients will betreated. The Kraków Proton Microprobe, based ona Van der Graaff unit which accelerates protons toan energy of up to 3 MeV, is an important tool <strong>in</strong>life sciences and biomedical applications. Survivalof mammalian cells after a controlled number ofproton “hits” has been studied to ga<strong>in</strong> more<strong>in</strong>formation on the “by-stander effect” <strong>in</strong>radiobiology. Another major <strong>in</strong>stallation at the IFJis the Dual Beam Ion Implanter where complexbiocompatible coat<strong>in</strong>g layers with excellentadhesion and low <strong>in</strong>ternal stresses can be created,e.g. for use <strong>in</strong> medical implants. The radiationhazard <strong>in</strong> space has been studied on board of theInternational Space Station with<strong>in</strong> the ESAMatroshka project. Over 3000 thermolum<strong>in</strong>escentdetectors, developed and produced at the IFJ, were<strong>in</strong>stalled <strong>in</strong> a humanoid phantom and exposed <strong>in</strong>open space to <strong>in</strong>vestigate space radiation doses tovarious human organs.The Institute of Nuclear Chemistry andTechnology (ICHTJ), established <strong>in</strong> Warsaw-Żerań<strong>in</strong> 1983, is <strong>in</strong>volved <strong>in</strong> research <strong>in</strong> the field ofradiation chemistry and technology, application of<strong>nuclear</strong> methods <strong>in</strong> material eng<strong>in</strong>eer<strong>in</strong>g andprocess eng<strong>in</strong>eer<strong>in</strong>g, design and production of<strong>in</strong>struments based on <strong>nuclear</strong> and radioanalyticaltechniques, and <strong>in</strong> environmental research Aconsiderable achievement of the ICHTJ was thesuccessful <strong>in</strong>stallation of an <strong>in</strong>dustrial electronbeam to treat gaseous effluents of the PomorzanyFig. 5. Elements of the eye proton therapy <strong>in</strong>stallation for eyeirradiation at the Institute of Nuclear Physics, Kraków.Electric Power Station (EPS) near Szczec<strong>in</strong>, one ofthe first such <strong>in</strong>dustrial <strong>in</strong>stallations <strong>in</strong> Europe.The process <strong>in</strong>volves fast oxidation of SO 2 andNO x , acid formation and gaseous ammonianeutralization of acids to a solid aerosol formwhich is collected on-site at the EPS and later usedas a high-quality fertilizer <strong>in</strong> agriculture. TheICHTJ also produces a number of specialized<strong>in</strong>struments for use <strong>in</strong> <strong>in</strong>dustry, medic<strong>in</strong>e andenvironmental protection. The dose-rate activityFig. 6. The dose-rate activity gauge MAD-2000 for measurementsof the dose rate and activity of 106Ru and 125Ibrachytherapy applicators for eye cancer radiotherapy, developedat ICHTJ.gauge MAD-2000 measures the dose rate andactivity of 106 Ru and 125 I brachytherapy applicatorsfor eye cancer radiotherapy (Fig. 6). TheAMIZ2000 airborne monitor gauge is designed tomeasure airborne dust concentration. These<strong>in</strong>struments can work either as <strong>in</strong>dividual dustpollution monitors or be <strong>in</strong>terconnected with<strong>in</strong> a35


Fig. 7. The schematic view of the proton radiotherapy facility planned <strong>in</strong> frame of National Centre of Hadron Radiotherapy, phase I at IFJ PANKraków. The centre will be operational at the beg<strong>in</strong>n<strong>in</strong>g of 2013.monitor<strong>in</strong>g network. The RGR-40 m<strong>in</strong><strong>in</strong>gradiometer is an explosion proof gauge for rapidmeasurements of the concentration of radon decayproducts <strong>in</strong> coal or metal ore m<strong>in</strong>es, or <strong>in</strong> chemicalraw material m<strong>in</strong>es. Radiometers produced atICHTJ are widely used <strong>in</strong> Polish coal m<strong>in</strong>es tomonitor radon gas concentration.Poland jo<strong>in</strong>ed the European Union on May1 st , 2004. This historical event not only providedPolish scientists with the opportunity toparticipate <strong>in</strong> European Framework Programs butalso gave Poland access to massive EU StructuralFunds. Of about 60 billion Euro (€) foreseen forPoland <strong>in</strong> 2007-2013, 1.2 billion € will be spent <strong>in</strong>reconstruct<strong>in</strong>g our scientific <strong>in</strong>frastructure. Thisstream of money is probably the largest supportfor research facilities <strong>in</strong> the recent history ofPoland. In September <strong>2006</strong> several major scientific<strong>in</strong>stitutions based <strong>in</strong> Katowice, Kielce, Kraków andWarszawa s<strong>in</strong>ged an agreement to form theNational Consortium of Hadron Radiotherapy,NCRH. The goal of this consortium is toconsolidate national research <strong>in</strong> the field of ionradiotherapy and to build a facility to provide thistype of treatment for Polish patients.The NCRH project will be performed <strong>in</strong>two stages. In the first stage (Fig. 7), the IFJKraków cyclotron facility will be upgraded with a235-250 MeV proton cyclotron, eye therapy roomand possibly a radiotherapy gantry. Incooperation with the Kraków Centre of Oncologyand the Department of Ophthalmology andOphthalmic Oncology of the JagiellonianUniversity, a few hundred cancer patients peryear will be treated. The proton beam will be alsoused for research purposes <strong>in</strong> the field of <strong>nuclear</strong><strong>physics</strong>, radiobiology and material eng<strong>in</strong>eer<strong>in</strong>g.In the second stage of the NCRH project, adedicated cl<strong>in</strong>ical ion radiotherapy center will bebuilt <strong>in</strong> Warszawa. The centre will be equippedwith an accelerator, produc<strong>in</strong>g 250 MeV protonsand 400 MeV/amu carbon ions, two protongantries and a therapy room with a horizontalcarbon ion beam. 1500 new cancer patients peryear, directed from all over the Poland, will betreated <strong>in</strong> this facility.Despite severe budgetary constra<strong>in</strong>ts overthe last decades, <strong>nuclear</strong> physicists <strong>in</strong> Poland havemanaged to significantly contribute to progress <strong>in</strong>applied <strong>physics</strong> and <strong>in</strong>terdiscipl<strong>in</strong>ary research.Poland’s membership <strong>in</strong> the European Union andavailability of EU structural funds <strong>in</strong> the years2007-2013 offer new perspectives of radicallymoderniz<strong>in</strong>g and upgrad<strong>in</strong>g her national research<strong>in</strong>frastructure.36


POSSIBLE LOCATION FOR THE UNDERGROUND LABORATORYIN POLANDA.Zalewska 1H. Niewodniczański Institute of Nuclear Physics PAN, KrakówFirst measurements of neutr<strong>in</strong>os from theSun <strong>in</strong> 1964 and from the supernova explosion <strong>in</strong>1987, and recent discoveries of the oscillations ofatmospheric and solar neutr<strong>in</strong>os caused that the<strong>physics</strong> of natural neutr<strong>in</strong>os became the importantfield of studies and that the neutr<strong>in</strong>o astronomywas born. It is clear that neutr<strong>in</strong>os are importantmessengers from stars. Another big but still openquestion concerns the proton decay, predicted byGrand Unification Theories aim<strong>in</strong>g at theunification of fundamental forces <strong>in</strong> Nature.Achiev<strong>in</strong>g significant progress <strong>in</strong> both studiesrequires huge detectors on the 100 – 1000 ktonsscale, i.e. by one to two orders of magnitude largerthan the exist<strong>in</strong>g ones [1].At present there is no s<strong>in</strong>gle <strong>in</strong>frastructure<strong>in</strong> the world which could host such detectors. TheLAGUNA project [2] aims at look<strong>in</strong>g for thepossible localization <strong>in</strong> Europe, <strong>in</strong> agreement withthe ApPEC roadmap. Although studies of the lowenergy neutr<strong>in</strong>os from astrophysical sources andsearches for proton decay are of the primary<strong>in</strong>terest, the localization should take <strong>in</strong>to accountthe possibility of neutr<strong>in</strong>o studies with acceleratorneutr<strong>in</strong>o beams. One of the possible locations ofthe new <strong>in</strong>frastructure is <strong>in</strong> Poland.The pre-feasibility study of the localizationof a big underground laboratory <strong>in</strong> the Polkowice-Sieroszowice m<strong>in</strong>e <strong>in</strong> Poland has been performed<strong>in</strong> the years 2004-<strong>2006</strong>. The Polkowice-Sieroszowice m<strong>in</strong>e belongs to the KGHM hold<strong>in</strong>gof copper m<strong>in</strong>es <strong>in</strong> west-southern Poland. The siteis placed about 80 km from the airport <strong>in</strong> Wrocławand 40 km from the motor way A4 cross<strong>in</strong>gsouthern Poland <strong>in</strong> the west-east direction (seeFigure 1). Its distance from CERN is about 950 km.Apart from copper ores the localgeological structure conta<strong>in</strong>s a layer of NaCl,which is about 70 meters thick and located at adepth of 900-1000 meters below the surface.Anhydrite layers, placed directly above and belowthe salt layer, are of comparable thickness. Thissalt has not been yet massively exploited but <strong>in</strong> thePolkowice-Sieroszowice m<strong>in</strong>e a few big saltFig.1. Map show<strong>in</strong>g the localization of the Polkowice-Sieroszowice site (marked with a red star).caverns were excavated <strong>in</strong> the n<strong>in</strong>eties. One ofthem, almost 100 m long, 15 m wide and 15 mhigh, placed at a depth of 950 m below the surface,is shown <strong>in</strong> Figure 2. It is be<strong>in</strong>g used formeasurement purposes. The movements of thesalt walls have been monitored there s<strong>in</strong>ce 1997 <strong>in</strong>order to understand better the viscous creep ofsalt at big depths. The temperature <strong>in</strong> this cavernis about 35 0 C and the humidity is about 20%.The pre-feasibility study conta<strong>in</strong>ed twoelements: measurements of the background due tonatural radioactivity and <strong>in</strong>itial geo-mechanicalsimulations of the excavation of a huge saltcavern.Fig.2. Photo of the exist<strong>in</strong>g big salt cavern; <strong>in</strong>set shows anelement of the measur<strong>in</strong>g system used for the long termmonitor<strong>in</strong>g of wall movements due to salt viscous creep.1 Contributions: W. Pytel (KGHM Cuprum, Wrocław), K. Urbanczyk, J. Slizowski (M<strong>in</strong>eral and Energy Economy ResearchInstitute PAS, Kraków), J. Dorda, J. Kisiel, A. Konefal (University of Silesia, Katowice), M. Budzanowski, S. Grabowska, K. Kozak,J. Mazur, J.W. Mietelski, M. Puchalska, A. Szelc, E. Tomankiewicz, A. Zalewska (H.Niewodniczanski Institute of Nuclear PhysicsPAN, Kraków)37


The measurements of natural radioactivityhave been performed mostly <strong>in</strong> the exist<strong>in</strong>gchamber. They consisted of alpha and gammaspectrometric measurements of salt and anhydritesamples, long term <strong>in</strong>tegrated dose measurementswith thermo-lum<strong>in</strong>escent detectors and radoncontent measurements of air <strong>in</strong> the cavern. Theresults show that the level of natural radioactivity<strong>in</strong> the cavern is very low. In particular, the U andTh contents <strong>in</strong> salt are at the level of 0.01-0.02Bq/kg. Although the content of the radioactive K 40is higher, equal to 4±0.9 Bq/kg, this level is alsomuch lower than a typical level <strong>in</strong> other m<strong>in</strong>es.The measurements of the dose, <strong>in</strong>tegratedover eight months and performed with 11 sets ofthermo-lum<strong>in</strong>escent detectors placed on walls ofthe cavern, gave the very low value of 1.9 nGy perhour; for comparison, the dose measured onemeter under the surface <strong>in</strong> Kraków is 65nGy/hour. The radon content was between 10Bq/m 3 and 38 Bq/m 3 . This was due to thepump<strong>in</strong>g of external air through the m<strong>in</strong>eventilation system. The measurements ofanhydrite samples gave the U and Th contents of0.8 – 1.3 Bq/kg.viscous creep, is foreseen. This is illustrated <strong>in</strong>Figure 3.The second simulation [5] assumed twodifferent cavern geometries (see Fig. 4), sevendepths under the surface (400, 500, 600, 700, 800,900 and 1000 meters) and two different variants ofthe coefficients <strong>in</strong> the Norton’s creep law(correspond<strong>in</strong>g to the extreme conditions of salt).Four comb<strong>in</strong>ations of the cavern geometry and thecreep law were considered (for geometry 1,models1 and 2; for geometry 2, models 3 and 4). Theevaluation of salt massive ability to resist the longlast<strong>in</strong>gloads is one of least-studied problems <strong>in</strong>the geomechanics of salt deposits. Thus, fourdifferent criteria, three based on the stress of therock massive, and one based on the comb<strong>in</strong>ationof the stress and stra<strong>in</strong>, were applied <strong>in</strong> theestimates of the long-term stability of caverns.Accord<strong>in</strong>g to prelim<strong>in</strong>ary results, thecavern stability depends relatively weakly on thegeometry 1geometry 2Fig. 3. Salt cavern movement, 30 years after m<strong>in</strong><strong>in</strong>g (from [4]).The geo-mechanical simulationsconcerned the possibility of excavat<strong>in</strong>g a saltcavern big enough to place there the GLACIERdetector filled with 100 ktons of Liquid Argon [3].Two <strong>in</strong>dependent prelim<strong>in</strong>ary analyses have beenperformed <strong>in</strong> the framework of this study. In bothanalyses a 30 year period of the cavernexploitation was simulated.The first simulation [4] assumed anellipsoidal shape of the cavern with the lengths ofhalf-axes equal to 45.5 m for the horizontal oneand 24 m for the vertical one and with the centreplaced 889 m below the surface. Accord<strong>in</strong>g to theprelim<strong>in</strong>ary conclusions this cavern should bestable and should not destabilize the waterproofanhydrite layers. After 30 years of exploitation, ahorizontal squeez<strong>in</strong>g by up to 1.5 m, due to the saltFig. 4. Shapes of the salt caverns <strong>in</strong> the second geo-mechanicalanalysis [5].cavern geometry and on the model of viscouscreep while the dependence on the cavern depth isstrong. This is illustrated <strong>in</strong> Figures 5 and 6show<strong>in</strong>g the time dependence at the cavern roof ofthe maximum effective stress and of the maximumstra<strong>in</strong> rate. One can also see that a big<strong>in</strong>stantaneous change follows the excavation andthat after about 15 years the speed of changestabilizes.38


Fig. 5. Time dependence of maximumeffective stress at the chamber roof for allthe four models and for depths under thesurface: 400 and 1000 m (from [5]).Fig. 6. Time dependence of maximumstra<strong>in</strong> rate at the chamber roof for all thefour models and for depths under thesurface: 400 and 1000 m (from [5]).The cavern simulations at differentdepths show that the stable cavern ofgeometry 1 can be constructed down to 700 mbelow the surface. At the depth of 950 m thecavern <strong>in</strong>stability cannot be excluded. Theresults of the simulations at 700 m are given <strong>in</strong>Fig.7. The discrepancy between the two geomechanicalstudies of the cavern stability at900-950 m implies that a thorough feasibilitystudy should be performed to give aconclusive answer. This will be done <strong>in</strong> theframework of the LAGUNA project [5]. Oneshould stress the availability of a detailedknowledge of the geological structure <strong>in</strong> theSieroszowice region which makes a selectionof the place with the best quality of the saltrock possible. Future simulations should takethis <strong>in</strong>to account. Another plan for the nearfuture is to adapt the exist<strong>in</strong>g cavern to host an<strong>in</strong>itial small laboratory. The proposed namefor this laboratory is SUNLAB (SieroszowiceUNderground LABoratory).Fig. 7. Distributions of the rock effort coefficient for the chamberof geometry 1 at the depth of 700 m after 30 years of itsexploitation (from [5]).39


Bibliography[1] D. Autiero et al.: Large undeground, liquid based detectors for astro-particle <strong>physics</strong> <strong>in</strong> Europe: Scientificcase and prospects”, e-Pr<strong>in</strong>t: arXiv:0705.0116 [hep-ph], wysłane do druku w Journal of Cosmology andAstroparticle Physics.[2] LAGUNA – Design of a pan-European Infrastructure for Large Apparatus study<strong>in</strong>g Grand Unification andNeutr<strong>in</strong>o Astro<strong>physics</strong>, FP7–Infrastructures–2007–1, proposal ref. Number FP7-212343, May 2007[3] A.Rubbia: Experiments for CP violation: A giant liquid argon sc<strong>in</strong>tillation, Cerenkov and charge imag<strong>in</strong>gexperiment?, hep-ph/0402110[4] W. Pytel: Salt cavern stability analysis – prelim<strong>in</strong>ary study, KGHM CUPRUM, Wrocław, 2004[5] J. Slizowski, K. Urbanczyk: Influence of depth on rock salt effort around the s<strong>in</strong>gle chamber, IGSMiEPAN, Kraków, 200440


CONTRIBUTIONS41


GLOBAL PROPERTIES OF NUCLEIA.Baran 1 , Z.Łojewski 2 , B.Nerlo-Pomorska 1 , K.Pomorski 1 , M.Warda 11 Institute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>2 Institute of Informatics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>The potential energy of β-stable nuclei wascalculated with<strong>in</strong> Hartree-Fock procedure withthe Relativistic Mean Field Theory (RMFT+NL3) ,the Gogny force (D1S), Skyrme <strong>in</strong>teraction andmacroscopic-microscopic method with theWoods-Saxon and Nilsson s<strong>in</strong>gle particlepotentials [1].The proton and neutron radii were calculatedand their isosp<strong>in</strong> dependence analysed for exoticnuclei us<strong>in</strong>g RMFT [2,3], D1S [4] and macroscopicmicroscopicmethod with Woods-Saxon potential[5]. The radii of K isomers [6] and neutron halo <strong>in</strong>heavy nuclei with D1S force were also calculated[7].In Fig. 1 the shell corrections are presented,extracted from the s<strong>in</strong>gle particle levels of selfconsistentmean fields of Gogny D1S [8,9,10,11]and RMFT+NL3 [12,13,14] by the Strut<strong>in</strong>skymethod smooth<strong>in</strong>g the energy <strong>in</strong> the energy space(NL3, D1S) or <strong>in</strong> nucleon number space (NL3N,D1SN). The smooth part of potential energy wascompared to various liquid drop models [15,16].The shell and pair<strong>in</strong>g energies were obta<strong>in</strong>ed byfold<strong>in</strong>g <strong>in</strong> nucleon number space [17,18]. Theaverage pair<strong>in</strong>g energy is also analysed with<strong>in</strong> n-fold<strong>in</strong>g [19] giv<strong>in</strong>g double value for scission po<strong>in</strong>t<strong>in</strong> fission isomers.The new way of evaluat<strong>in</strong>g the shellcorrections [21] by fold<strong>in</strong>g <strong>in</strong> nucleon numberspace conserves the particle number exactly andgives similar results as the traditional Strut<strong>in</strong>skyfold<strong>in</strong>g <strong>in</strong> s<strong>in</strong>gle particle energy space for largedeformed nuclei, while for spherical isotopes thenew shell corrections become deeper. This effect isconnected with the zero po<strong>in</strong>t vibrations, whichshould be taken <strong>in</strong>to account [22], but wereneglected previously ( Nucl. Phys. A95, 420(1967)). The whole macroscopic-microscopicmethod should be modified by the newmacroscopic – Lubl<strong>in</strong> Strasbourg Drop [23] part,Yukawa folded mean field, new shell corrections[21] and the n-folded average pair<strong>in</strong>g [18] term.All the parameters should be fitted to the actuallyavailable data. Then the macroscopic-microscopicmethod can compete with selfconsistent models,which are much more calculation timeconsum<strong>in</strong>g.Fig. 1. The shell corrections of neutrons (left) and protons (right) forisotopes (upper panels), isotones (middle panels) and β-stable nuclei(lowest panel).43


[1] K. Pomorski, B. Nerlo-Pomorska, P. R<strong>in</strong>g, G. A. Lalazissis, A. Baran. Z. Łojewski, B. Nerlo-Pomorska,M. Warda, Nucl. Phys.A 624, 349 (1997)[2] M. Warda, B. Nerlo-Pomorska, K. Pomorski, Nucl. Phys. A635, 484 (1998)[3] M. Warda. B. Nerlo-Pomorska, K. Pomorski, Acta Phys. Polon. B 30, 755 (1999)[4] B. Nerlo-Pomorska, K. Pomorski, J. F. Berger, Acta Phys. Polon. B 32, 925 (2001)[5] Z. Łojewski, B. Nerlo-Pomorska, J. Dudek, Acta Phys. Polon. B 32, 2981 (2001)[6] K. Mazurek, B. Nerlo-Pomorska, Acta Phys. Polon. B 32, 783 (2001)[7] B. Nerlo-Pomorska, K. Pomorski, J. F. Berger, Eur. Phys. Jour. A 8, 19 (2000)[8] M. Kleban, B. Nerlo-Pomorska, K. Pomorski, J. F. Berger, J. Decharge, Acta Phys. Polon. B 32, 1119(2001)[9] M. Kleban, B. Nerlo-Pomorska, .Annales UMCS, Sect. AAA, LV/LVI, 1 (2001)[10] M. Kleban, B. Nerlo-Pomorska, J. Berger, J. Decharge, J. Girod, S. Hilaire, Phys. Rev. C 65, 024309, 1(2002)[11] M. Kleban, B. Nerlo-Pomorska, K. Pomorski, J F. Berger, J. Decharge, Acta Phys. Polon. B 33, 383(2002)[12] B. Nerlo-Pomorska, K. Mazurek, Phys. Rev. C 66, 064305, 1 (2002)[13] B. Nerlo-Pomorska, K. Mazurek, M. Kleban, Acta Phys. Polon. B 34, 1777, 1 (2003)[14] B. Nerlo-Pomorska, J. Sykut, Acta Phys. Polon. B 35, 1299, 1 (2004)[15] B. Nerlo-Pomorska, Physica Scripta T 125, 26 (<strong>2006</strong>)[16] B. Nerlo-Pomorska, K. Pomorski, M. Zwierzchowska, Int. Journ. of Modern Phys. E 16, 276 (2007)[17] K. Pomorski, B. Nerlo-Pomorska, Physica Scripta T 125, 21 (<strong>2006</strong>)[18] B. Nerlo-Pomorska, K. Pomorski, Int. Journ. of Modern Phys. E 16, 130 (2007)[19] B. Nerlo-Pomorska, K. Pomorski, Int. Journ. of Modern Phys. E 15, 471 (<strong>2006</strong>)[20] B. Nerlo-Pomorska, K. Pomorski, Int. Journ. of Modern Phys. E 16, 276 (2007)[21] K. Pomorski, Phys. Rev. C 70, 044306 (2004)[22] H. Molique, J. Dudek, K. Pomorski, Int. Journ. of Modern Phys. E 14, 499 (2005)[23] K. Pomorski, J. Dudek, Phys. Rev. C 67, 044316 (2003)44


MASSES AND FISSION BARRIERS OF ATOMIC NUCLEIK. Pomorski, B. Nerlo-Pomorska, A. Dobrowolski, K. Mazurek, M. WardaInstitute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>Theoretical estimates of the masses of nucleiwhich are not far from stability agree well withthe measured data. Nevertheless the progressmade <strong>in</strong> experimental <strong>nuclear</strong> <strong>physics</strong> over thelast years, like discovery of superheavy nuclei orisotopes close to the proton or neutron drip-l<strong>in</strong>es,demands for a more careful check<strong>in</strong>g of thetheoretical model predictions and may lead tosome revision of its parameters.The recently developped Lubl<strong>in</strong>-StrasbourgDrop (LSD) [1] model together with the Moellermicroscopic corrections [At. Data Nucl. Data Tab.59, 185 (1995)] is very successful <strong>in</strong> describ<strong>in</strong>gmany features of nuclei. In addition to theclassical liquid drop model the LSD conta<strong>in</strong>s thecurvature term proportional to the A^1/3. Itsparameters were adjusted to the b<strong>in</strong>d<strong>in</strong>gs energiesof presently known 2766 [Isotope chart of M.Antony, Strasbourg 2002] with proton andneutron numbers larger or equal to 8. The r.m.s.deviation of the experimental b<strong>in</strong>d<strong>in</strong>g energiesversus those predicted by the LSD model, equal to0.698 MeV, is smaller than the ones given by othermore elaborated theories like the f<strong>in</strong>ite-rangedroplet, the Thomas-Fermi model or old liquiddrop model of Myers and Swiatecki [Nucl. Phys.A601, 141 (<strong>1996</strong>); Ark. Phys. 36, 343 (1967)].The LSD estimates of b<strong>in</strong>d<strong>in</strong>g energies ofnuclei which are far from the beta stability differsignificantly from the data predicted by the othermacroscopic-microscopic or selfconsistent models[2-4]. There is a hope that new experiments withthe radioactive beams will br<strong>in</strong>g suffcient sampleof data <strong>in</strong> order to decide which model describesbetter the position of the proton and neutron dripl<strong>in</strong>es.It turns out that the liquid drop model which<strong>in</strong> addition to the volume, surface and Coulombenergies conta<strong>in</strong>s just the first order curvatureterm gives not only a very good description of themasses but also a rather satisfactory prediction ofthe fission barrier heights. It is worth emphasiz<strong>in</strong>gthat all the parameters of the LSD model werefitted to the <strong>nuclear</strong> masses only and thus thecorrect reproduction of the barrier heights can beseen as an additional sign of the <strong>in</strong>tr<strong>in</strong>sicconsistency of the model. The mean squaredeviation of the barrier heights from experimentis 3.56 MeV, but it decreases to only 0.88 MeVwhen the four lightest nuclei are disregarded i.e.when only the nuclei with Z>70 are considered.In addition it was found <strong>in</strong> Ref. [5] that tak<strong>in</strong>g<strong>in</strong>to account the deformation dependence of thecongruence energy significantly approaches thetheoretical LSD-model barrier-heights to theexperimental data <strong>in</strong> the case of the light isotopeswhile the fission barriers for heavy nuclei rema<strong>in</strong>nearly unchanged and agree well withexperiment.Another important effect which <strong>in</strong>fluences thefission barrier heights is the assumtion, made <strong>in</strong>all type microscopic-macroscopic calculations,that the proton and neutron distributions have thesame deformations. It was shown <strong>in</strong> Ref. [6] onbasis of selfconsistent HFB calculations with theGogny force that such an effect can change thebarrier height estimates even by 1 MeV. Ageneralization of the macroscopic model wasproposed <strong>in</strong> Ref. [7], where the termcorrespond<strong>in</strong>g to the response of the system onthe change of the relative proton to neutrondeformation was derived us<strong>in</strong>g the ETFapproximation to the HF hamiltonian with theSkyrme force. Similar estimates made <strong>in</strong> theYukawa folded model were performed <strong>in</strong> Refs.[8,9] where the effect of the proton and neutrondeformation difference on the fission barrierheights was studied.Recently developped <strong>in</strong> Ref. [10] new shellcorrection method obta<strong>in</strong>ed by averag<strong>in</strong>g <strong>in</strong> theparticle number space (not by smooth<strong>in</strong>g thes<strong>in</strong>gle energies as <strong>in</strong> the traditional Strut<strong>in</strong>skyprescription) predicts deeper m<strong>in</strong>ima for spericalnuclei what can also change the estimates of thebarrier height of such isotopes.Fig. 1. Comparison of theoretical masses obta<strong>in</strong>ed us<strong>in</strong>g the LSDmodel with the experimental data for known isotopes.45


[1] K. Pomorski and J. Dudek, Phys. Rev. C 67, 044316 (2003)[2] M. Warda, B. Nerlo-Pomorska, and K. Pomorski, Acta Phys. Polon. B30, 755 (1999)[3] B. Nerlo-Pomorska and J. Sykut, Acta Phys. Polon. B35, 1299 (2004)[4] J. Dudek, K. Mazurek, and B. Nerlo-Pomorska, Acta. Phys. Polon. B 35, 1263 (2004)[5] K. Pomorski and J. Dudek, Int. Journ. Mod. Phys. E13, 107 (2004)[6] J.F. Berger and K. Pomorski, Phys. Rev. Lett. 85, 30 (2000)[7] A. Dobrowolski, K. Pomorski, and J. Bartel, Phys. Rev. C65, 041306(R) (2002)[8] A. Dobrowolski, J. Bartel, and K. Pomorski, Int. Journ. Mod. Phys. E14 , 457 (2005)[9] A. Dobrowolski, J. Bartel, and K. Pomorski, Physica Scripta T125, 188 (<strong>2006</strong>)[10] K. Pomorski, Phys. Rev. C70, 044306 (2004)46


ANTIPROTONIC ATOMST. Czosnyka 1 , K. Gulda 2 , J. Iwanicki 1 , J. Jastrzębski 1 , M. Kisieliński 1 , B. Kłos 3 ,W. Kurcewicz 2 , P. Lubiński 1 , P. Napiorkowski 1 , L. Pieńkowski 1 , R. Smolańczuk 4 ,A. Trzcińska 1 , S. Wycech 41 Heavy Ion Laboratory, Warsaw University, Warszawa2 Institute of Experimental Physics, Warsaw University, Warszawa3 Institute of Physics, University of Silesia, Katowice4 A. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: Low Energy Antiproton R<strong>in</strong>g (LEAR) at CERNThe antiproton-nucleon <strong>in</strong>teraction is verystrong. Therefore antiprotons <strong>in</strong>teract<strong>in</strong>g withatomic nuclei are absorbed and annihilate alreadyat the <strong>nuclear</strong> periphery, where the nucleondensity is significantly smaller than the central<strong>nuclear</strong> density. For sufficiently slow antiprotonsthe annihilation takes place after the antiprotonicatom has been formed. In this case the spatialdistribution of the antiproton wave function iswell determ<strong>in</strong>ed and one can imag<strong>in</strong>e that theannihilation “signals” (whatever they are) couldperhaps be used to test the extent and thecomposition of the <strong>nuclear</strong> surface.Beg<strong>in</strong>n<strong>in</strong>g more than ten years ago wehave performed an experimental study of themedium-heavy antiprotonic atoms us<strong>in</strong>g the slowantiproton beam from Low Energy AntiprotonR<strong>in</strong>g (LEAR) at CERN. The ma<strong>in</strong> objective of ourprogram was to obta<strong>in</strong> <strong>in</strong>formation on theneutron distributions at the <strong>nuclear</strong> periphery andto provide data useful <strong>in</strong> deduc<strong>in</strong>g the antiprotonnucleusoptical potential parameters.Two experimental methods wereemployed. First, us<strong>in</strong>g the so called“radiochemical method” we have <strong>in</strong>vestigated [1-4] the ratios of peripheral neutron to protondensities at distances around 2.5 fm larger thanthe <strong>nuclear</strong> charge half-density radius [5]. Themethod consisted <strong>in</strong> measur<strong>in</strong>g the yield ofradioactive nuclei hav<strong>in</strong>g one proton or oneneutron less than the target nucleus, producedafter antiproton capture, cascade and annihilation<strong>in</strong> the target antiprotonic atom. The experimentyielded 19 density ratios (determ<strong>in</strong><strong>in</strong>g the socalled “halo factors”, see Ref. [1] for def<strong>in</strong>ition)subsequently employed to deduced the shape ofthe peripheral neutron distribution.The second method consisted <strong>in</strong>measurements of the antiprotonic atom levelwidths and shifts due to the strong antiprotonnucleus<strong>in</strong>teraction. These observables aresensitive to the <strong>in</strong>teraction potential whichconta<strong>in</strong>s, <strong>in</strong> its simplest form, a term depend<strong>in</strong>gon the sum of the neutron and proton densities.The level widths and <strong>in</strong> a number of cases also thelevel shifts were measured for 34 antiprotonicatoms (<strong>in</strong> some cases for different isotopes of thesame element).The rich harvest of the two employedmethods, sensitive to the neutron and protondensity ratio and the sum of these densities hasallowed to derive a number of systematicconclusions on the neutron distributions <strong>in</strong> nuclei[6-10]. Moreover, our data [11-18] were used todeterm<strong>in</strong>e the antiproton-nucleus optical modelparameters through global fits of p X-rays andhalo factors with a substantially larger and moreprecise database than employed <strong>in</strong> previousapproaches (see Nucl. Phys. A761, 283 (2005) andRef. [10]).Figure 1 presents the deduced neutronprotonrms radii difference obta<strong>in</strong>ed from theanalysis of the antiprotonic atom data.Fig. 1. Difference ∆r np between the rms radii of the neutron andproton distributions as deduced from the antiprotonic atom X-raydata, as a function of δ=(N-Z)/A.47


[1] J. Jastrzębski, H. Daniel, T. von Egidy, A. Grabowska, Y.S. Kim, W. Kurcewicz, P. Lubiński, G. Riepe,W. Schmid, A. Stolarz, S. Wycech, Nucl. Phys. A558, 405c (1993).[2] P. Lubiński, J Jastrzębski, A. Trzcińska, W. Kurcewicz, F.J. Hartmann, W. Schmid, T. von Egidy,R. Smolańczuk, S. Wycech, Phys. Rev. Lett. 57, 3199 (1994).[3] P. Lubiński, J. Jastrzębski, A. Trzcińska, W. Kurcewicz, F.J. Hartmann, W. Schmid, T. von Egidy,R. Smolańczuk, S. Wycech, Phys. Rev. C 57, 2962 (1998).[4] R. Schmidt, F.J. Hartmann, B. Ketzer, T. von Egidy, T. Czosnyka, J. Jastrzębski, M. Ksieliński,P. Lubiński, P. Napiorkowski, L. Pieńkowski, A. Trzcińska, B. Kłos, R. Smolańczuk, S. Wycech,W. Poschl, K. Gulda, W. Kurcewicz, E. Wiedmann, Phys. Rev. C 60, 054309 (1999).[5] S. Wycech, J. Skalski, R. Smolańczuk, J. Dobaczewski, J. Rook, Phys. Rev. C 54, 1832 (<strong>1996</strong>).[6] A. Trzcińska, J. Jastrzębski, T. Czosnyka, T. von. Egidy, K. Gulda, F.J. Hartmann, J. Iwanicki, B. Ketzer,M. Kisieliński, B. Kłos, W. Kurcewicz, P. Lubiński, P. Napiorkowski, L. Pieńkowski, R. Schmidt,E. Widmann, Nucl. Phys. A692, 176c (2001).[7] A. Trzcińska, J. Jastrzębski, P. Lubiński, F.J. Hartmann, R. Schmidt, T. von Egidy, B. Kłos, Phys. Rev.Lett. 87, 082501 (2004).[8] J. Jastrzębski, A. Trzcińska, P. Lubiński, B. Kłos, F.J. Hartmann, T. von Egidy, S. Wycech, Int. J. Mod.Phys. 13, 343 (2004).[9] A. Trzcińska, J. Jastrzębski, P. Lubiński, F.J. Hartmann, R. Schmidt, T. von Egidy, B. Kłos, Nucl. Instr.Methods B 214, 157 (2004).[10] S. Wycech, F.J. Hartmann, J. Jastrzębski, B. Kłos, A. Trzcińska, T. von Egidy, Phys. Rev. C 76, 034316(2007).[11] J. Jastrzębski, P. Lubiński, A. Trzcińska, Acta Phys. Polonica 26, 527 (1995).[12] R. Schmidt, F.J. Hartmann, T. von Egidy, T. Czosnyka, J. Iwanicki, J. Jastrzębski, M. Kisieliński,P. Lubiński, P. Napiorkowski, L. Pieńkowski, A. Trzcińska, J. Kulpa. R. Smolańczuk, S. Wycech,B. Kłos, K. Gulda, W. Kurcewicz, E. Widmann, Phys. Rev. C 58, 3195 (1998).[13] F.J. Hartmann, R. Schmidt, B. Ketzer, T. von Egidy, S. Wycech, R. Smolańczuk, T. Czosnyka,J. Jastrzębski, M. Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, A. Trzcińska, B. Kłos,K. Gulda, W. Kurcewicz, E. Widmann, Phys. Rev. C 65, 014306 (2001).[14] A. Trzcińska, J. Jastrzębski, T. Czosnyka, T. von Egidy, K. Gulda, F.J. Hartmann, J. Iwanicki,B. Ketzer, M. Kisieliński, B. Kłos, W. Kurcewicz, P. Lubiński, P. Napiorkowski, L. Pieńkowski,R. Schmidt, E. Widmann, Nucl. Phys. A692, 176 (2001)[15] R. Schmidt, A. Trzcińska, T. Czosnyka, T. von Egidy, K. Gulda, F.J. Hartmann, J. Jastrzębski,B. Ketzer, M. Kisieliński, B. Kłos, W. Kurcewicz, P. Lubiński, P. Napiorkowski, L. Pieńkowski,R. Smolańczuk, E. Widmann, S. Wycech, Phys. Rev. C 67, 044308 (2003).[16] B. Kłos, S. Wycech, A. Trzcińska, J. Jastrzębski, T. Czosnyka, M. Kisieliński, P. Lubiński,P. Napiorkowski, L. Pieńkowski, F.J. Hartmann, B. Ketzer, R. Schmidt, T. von Egidy, J. Cugnon,K. Gulda, W. Kurcewicz, E. Widmann, Phys. Rev. C 69, 044311 (2004).[17] W.J. Świątecki, A. Trzcińska, J. Jastrzębski, Phys. Rev. C 71, 047301 (2005).[18] B. Kłos, A. Trzcińska, J. Jastrzębski, T. Czosnyka, M. Kisieliński, P. Lubiński, P. Napiorkowski,L. Pieńkowski, F.J. Hartmann, B. Ketzer, P. R<strong>in</strong>g, R. Schmidt, T. von Egidy, R. Smolańczuk, S. Wycech,.K Gulda, W. Kurcewicz, E. Widmann, B.A. Brown, Phys. Rev. C 76, 014311 (2007)48


NUCLEAR SYMMETRY ENERGY AND NEUTRON SKINS DERIVEDFROM PYGMY DIPOLE RESONANCES IN 130,132 Sn ISOTOPESP.Adrich, A.Klimkiewicz, R.Kulessa, G.Surówka, W.WaluśM. Smoluchowski Institute of Physics, Jagiellonian University, KrakówExperimental facility: LAND-FRS setup at GSI, DarmstadtThe pygmy dipole resonance (PDR)manifests itself as a concentration of dipolestrength near the neutron separation thresholdbelow the giant dipole resonance (GDR) doma<strong>in</strong>. Itis related to structural changes <strong>in</strong> nuclei with alarge neutron excess giv<strong>in</strong>g rise to a neutron sk<strong>in</strong>.Accord<strong>in</strong>g to theoretical calculations, a veryprecise measurement of the neutron sk<strong>in</strong>thickness <strong>in</strong> heavy doubly magic nuclei like 208 Pbor 132 Sn would help <strong>in</strong> constra<strong>in</strong><strong>in</strong>g the neutronmatter equation of state (Nucl.Phys.A706, (2002)85). At present, the neutron matter radius <strong>in</strong> nucleias a fundamental ground-state property cannot beapproached experimentally <strong>in</strong> a straightforwardway and its extraction from experimental data<strong>in</strong>volves a certa<strong>in</strong> model dependence. Exist<strong>in</strong>gresults on the neutron sk<strong>in</strong> thickness are limited tostable nuclei. As suggested <strong>in</strong> Phys.Rev.C73(<strong>2006</strong>)044325, the PDR strength provides <strong>in</strong>sight<strong>in</strong>to the sk<strong>in</strong> thickness as both quantities arestrongly correlated with the symmetry energy.Low-ly<strong>in</strong>g E1 strength was observed <strong>in</strong>exotic 130,132 Sn isotopes <strong>in</strong> a k<strong>in</strong>ematically completemeasurement performed at the LAND facilitybased on the relativistic Coulomb excitation <strong>in</strong><strong>in</strong>verse k<strong>in</strong>ematics [1]. It was the first attempt ofdipole strength <strong>in</strong>vestigation <strong>in</strong> unstable neutronrichnuclei with such high mass numbers. Previousexperiments were focused on much lighterunstable oxygen [2,3] and carbon isotopes [4].Dipole strength distributions were deduced fromthe measured energy-differential cross sectionsobta<strong>in</strong>ed <strong>in</strong> an <strong>in</strong>variant-mass analysis applied todecay products and covered excitation energiesrang<strong>in</strong>g from the one-neutron separation thresholdup to 25 MeV, <strong>in</strong>clud<strong>in</strong>g thus the GDR. The dipoleresponse emerg<strong>in</strong>g below the GDR ischaracterized by exhaust<strong>in</strong>g 7(3)% and 4(3)% ofthe Thomas-Reiche-Kuhn sum rule for 130 Sn and132 Sn, respectively.Observed dipole strength <strong>in</strong> Sn isotopes isuseful <strong>in</strong> constra<strong>in</strong><strong>in</strong>g parameters describ<strong>in</strong>g thesymmetry energy and carries <strong>in</strong>formation on theneutron sk<strong>in</strong> thickness <strong>in</strong> 130,132 Sn. In order toextract this <strong>in</strong>formation a series of fully selfconsistentrelativistic Hartree-Bogoliubov (RHB)plus relativistic quasiparticle random phaseapproximation (RQRPA) calculations of ground-state properties and dipole strength distributionshas been carried out (Phys.Lett.B606(2005)288). Aset of differently parametrized nucleon-nucleon<strong>in</strong>teractions, correspond<strong>in</strong>g to a softer or stifferneutron matter equation of state by vary<strong>in</strong>g the a 4parameter (i.e. the symmetry energy atequilibrium density) has been used. In each casethe parameter set was calibrated to accuratelyreproduce the ground-state properties, likeb<strong>in</strong>d<strong>in</strong>g energies or charge radii, for a standard setof stable nuclei. An almost l<strong>in</strong>ear correlationbetween the ratio of the non-energy weightedstrength absorbed by the PDR to that of GDR andthe neutron sk<strong>in</strong> thickness has been found. Bycompar<strong>in</strong>g the experimental values of this ratiowith that from the RQRPA, the parameters of thesymmetry energy were fixed. An average valuesa 4 =32.0±1.8 MeV and the slope of the symmetryenergy p o =2.2±0.8 MeV/fm 3 have been obta<strong>in</strong>ed.Us<strong>in</strong>g this result subsequently the neutron sk<strong>in</strong>thicknesses of ∆R np ( 130 Sn)=0.23±0.04 and∆R np ( 132 Sn)=0.24±0.04 fm were derived, follow<strong>in</strong>g atrend established by a measurement <strong>in</strong> stable Snisotopes (Phys.Rev.Lett. 82(1999) 3216), see Fig.1.Fig. 1. Evolution of the neutron sk<strong>in</strong> <strong>in</strong> Sn isotopes. The data forstable Sn isotopes (open circles) extracted from Phys.Rev.Lett.82(1999) 3216 are compared to our values (filled circles) for unstableones. Theoretical predictions are shown as well.49


[1] P.Adrich, A.Klimkiewicz, M. Fallot, K. Boretzky, T.Aumann, D. Cort<strong>in</strong>a-Gil, U. Datta Pramanik,Th.W. Elze, H. Eml<strong>in</strong>g, H. Geissel, M. Hellstroem, K.L. Jones, J.V. Kratz, R. Kulessa, Y. Leifels,C. Nociforo, R. Palit, H. Simon, G. Surówka, K. Sümmerer and W. Waluś, Phys. Rev. Lett. 95, 132501(2005)[2] A. Leistenschneider, T. Aumann, K. Boretzky, D. Cort<strong>in</strong>a, J. Cub, U. Datta Pramanik, W. Dostal,Th.W. Elze, H. Eml<strong>in</strong>g, H. Geissel, A. Grünschloß, M. Hellstroem, S. Ilievski, N. Iwasa, M. Kaspar,A. Kle<strong>in</strong>boehl, J.V. Kratz, R. Kulessa, Y. Leifels, E. Lubkiewicz, G. Münzenberg, P. Reiter, M. Rejmund,C. Scheidenberger, C. Schlegel, H. Simon, J. Stroth, K. Sümmerer, E. Wajda, W. Waluś, S. Wan, Phys. Rev.Lett. 86, 5442 (2002)[3] C. Nociforo, K.L. Jones, L.H. Khiem, P. Adrich, T. Aumann, B.V. Carlson, D. Cort<strong>in</strong>a-Gil, U. DattaPramanik, Th.W. Elze, H. Eml<strong>in</strong>g, H. Geissel, M. Hellstroem, J.V. Kratz, R. Kulessa, T. Lange, Y. Leifels,H. Lenske, E. Lubkiewicz, G. Münzenberg, R. Palit, H. Scheit, H. Simon, K. Sümmerer, S. Typel, E. Wajda,W. Waluś and H. Weick, Phys. Lett. B 605, 79 (2005)[4] U. Datta Pramanik, T. Aumann, K. Boretzky, B.V. Carlson, D. Cort<strong>in</strong>a, Th.W. Elze, H. Eml<strong>in</strong>g, H. Geissel,A. Grünschloß, M. Hellstroem, S. Ilievski, J.V. Kratz, R. Kulessa, Y. Leifels, A. Leistenschneider,E. Lubkiewicz, G. Münzenberg, P. Reiter, H. Simon, K. Sümmerer, E. Wajda and W. Waluś,Phys. Lett. B 551, 63 (2003)50


NUCLEAR STRUCTURE NEAR THE DRIP LINESJ. Dobaczewski 1 , W. Nazarewicz 1,2,3 , T.R. Werner 11 Institute of Theoretical Physics, Warsaw University, Warszawa2 Department of Physics, University of Tennessee, Knoxville, USA3 Oak Ridge National Laboratory, Oak Ridge, USAThe study of nuclei far from stability is an<strong>in</strong>creas<strong>in</strong>gly important part of a <strong>nuclear</strong> <strong>physics</strong>portfolio [19]. As radioactive beams graduallyexpand the borders of the <strong>nuclear</strong> landscape,theoretical model<strong>in</strong>g of the nucleus is chang<strong>in</strong>g <strong>in</strong>significant ways. The crucial question for the field,namely “What b<strong>in</strong>ds protons and neutrons <strong>in</strong>tostable nuclei and rare isotopes?”, nicelyunderl<strong>in</strong>es this po<strong>in</strong>t: <strong>in</strong>deed, the data on rareisotopes with the large neutron-to-protonimbalance <strong>in</strong>dicate that there are many gaps <strong>in</strong>our present understand<strong>in</strong>g.Short-lived exotic nuclei offer unique tests ofthose aspects of the <strong>nuclear</strong> theory that depend onneutron excess [6]. The major challenge is topredict or describe <strong>in</strong> detail exotic new propertiesof nuclei far from the stability valley, and toexpla<strong>in</strong> the orig<strong>in</strong>s of these properties. New ideasand progress <strong>in</strong> computer technology haveallowed <strong>nuclear</strong> theorists to understand bits andpieces of <strong>nuclear</strong> structure quantitatively.The new experimental developments <strong>in</strong>evitablyrequire safe and reliable theoretical predictions of<strong>nuclear</strong> properties throughout the whole <strong>nuclear</strong>chart <strong>in</strong> two ma<strong>in</strong> directions: (i) along the isosp<strong>in</strong>axis, i.e., go<strong>in</strong>g outwards from the beta stabilityl<strong>in</strong>e to the neutron and proton drip l<strong>in</strong>es, and (ii)towards the uncharted territory of super-heavyelements at the limit of mass and charge. The toolof choice is the <strong>nuclear</strong> density functional theory(DFT) based on the self-consistent Hartree-Fock-Bogoliubov (HFB) method. The key component isthe universal energy density functional, whichwill be able to describe properties of f<strong>in</strong>ite nucleias well as extended asymmetric nucleonic matter.The development of such a universal functional,<strong>in</strong>clud<strong>in</strong>g dynamical effects and symmetryrestoration, is one of the ma<strong>in</strong> goals of the field.By employ<strong>in</strong>g various criteria (agreement withmeasured masses, radii, low-ly<strong>in</strong>g excited states,giant vibrations, rotational properties, and otherglobal <strong>nuclear</strong> characteristics), one aims atadjust<strong>in</strong>g the coupl<strong>in</strong>g constants of the functional.By f<strong>in</strong>d<strong>in</strong>g correlations between parameters, onehopes to reduce their number and to understandphysical reasons why different parameterizationsyield similar results. One may also want toexpand the parameterizations to cover aspectsdictated by <strong>physics</strong> arguments and/ormotivations com<strong>in</strong>g from the effective field theoryand QCD. The ma<strong>in</strong> challenges <strong>in</strong> this quest canbe nicely summarized through five questions:• What is the form of the <strong>nuclear</strong> energydensity functional?• What are the constra<strong>in</strong>ts on the <strong>nuclear</strong>energy density functional?• What is the form of the pair<strong>in</strong>gfunctional?• How to account for quantum correlationsand symmetry-break<strong>in</strong>g effects?• How to optimize computationaltechniques and error analysis?Due to a concerted effort of many researcherswork<strong>in</strong>g <strong>in</strong> this doma<strong>in</strong> of <strong>physics</strong>, numeroustheoretical tools have already been developed. Inparticular, mean-field description of pair<strong>in</strong>g,deformation, and weak-b<strong>in</strong>d<strong>in</strong>g effects is nowpossible with<strong>in</strong> the HFB method solved on thetransformed-harmonic-oscillator basis for axialsymmetry [9,14,16,20]. This developments set thestage for further microscopic studies of drip-l<strong>in</strong>enuclei.Proton Number100806040200< 00 ÷ 2N=Z2 ÷ 55 ÷ 9SkPvolume δ pair<strong>in</strong>g9 ÷ 1313 ÷ 17N=2ZS energy2nTheory0 20 40 60 80 100 120 140 160 180Neutron NumberFig. 1. Two-neutron separation energies S 2n calculated with<strong>in</strong> theself-consistent HFB theory with the SkP Skyrme <strong>in</strong>teraction, zerorangepair<strong>in</strong>g force, and approximate particle-number projectionemploy<strong>in</strong>g the Lipk<strong>in</strong>-Nogami method [14].> 1751


[4] J. Dobaczewski, W. Nazarewicz, T.R. Werner, Z. Phys. A354, 27 (<strong>1996</strong>)[5] W. Nazarewicz, J. Dobaczewski, T.R. Werner, J.A. Maruhn, P.-G. Re<strong>in</strong>hard, K. Rutz, C.R. Ch<strong>in</strong>n,A.S. Umar, M.R. Strayer, Phys. Rev. C53, 740 (<strong>1996</strong>)[6] J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Ch<strong>in</strong>n, J. Dechargé, Phys. Rev. C53,2809 (<strong>1996</strong>)[7] T.R. Werner, J. A. Sheikh, M. Misu, W. Nazarewicz, J. Rikovska, K. Heeger, A. S. Umar, M. R. Strayer,Nucl. Phys. A597, 327 (<strong>1996</strong>)[8] T.R. Werner, J. Dobaczewski, W. Nazarewicz, Z. Phys. A358, 169 (1997)[9] J. Dobaczewski, W. Nazarewicz, Phil. Trans. R. Soc. Lond. A356, 2007 (1998)[10] K. Bennaceur, J. Dobaczewski, M. Płoszajczak, Phys. Rev. C60, 034308 (1999)[11] J. Dobaczewski, Acta Phys. Pol. B30, 1647 (1999)[12] M.V. Stoitsov, J. Dobaczewski, P. R<strong>in</strong>g, S. Pittel, Phys. Rev. C61, 034311 (2000)[13] S. Mizutori, J. Dobaczewski, G.A. Lalazissis, W. Nazarewicz, P.-G. Re<strong>in</strong>hard, Phys. Rev. C61, 044326(2000)[14] K. Bennaceur, J. Dobaczewski, M. Płoszajczak, Phys. Lett. B496, 154 (2000)[15] J. Dobaczewski, W. Nazarewicz, P.-G. Re<strong>in</strong>hard, Nucl. Phys. A693, 361 (2001)[16] J. Dobaczewski, W. Nazarewicz, Prog. Theor. Phys. 146, 70 (2002)[17] M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, D.J. Dean, Phys. Rev. C68, 054312 (2003)[18] K. Amos, S. Karataglidis, J. Dobaczewski, Phys. Rev. C70, 024607 (2004)[19] M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. R<strong>in</strong>g, Comput. Phys. Comm. 167, 43 (2005)[20] J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, M.V. Stoitsov, Phys. Rev. C71, 034310(2005)[21] K. Bennaceur, J. Dobaczewski, Comput. Phys. Comm. 168, 96 (2005)[22] M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Borycki, Int. J. Mass. Spec. 251, 243 (<strong>2006</strong>)[23] M.V. Stoitsov, J. Dobaczewski, R. Kirchner, W. Nazarewicz, J. Terasaki, submitted to Physical ReviewC, nucl-th/0610061[24] J. Dobaczewski, N. Michel, W. Nazarewicz, M. Płoszajczak, J. Rotureau, Progress <strong>in</strong> Particle andNuclear Physics, <strong>in</strong> press, nucl-th/070104752


SUPERHEAVY NUCLEIA. SobiczewskiA. Sołtan Institute for Nuclear Studies, WarszawaThe objective of this paper is to review studiesof superhevy nuclei (SHN) done <strong>in</strong> Poland <strong>in</strong> awide <strong>in</strong>ternational cooperation. More precisely,we concentrate here on theoretical research of thestructure and properties of heaviest nuclei.Theoretical studies of the problem of synthesis ofthese nuclei are described <strong>in</strong> separate articles byK. Siwek-Wilczyńska and J. Wilczyński, and by R.Smolańczuk. Experimental studies are analysedby A. Wieloch. One should also mention chemicalstudies of superheavy elements (SHE), done <strong>in</strong>Poland (A. Bilewicz, S. Siekierski, Z. Szeglowskiand coworkers), not discussed <strong>in</strong> this issue, whichimportantly contributed to our knowledge onSHE and SHN.Theoretical studies of SHN <strong>in</strong> Polandstarted very early, immediately after rais<strong>in</strong>g theproblem of SHN by W.D. Myers and W.J.Świątecki <strong>in</strong> 1966. They started from theprediction [1] of the proton and neutron magicnumbers (Z=114 and N=184) next to the largestexperimentally known (Z=82 and N=126), donecommonly with theoreticians from Dubna. Then,the <strong>in</strong>vestigations were followed by extensivestudies (e.g., [2-4]) of the properties of sphericalSHN, situated around the doubly magic nucleus298 114. They were done <strong>in</strong> a close cooperation withtheoreticians of Lund, Los Alamos and Berkeley.Rather crude estimations of half-lives of SHN,done at that time, were quite optimistic,<strong>in</strong>dicat<strong>in</strong>g for a chance to f<strong>in</strong>d these nuclei <strong>in</strong>nature. This gave a motivation for search<strong>in</strong>g forthem <strong>in</strong> nature (cf. e.g., G. Herrmann, Nature 280(1979) 543; G.N. Flerov and G.M. Ter-Akopian,Rep. Prog. Phys. 46 (1983) 817).In the last decade, on which this issue isconcentrated, ma<strong>in</strong> attention was given todeformed SHN (DSHN), predicted to be localizedaround the doubly magic DSHN 270 108 [5].Calculations of shell correction [6], masses, α- andspontaneous-fission half-lives [7,8] haveconfirmed that the largest shell effects may bereally expected at the proton, Z=108, and neutron,N=162, numbers, and that the half-lives may belong enough for observation of nuclei localizedaround the nucleus 270 108. The idea of DSHN wasimportant for experimental studies as these nucleiare situated much closer to nuclei, which wereexperimentally known at that time, than thepredicted spherical nuclei, and, thus, much easierto be synthesized.Besides half-lives, much attention hasbeen also given to the analysis of rotationalproperties (e.g., [9]), masses (e.g., [10,11]), α-decayenergies (e.g., [5,12]), fission-barrier heights (e.g.,[13-15]), s<strong>in</strong>gle-particle spectra (e.g., [16-19]),shape coexistence <strong>in</strong> SHN (e.g., [20]).Improvements <strong>in</strong> macro-micro methods havebeen proposed [21,22].Figure 1 illustrates, as an example, thequality of description of measured masses ofheaviest nuclei obta<strong>in</strong>ed with<strong>in</strong> a macro-microapproach.Fig. 1. Difference between calculated, M th , and measured, M exp ,masses of nuclei with proton number Z=94-108 [10].Besides macro-micro, also puremicroscopic self-consistent methods have beenused (e.g., [23-25]). A wide comparison betweenresults obta<strong>in</strong>ed with macro-micro methods andself-consistent ones were done <strong>in</strong> [26]. Manydetails of the theoretical studies of the propertiesof SHN may be found <strong>in</strong> a recent review [27].53


[1] A. Sobiczewski, F.A. Gareev, B.N. Kal<strong>in</strong>k<strong>in</strong>, Phys. Lett. 22 (1966) 500.[2] S.G. Nilsson, J.R. Nix, A. Sobiczewski, Z.Szymański, S. Wycech, C. Gustafson, P. Möller,Nucl. Phys. A115 (1968) 545.[3] S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, I.L. Lamm,B. Nilsson, Nucl. Phys. A131 (1969) 1.[4] J. Randrup, S.E. Larsson, P.Möller, S.G. Nilsson, K. Pomorski, A. Sobiczewski, Phys. Rev. C 13(1976) 229.[5] Z. Patyk, A. Sobiczewski, Nucl. Phys. A533 (1991) 132.[6] R. Smolańczuk, A. Sobiczewski, Proc. XV Nucl. Phys. Conf.: Low Energy Nuclear Dynamics,St. Petersburg (Russia) 1995, eds. Yu.Ts. Oganessian et al. (World Scientific, S<strong>in</strong>gapore, 1995) p. 313.[7] R. Smolańczuk, J. Skalski, A. Sobiczewski, Phys. Rev. C 52 (1995) 1871.[8] R. Smolańczuk, Phys. Rev. C 56 (1997) 812.[9] A. Sobiczewski, I. Muntian, Z. Patyk, Phys. Rev. C 63 (2001) 034306.[10] I. Muntian, Z. Patyk, A. Sobiczewski, Yad. Fiz. 66 (2003) 1051; Phys. At. Nucl. 66 (2003) 1015.[11] A. Baran, Z.Łojewski, K. Sieja, M. Kowal, Phys. Rev. C 72 (2005) 044310.[12] I. Muntian, S. Hofmann, Z. Patyk, A. Sobiczewski, Acta Phys. Pol. B 34 (2003) 2073.[13] S. Ćwiok, V.V. Pashkevich, J. Dudek, W. Nazarewicz, Nucl. Phys. A410 (1983) 254.[14] S. Ćwiok, A. Sobiczewski, Z. Phys. A 342 (1992) 203.[15] I. Muntian, Z. Patyk, A. Sobiczewski, Acta Phys. Pol. B 34 (2003) 2141.[16] S. Ćwiok, S. Hofmann, W. Nazarewicz, Nucl. Phys. A573 (1994) 356.[17] S. Ćwiok, W. Nazarewicz, P.H. Heenen, Phys. Rev. Lett. 83 (1999) 1108.[18] O. Parkhomenko, A. Sobiczewski, Acta Phys. Pol. B 35 (2004) 2447.[19] A. Parkhomenko, A. Sobiczewski, Acta Phys. Pol. B 36 (2005) 3115.[20] S. Ćwiok,P.H. Heenen, W. Nazarewicz, Nature 433 (2005) 705.[21] K Pomorski, J. Dudek, Phys. Rev. C 67 (2003) 044316.[22] K. Pomorski, Phys. Rev. C 70 (2004) 044306.[23] S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, W. Nazarewicz, Nucl. Phys. A611 (<strong>1996</strong>)211.[24] M. Warda, J. L. Egido, L. M. Robledo, K. Pomorski, Phys. Rev. C 66 (2002) 014310.[25] A. Staszczak, J. Dobaczewski, W. Nazarewicz, Int. J. Mod. Phys. E 14 (2005) 395.[26] Z. Patyk, A. Baran, J. F. Berger, J. Decharge, J. Dobaczewski, P. R<strong>in</strong>g, A. Sobiczewski, Phys. Rev.C 59 (1999) 704.[27] A. Sobiczewski, K. Pomorski, Prog. Part. Nucl. Phys. 58 (2007) 292.54


THEORETICAL INVESTIGATIONS OF PROPERTIES ANDSYNTHESIS OF SUPERHEAVY NUCLEIR. SmolańczukA. Sołtan Institute for Nuclear Studies, WarszawaWe were <strong>in</strong>vestigat<strong>in</strong>g very heavy nucleiwith atomic numbers Z>103. Masses (b<strong>in</strong>d<strong>in</strong>genergies), deformations, fission barriers,spontaneous-fission half-lives, as well as alphadecayenergies and half-lives have been calculated[1,2]. The <strong>nuclear</strong> b<strong>in</strong>d<strong>in</strong>g energy has beencalculated as a sum of the macroscopic andmicroscopic energies. The Yukawa-plusexponentialpotential has been used as themacroscopic energy. The microscopic energy,orig<strong>in</strong>at<strong>in</strong>g from the structure of the s<strong>in</strong>gle-particleenergy levels of a nucleus, has been calculated bymeans of the Strut<strong>in</strong>sky method. Fission barrierhas been found as b<strong>in</strong>d<strong>in</strong>g energy versus positionon the fission trajectory <strong>in</strong> the four-dimensionaldeformation space that describes axially andreflection symmetric <strong>nuclear</strong> shapes. The fissiontrajectory and, consequently, the spontaneousfissionhalf-live, has been obta<strong>in</strong>ed by m<strong>in</strong>imiz<strong>in</strong>gthe action <strong>in</strong>tegral that describes penetration of anucleus through a potential-energy barrier. Alphadecayhalf-live has been calculated by us<strong>in</strong>g theViola and Seaborg formula with the parametersadjusted to heavy even-even nuclei.The half-live systematics for beta-stablesuperheavy nuclei is shown <strong>in</strong> Fig.1. The alphadecayhalf-lives are <strong>in</strong>dicated by empty symbolswhereas the spontaneous-fission half-lives byfilled ones. Half-filled symbols <strong>in</strong>dicate nuclei forwhich both decay modes have been predicted. It isclearly seen that the half-lives cover 16 orders ofmagnitude. The obta<strong>in</strong>ed half-lives are too smallto f<strong>in</strong>d the superheavy nuclei <strong>in</strong> nature. They are,however, large enough <strong>in</strong> order to accumulatesome of the superheavy nuclei if they weresynthesized.The possibilities of the production <strong>in</strong> thelaboratory of spherical superheavy nuclei havebeen <strong>in</strong>vestigated theoretically <strong>in</strong> ref.[3]. Thefusion reactions with the emission of one neutronhave been considered. We have proposed a modelfor calculat<strong>in</strong>g the cross sections for thesereactions. In the model the fusion cross section iscalculated as a product of the probability of theformation of the compound nucleus (an <strong>in</strong>termediatestate of fusion consisted of all nucleons ofthe collid<strong>in</strong>g nuclei) and the probability of theemission of a neutron from the compoundnucleus. The probability of the formation of thecompound nucleus has been calculated as theprobability of tunnel<strong>in</strong>g through an effectivefusion barrier with the height dependent on theproduct of atomic numbers of the collid<strong>in</strong>g nuclei.The probability of the emission of a neutron fromthe compound nucleus has been calculated bymeans of the modified statistical model formula.The modification takes <strong>in</strong>to account an <strong>in</strong>fluenceof shell effects on this probability. The mostadvantageous fusion cross sections have beenobta<strong>in</strong>ed for some nuclei with atomic numbersZ=118-121 that could be synthesized <strong>in</strong> thereactions based on lead and bismuth target nuclei[3]. Decay cha<strong>in</strong>s for these nuclei with atomicnumbers Z=118-120 have also been obta<strong>in</strong>ed [4,5].Fig.1. Calculated logarithm of half-live versus neutron number N forbeta-stable even-even nuclei with atomic numbers Z=104-116.55


[1] R. Smolańczuk, Phys. Rev. C 56, 812 (1997).[2] R. Smolańczuk, Acta Phys. Pol. B30, 1565 (1999).[3] R. Smolańczuk, Phys. Rev. C 63, 044607 (2001).[4] R. Smolańczuk, Phys. Rev. C 60, 021301(R) (1999).[5] R. Smolańczuk, Phys. Lett. B509, 227 (2001).56


REACTION MECHANISM AND CROSS SECTIONS FOR PRODUCTIONOF HEAVY AND SUPER-HEAVY NUCLEIK. Siwek-Wilczyńska 1 , J. Wilczyński 21 Institute of Experimental Physics, Warsaw University, Warszawa2 A. Sołtan Institute for Nuclear Studies, ŚwierkSynthesis of super-heavy nuclei (of atomicnumbers well beyond Z=100) focuses attention of<strong>nuclear</strong> physicists s<strong>in</strong>ce many years. The nonexist<strong>in</strong>g<strong>in</strong> nature very heavy nuclei can beproduced only with extremely low cross sectionsby fus<strong>in</strong>g two lighter nuclei. However, thedynamics of these fusion reactions is verycomplex. It is essential to be able to predict thevery small production cross sections and thus tochoose optimal comb<strong>in</strong>ations of the two react<strong>in</strong>gnuclei and the optimal bombard<strong>in</strong>g energies <strong>in</strong>experimental attempts to synthesize new superheavyelements.To some approximation, one can assumethat the cross section to form a given super-heavynucleus <strong>in</strong> its ground state, σ(form.) can befactorized <strong>in</strong> the form [1]:σ(form.) = σ(capture) · P(fusion) · P(surv.), (1)where σ(capture) is the cross section ofovercom<strong>in</strong>g the <strong>in</strong>teraction barrier (the capturecross section), P(fusion) is the probability that thecomb<strong>in</strong>ed system will eventually fuse avoid<strong>in</strong>greseparation on the way from the contactconfiguration to the equilibrium shape, andP(surv.) is the probability for the compoundnucleus to decay to the ground state of the f<strong>in</strong>alresidual nucleus via evaporation of light particlesand γ rays thus surviv<strong>in</strong>g fission which is thedom<strong>in</strong>at<strong>in</strong>g decay mode of very heavy nuclei.Our knowledge regard<strong>in</strong>g the <strong>physics</strong>govern<strong>in</strong>g each of the mentioned above factorswas rather limited and each of these factorsrequired separate studies.Follow<strong>in</strong>g some early studies of theenergy thresholds for fusion of very heavysystems [2], the exist<strong>in</strong>g data on capture crosssections were extensively studied [3,4] onmedium and moderately heavy systems for whichthe overcom<strong>in</strong>g the potential energy barrierautomatically leads to fusion of the collid<strong>in</strong>gnuclei and formation of the compound nucleus.All exist<strong>in</strong>g data on near-barrier fusion excitationfunctions have been analyzed us<strong>in</strong>g a simple"diffused-barrier formula" [1,3,4] derivedassum<strong>in</strong>g the Gaussian shape of the barrier heightdistributions. The obta<strong>in</strong>ed mean values of thebarrier height have been used then fordeterm<strong>in</strong>ation of the parameters of the empiricalnucleus-nucleus potential [4]. A reliablesystematics for determ<strong>in</strong>ation of the capture crosssections [4] was obta<strong>in</strong>ed <strong>in</strong> such a way.The fact that fusion cross sections forsynthesis of super-heavy nuclei may be h<strong>in</strong>deredby several orders of magnitude was known s<strong>in</strong>cemany years. The exist<strong>in</strong>g theoretical models arenot yet sufficiently developed to make reliablepredictions of P(fusion) for a wide range of thecompound nucleus Z, mass asymmetry of thefus<strong>in</strong>g system and excitation energy. In [1,5,6] asimple model for calculat<strong>in</strong>g P(fusion), based onthe Smoluchowski diffusion equation wasproposed. It is assumed that after overcom<strong>in</strong>g theCoulomb barrier (the "capture" stage) a rapidgrowth of the neck between the collid<strong>in</strong>g nucleibr<strong>in</strong>gs the system to the <strong>in</strong>jection po<strong>in</strong>t <strong>in</strong> theasymmetric fission valley that extends outside thesaddle configuration. Start<strong>in</strong>g from the <strong>in</strong>jectionpo<strong>in</strong>t, the system may diffuse uphill andovercome the saddle due to thermal shapefluctuations. A closed formula for the probabilityof this process has been derived [1,5,6]Great effort was made to construct andtest [7-11] a reliable Monte Carlo program forcalculat<strong>in</strong>g survival probabilities for heavycompound nuclei for which evaporation channelsare dom<strong>in</strong>ated by fission decay mode. Shell-effectdependent level densities for both evaporationand fission channels were used <strong>in</strong> thesecalculations. Various assumptions regard<strong>in</strong>gpredictions of the ground state and saddle po<strong>in</strong>tenergies [12] of nuclei <strong>in</strong> the unexplored region ofsuper-heavy nuclei were tested.In the present stage, the "Capture-Diffusion-Survival" model that is based on thefactorization scheme of Eq. (1) can successfullyexpla<strong>in</strong> [6] exist<strong>in</strong>g data on so called "cold fusion"(1n) reactions <strong>in</strong> which all super-heavy nuclei upto Z=113 had been synthesized. Attempts to makepredictions for both symmetric [13] andasymmetric systems (used for synthesis of Z=114-118 nuclei <strong>in</strong> hot fusion reactions) are under way.57


[1] W.J. Świątecki, K. Siwek-Wilczyńska, J. Wilczyński, Acta Phys. Pol. B34, 2049 (2003).[2] K. Siwek-Wilczyńska, J. Wilczyński, Phys. Rev. C64, 024611 (2001).[3] K. Siwek-Wilczyńska, I. Skwira, J. Wilczyński, Acta Phys. Pol. B34, 1867 (2003).[4] K. Siwek-Wilczyńska, J. Wilczyński, Phys. Rev. C69, 024611 (2004).[5] W.J. Świątecki, K. Siwek-Wilczyńska, J. Wilczyński, Int. J. Mod. Phys. E13, 261 (2004).[6] W.J. Świątecki, K. Siwek-Wilczyńska, J. Wilczyński, Phys. Rev. C71, 014602 (2005).[7] K. Siwek-Wilczyńska, I. Skwira, J. Wilczyński, Phys. Rev. C72, 034605 (2005).[8] I. Skwira, K. Siwek-Wilczyńska, J. Wilczyński, Acta. Phys. Pol. B36, 1191 (2005).[9] K. Siwek-Wilczyńska, I. Skwira, J. Wilczyński, Int. J. Mod. Phys. E14, 333 (2005).[10] K. Siwek-Wilczyńska, I. Skwira-Chalot, J. Wilczyński, Int. J. Mod. Phys. E15, 405 (<strong>2006</strong>).[11] K. Siwek-Wilczyńska, I. Skwira, J. Wilczyński, AIP Conf. Proc. 853, 265 (<strong>2006</strong>).[12] J. Świątecki, K. Siwek-Wilczyńska, J. Wilczyński, Acta Phys. Pol. B, <strong>in</strong> press.[13] K. Siwek-Wilczyńska, I. Skwira, J. Wilczyński, Int. J. Mod. Phys. E16, 483 (2007).58


EXPERIMENTAL SEARCH FOR SUPER HEAVY ELEMENTS (SHE)M. Adamczyk 1 , S. Kowalski 2 , K. Łojek 1 , Z. Majka 1 , Z. Sos<strong>in</strong> 1 , A. Wieloch 11 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 Institute of Physics, University of Silesia, KatowiceExperimental facility: Heavy ion cyclotron & LISE3, GANIL, France; Superconduct<strong>in</strong>g cyclotron & BIGSOL, CyclotronInstitute, Texas A&M University, USA.One of the most important question <strong>in</strong> lowenergy <strong>nuclear</strong> <strong>physics</strong>, concerns the limit of<strong>nuclear</strong> stability and the existence, due to the shelleffects, of stable island of super heavy nucleicentered at Z=114 (proton number) and N=184(neutron number). Discoveries announced byDubna group <strong>in</strong> years 1998-2002, especiallysynthesis of element Z=114 <strong>in</strong> reaction48 Ca+ 242,244 Pu, seem to confirm existance of theisland of stable SHE.The ma<strong>in</strong> experimental method for theproduction of new SHE elements are fusionreactions of heavy ions at low <strong>in</strong>cident energies.Disadvantage of the method is very lowproduction cross section for the SHE, 1 pbarn forZ=112 element.Our group actively participates <strong>in</strong> experimantalsearch for the SHE nuclei s<strong>in</strong>ce year 1999. Thisactivity concentrates on two different approachesto the subject. The first approach (I) is based on thestandard, cold fusion (excititation energy of acompound nucleus is 10-20 MeV) reactiontechniques, and experiments are conducted at theGANIL facility <strong>in</strong> the frame of FULIScollaboration. Here we use the velocity Wien filterLISE3. The second approach (II) uses a newconcept to search for super and hyper heavyelements and experiments are accomplished at thesuper conduct<strong>in</strong>g cyclotron at the CyclotronInstitute of Texas A&M University <strong>in</strong> collaborationwith groups from Italy and Texas A&M. One ofthe ma<strong>in</strong> tool is a superconduct<strong>in</strong>g solenoidBIGSOL.In the case of the approach (II), <strong>in</strong> order tosynthesize elements <strong>in</strong> the region of Z=116-128, afissile target nuclei such as U or Th are bombardedby heavy ions e.g. Au nuclei. The Au nucleus<strong>in</strong>duces the fission of the target nucleus and oneof the fission fragments is transferred to theprojectile. As a results a new very heavy nucleus iscreated. If the fission fragment is neutron-rich itenhances the creation and survival probability ofthe super heavy nucleus.Us<strong>in</strong>g method (I) several experiments wereconducted: 86 Kr+ 208 Pb → 294 118, at the beam energyE=5.270 MeV/u, 54 Cr+ 208 Pb→ 262 106, E=4.70 and4.76 MeV/u, and <strong>in</strong> the fall of 200358 Fe+ 208 Pb→ 266 108, E=4.92, 4.87 and 4.82 MeV/uand 76 Ge+ 208 Pb→ 284 114, E=4.90 MeV/u. In the firstmentioned experiment no fusion events wereobserved. In the measurements aimed at synthesisof elements 106 (Sg) and 108 (Hs) we have found12 and 7 events correspond<strong>in</strong>gly, which confirmsthe production of those nuclei. For the isotope ofthe element Z=108 this gives around 10% of alldocumented events so far. In the reaction with Gebeam, attempt to make synthesis of Z=114, we didnot f<strong>in</strong>d any case of the synthesis, only estimate ofthe production cross section for Z=114, σ PPAC2 (ns)Fig. 1. Energy signal from Bragg detector as a function of time offlight for heavy ion products of the reaction Au+Th. Products areselected by the BIGSOL.70004496288818551191765.3491.6315.7202.8130.383.6753.7434.5222.1714.249.1475.8753.7742.4241.5571.00059


[1] J. Peter, N. Alamanos, N. Amar, J.C. Angelique, R. Anne, G. Auger, F. Becker, R. Dayras, A. Drouart,J.M. Fontbonne, A. Gillibert, S. Grevy, D. Guerreau, F. Hanappe, R. Hue, R. Lalleman, N. Lecesne,T. Legou, M. Lewitowicz, R. Lichtenthaler, E. Lienard, W. Mittig, F. De Oliveira, N. Orr, G. Politi,Z. Sos<strong>in</strong>, M.G. Sa<strong>in</strong>t-Laurent, J.C. Steckmeyer, C. Stodel, J. Tillier, R. De Tourreil, A.C.C. Villari,J.P. Wieleczko, A. Wieloch, Proc. Int. Symp. on Exotic Nuclei, EXON, Baikal, eds. Yu. Penionzhkievich andE. Cherepanov, World Scientific, (2001), p.41.[2] S. Grevy, N. Alamanos, N. Amar, J.C. Angelique, R. Anne, G. Auger, F. Becker, R. Dayras, A. Drouart,J.M. Fontbonne, A. Gillibert, D. Guerreau, F. Hanappe, R. Hue, A.S. Lalleman, T. Legou, R. Lichtenthaler,E. Lienard, W. Mittig, F. De Oliveira, N. Orr, G. Politi, Z. Sos<strong>in</strong>, M.G. Sa<strong>in</strong>t-Laurent, J.C. Steckmeyer,C. Stodel, J. Tillier, R. de Tourreil, A.C.C. Villari, J.P. Wieleczko, A. Wieloch, Jour. Nucl. Rad. Sci., vol. 3,no.1, (2002), p.9.[3] J. Peter , N. Alamanos, N. Amar, J.C. Angelique, R. Anne, G. Auger, F. Becker, R. Dayras, A. Drouart,J.M. Fontbonne, A. Gillibert, S. Grevy, D. Guerreau, F. Hanappe, R. Hue, R. Lalleman, N. Lecesne,T. Legou, M. Lewitowicz, R. Lichtenthaler, E. Lienard, W. Mittig, F. De Oliveira, N. Orr, G. Politi,Z. Sos<strong>in</strong>, M.G. Sa<strong>in</strong>t-Laurent, J.C. Steckmeyer, C. Stodel, J. Tillier, R. De Tourreil, A.C.C. Villari,J.P. Wieleczko, A. Wieloch, Nuclear Physics et Border L<strong>in</strong>es, May 21-24, Lipari (Italy), eds. G. Fazio,G. Giard<strong>in</strong>a, F. Hanappe, G. Imme and N. Rowley, World Scientific, (2002), p.257.[4] A. Wieloch, Z. Sos<strong>in</strong>, J. Peter, K. Łojek, N. Alamanos, N. Amar, R. Anne, J.C. Angelique, G. Auger,R. Dayras, A. Drouart, J.M. Fontbonne, A. Gillibert, S. Grevy, F. Hanappe, F. Hannachi, R. Hue,A. Khouaja, T. Legou, A. Lopez-Martens, E. Lienard, L. Manduci, F. de Oliveira Santos, N. Orr, G. Politi,M.G. Sa<strong>in</strong>t-Laurent, C. Stodel, L. Stuttg, J. Tillier, R. de Tourreil, A.C.C. Villari, J.P. Wieleczko,Nucl. Inst. Meth., A517, (2004), p.364.[5] Ch. Stodel, R. Anne, G. Auger, B. Bouriquet, J.M. Casandjian, R. Cee, G. De France, F. de Oliveira Santos,R. De Tourreil, A. Khouaja, A. Peghaire, M.G. Sa<strong>in</strong>t-Laurent, A.C.C. Villari, J.P. Wieleczko, N. Amar,S. Grevy, J. Peter, R. Dayras, A. Drouart, A. Gillibert, Ch. Theisen, A. Chatillon, E. Clement, K. Łojek,Z. Sos<strong>in</strong>, A. Wieloch, K. Hauschild, F. Hannachi, A. Lopez-Martens, L. Stuttge, F.P. Hessberger,S. Hofmann, R. Lichtenthaler, F. Hanappe, Proc. Int. Symp. on Exotic Nuclei, EXON2004,5-12 July, 2004,eds. Yu. Penionzhkievich and E. Cherepanov, World Scientific, (2005), p.180.[6] T. Materna, S. Kowalski, K. Hagel, R. Murthy, J. Natowitz, L. Q<strong>in</strong>, G. Souliotis, R. Wada, J. Wang,D. Fabris, M. Lunardon, M. Morando, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, V. Bocci,M. Barbui, A. Andrighetto, M. C<strong>in</strong>ausero, G. Prete, Z. Majka, A. Wieloch,Progress <strong>in</strong> Research April 1, 2004-March 31, Cyclotron Institute, Texas A&M University, (2005), p.II-8.60


NUCLEAR STRUCTURE STUDIES WITH DEEP-INELASTIC HEAVYION REACTIONSR. Broda, B. Fornal, W. Królas, T. Pawłat, J. WrzesińskiH. Niewodniczański Institute of Nuclear Physics PAN, KrakówExperimental facilities: Tandem and ALPI L<strong>in</strong>ac with the GASP, EUROBALL and PRISMA-CLARA spectrometer atthe INFN LNL Legnaro, ATLAS accelerator with the Gammasphere multi-detector array at the Argonne NLIn contrast to the neutron-deficient nucleiwhich are easily produced <strong>in</strong> fusion evaporationreactions, the nuclei located at and beyond theneutron-rich side of the beta stability valley couldnot be accessed for spectroscopic <strong>in</strong>vestigationand until recently for most of them only limited<strong>in</strong>formation from beta-decay studies wasavailable. This difficulty severely restricted therange for the exploration of <strong>nuclear</strong> structureevolution with the isosp<strong>in</strong> composition of nuclei.We pioneered the spectroscopic study ofthese unknown and hard-to-reach nuclei byexploit<strong>in</strong>g deep-<strong>in</strong>elastic heavy-ion reactions <strong>in</strong>thick target gamma-co<strong>in</strong>cidence experiments. Thedetails of the experimental method andtechniques used <strong>in</strong> the data analysis were recentlyreviewed [1] along with the summary of manyspectroscopic results obta<strong>in</strong>ed <strong>in</strong> various regionsof the nuclides chart. The research program<strong>in</strong>cluded <strong>in</strong>vestigation of the reaction mechanismdetails [9,l] that are particularly important forspectroscopic application of b<strong>in</strong>ary heavy-ionreactions. The <strong>nuclear</strong> structure spectroscopicstudy was concentrated on the neutron-rich Snand Te isotopes, exotic nuclei <strong>in</strong> the sdf “island of<strong>in</strong>version” region as well as neutron-rich Ni, Cu,Fe and Zn isotopes, which <strong>in</strong>cluded the discoveryof the N=40 subshell closure <strong>in</strong> 68 Ni isotope.Spectacular results demonstrat<strong>in</strong>g the power ofthe method was the study of hitherto completely<strong>in</strong>accessible high-sp<strong>in</strong> state structures <strong>in</strong> nucleifrom the doubly magic 208 Pb region.In the last decade the <strong>in</strong>vestigation wasfocused ma<strong>in</strong>ly on neutron-rich nuclei located <strong>in</strong>two regions of shell model nuclei, namely close tothe doubly magic 48 Ca and 208 Pb. In nuclei fromthe 208 Pb region extensive high-sp<strong>in</strong> levelstructures were established, reach<strong>in</strong>g record I=30sp<strong>in</strong> values and <strong>in</strong>clud<strong>in</strong>g many new isomericstates, as e.g. the simple πh 11/2 -2 10 + isomer <strong>in</strong>206 Hg, which yielded the proton h 11/2 holeeffective charge [7]. In this region the f<strong>in</strong>e tun<strong>in</strong>gof shell model <strong>in</strong>put parameters allows toimprove the theoretical description and confrontit with experiment up to high-sp<strong>in</strong> and excitationenergy ranges. The obta<strong>in</strong>ed results <strong>in</strong>cluded also<strong>in</strong>terest<strong>in</strong>g phenomena that could not be studiedearlier e.g. the coupl<strong>in</strong>g of the octupole vibrationswith various multi-particle configuration states.In the 48 Ca region the newly identifiedstructures provided experimental <strong>in</strong>put toimprove and test the shell model descriptionwhich still suffers from rather <strong>in</strong>completeknowledge of two-body <strong>in</strong>teractions. In these lightnuclei the evolution of <strong>nuclear</strong> structure with<strong>in</strong>creas<strong>in</strong>g neutron excess displays dramaticdynamics <strong>in</strong>volv<strong>in</strong>g reorder<strong>in</strong>g of s<strong>in</strong>gle particleenergies and appearance of subshell closures. Asan example, summarizes results confirm<strong>in</strong>g theexistence of the N=32 closure and the absence of asimilar effect at the N=34 which was anticipated<strong>in</strong> some theoretical calculations. In the most recentextension of this research l<strong>in</strong>e the PRISMA-CLARA spectrometer at the INFN LNL Legnaro isused to reach even more exotic neutron-richnuclei of the 48 Ca region. With<strong>in</strong> the reportedperiod the obta<strong>in</strong>ed results were communicated <strong>in</strong>47 publications (14 examples are listed below).Fig. 1. Systematics of first 2 + states <strong>in</strong> neutron-rich Ca, Ti and Crisotopes.61


[1] R. Broda, J. Phys. (London) G32, R151 (<strong>2006</strong>).[2] B. Fornal, R. Broda, W. Królas, T. Pawłat, J. Wrzesiński, D. Bazzacco, D. Fabris, S. Lunardi,C. Rossi Alvarez, G. Viesti, G. de Angelis, M. C<strong>in</strong>ausero, D.R. Napoli, Z.W. Grabowski, Phys. Rev.C55, 762 (1997).[3] M. Rejmund, K.H. Maier, R. Broda, B. Fornal, M. Lach, J. Wrzesiński, J. Blomqvist, A. Gadea,J. Gerl, M. Gorska, H. Grawe, M. Kaspar, H. Schaffner, C. Schlegel, R. Schubart, H.J. Wollersheim,Eur. Phys. J. A1, 261 (1998).[4] R. Broda, B. Fornal, P.J. Daly, C.T. Zhang, P. Bhattacharyya, Z.W. Grabowski, J.F.C. Cocks,P.A. Butler, P.T. Greenlees, G.D. Jones, P.M. Jones, R. Jul<strong>in</strong>, I.Y. Lee, A.O. Macchiavelli,J. Blomqvist, Phys. Rev. C59, 3071 (1999).[5] B. Fornal, R. Broda, W. Królas, T. Pawłat, J. Wrzesiński, D. Bazzacco, S. Lunardi, C. Rossi Alvarez,G. Viesti, G. de Angelis, M. C<strong>in</strong>ausero, D. Napoli, J. Gerl, E. Caurier, F. Nowacki, Eur. Phys. J. A7,147 (2000).[6] J. Wrzesiński, K.H. Maier, B. Fornal, R. Broda, W. Królas, T. Pawłat, D. Bazzacco, S. Lunardi,C. Rossi Alvarez, G. de Angelis, A. Gadea, J. Gerl, M. Rejmund, Eur. Phys. J. A10, 259 (2001).[7] B. Fornal, R. Broda, K.H. Maier, J. Wrzesiński G.J. Lane, M. Cromaz, A.O. Macchiavelli,R.M. Clark, K. Vetter, A.P. Byrne, G.D. Dracoulis, M.P. Carpenter, R.V.F. Janssens,I. Wiedenhoever, M. Rejmund, J. Blomqvist, Phys. Rev. Lett. 87, 212501 (2001).[8] R.V.F. Janssens, B. Fornal, P.F. Mantica, B.A. Brown, R. Broda, P. Bhattacharyya, M.P. Carpenter,M. C<strong>in</strong>ausero, P.J. Daly, A.D. Davies, T. Glasmacher, Z.W. Grabowski, D.E. Groh, M. Honma,F.G. Kondev, W. Królas, T. Lauritsen, S.N. Liddick, S. Lunardi, N. Marg<strong>in</strong>ean, T. Mizusaki,D.J. Morrissey, A.C. Morton, W.F. Mueller, T. Otsuka, T. Pawłat, D. Seweryniak, H. Schatz,A. Stolz, S.L. Tabor, C.A. Ur, G. Viesti, I. Wiedenhover, J. Wrzesiński, Phys. Lett. 546B, 55 (2002).[9] W. Królas, R. Broda, B. Fornal, T. Pawłat, H. Grawe, K.H. Maier, M. Schramm, R. Schubart,Nucl. Phys. A724, 289 (2003).[10] S.N. Liddick, P.F. Mantica, R.V.F. Janssens, R. Broda, B.A. Brown, M.P. Carpenter, B. Fornal,M. Honma, T. Mizusaki, A.C. Morton, W.F. Mueller, T. Otsuka, J. Pavan, A. Stolz, S.L. Tabor,B.E. Toml<strong>in</strong>, Phys. Rev. Lett. 92, 072502 (2004).[11] R. Broda, B. Fornal, W. Królas, T. Pawłat, J. Wrzesiński, D. Bazzacco, G. de Angelis, S. Lunardi,C. Rossi Alvarez, Eur. Phys. J. A20, 145 (2004).[12] B. Fornal, S. Zhu, R.V.F. Janssens, M. Honma, R. Broda, P.F. Mantica, B.A. Brown,M.P. Carpenter, P.J. Daly, S.J. Freeman, Z.W. Grabowski, N.J. Hammond, F.G. Kondev, W. Królas,T. Lauritsen, S.N. Liddick, C.J. Lister, E.F. Moore, T. Otsuka, T. Pawłat, D. Seweryniak,B.E. Toml<strong>in</strong>, J. Wrzesiński, Phys. Rev. C70, 064304 (2004).[13] B. Fornal, S. Zhu, R.V.F. Janssens, M. Honma, R. Broda, B. A. Brown, M.P. Carpenter,S.J. Freeman, N.J. Hammond, F.G. Kondev, W. Królas, T. Lauritsen, S.N. Liddick, C.J. Lister,S. Lunardi, P.F. Mantica, N. Marg<strong>in</strong>enan, T. Mizusaki, E.F. Moore, T. Otsuka, T. Pawłat,D. Seweryniak, B.E. Toml<strong>in</strong>, C.A. Ur, I. Wiedenhover, J. Wrzesiński, Phys. Rev. C72, 044315(2005).[14] R. Broda, B. Fornal, W. Królas, T. Pawłat, J. Wrzesiński, D. Bazzacco, S. Lunardi, G. de Angelis,A. Gadea, C. Ur, N. Marg<strong>in</strong>ean, R.V.F. Janssens, M.P. Carpenter, S.J. Freeman, N. Hammond,T. Lauritsen, C.J. Lister, F. Moore, D. Seweryniak, P.J. Daly, Z.W. Grabowski, B.A. Brown,M. Honma, Acta Phys. Pol. B36, 1343 (2005).62


SINGLE-PARTICLE AND STRONGLY DEFORMED STRUCTURESIN f7/2 SHELL NUCLEIJ. Styczeń, P. Bednarczyk, M. Brekiesz, J. Grębosz, M. Kmiecik, M. Lach, A. Maj,W. Męczyński, M. Ziębliński, K. Zuber,H. Niewodniczański Institute of Nuclear Physics PAN, KrakówThe <strong>in</strong>terplay of the shell model and deformedstructures is more pronounced and easier to study<strong>in</strong> light nuclei due to relatively low numbers ofprotons and neutrons. Those numbers <strong>in</strong> the f 7/2nuclei are not prohibitively large for the newgeneration shell-model calculations, and at thesame time, are large enough to create substantialcollectivity. Some time already [1], the presence ofcollective modes of excitations l<strong>in</strong>ked with<strong>in</strong>truder states <strong>in</strong> those nuclei was observed.Recently, we have studied <strong>in</strong> detail the nature ofhigh-sp<strong>in</strong> positive parity (<strong>in</strong>truder) states <strong>in</strong> the f 7/2nuclei. Several <strong>in</strong>vestigations were performed [2-5]apply<strong>in</strong>g the 4π γ -ray spectrometer GASP and alsothe Recoil Mass Spectrometer (RMS) at INFN,Legnaro. The lifetimes, B(M1) and B(E2) values<strong>in</strong>dicated a significant defor-mation of the positiveparity <strong>in</strong>truder band <strong>in</strong> 45 Sc. The band is predictedby the mean-field approach account<strong>in</strong>g for crossshellp-h excitations. The large scale spherical shellmodelcalculations reproduce observed excitationenergies and transition rates for both spherical anddeformed structures [4]. New generation of the γ -ray detect<strong>in</strong>g array such as EUROBALL IV (EB)and application of the efficient Recoil FilterDetector (RFD) [6] - with its high ability forDoppler correction, allowed for further studies ofthe f 7/2 nuclei and for reach<strong>in</strong>g very high sp<strong>in</strong>states at and beyond ‘band term<strong>in</strong>at<strong>in</strong>g states’[7,8], (Fig.1). The systematics of the observedB(E2) and B(M1) probabilities <strong>in</strong>dicate a decreaseof collectivity when approach<strong>in</strong>g band term<strong>in</strong>ation<strong>in</strong> 45 Sc (Fig. 2). Detailed <strong>in</strong>vestigations of s<strong>in</strong>gleparticleand collective bands <strong>in</strong> several othernuclei [9-10], were also performed with the precisegamma-recoil co<strong>in</strong>cidence, and measurements ofDCO ratios and polarization of γ-rays. Moreover,the EB+RFD comb<strong>in</strong>ation allowed for lifetimedeterm<strong>in</strong>ation of very short lived excited states. In42 Ca, we observed a non-yrast positive-parity bandreach<strong>in</strong>g (12 + ) state at 11405 keV. Theenhancement of the B(E2) values for the <strong>in</strong>-bandE2 transitions confirmed the highly collective(deformed) character of the band. It is very likelybuilt on the 0 + state at 1837 keV, of the 6p-4hconfiguration which was known both fromtransfer reactions and theory to have stronglydeformed structure. Moreover, further studies ofthe GDR <strong>in</strong> the decay of the 46 Ti compoundnucleus have revealed splitt<strong>in</strong>g of the GDR <strong>in</strong>totwo components and a direct feed<strong>in</strong>g of that bandby the low energy component. This effect is<strong>in</strong>terpreted as an evidence for the Jacobi shapetransition which occurs <strong>in</strong> the very hot fastrotat<strong>in</strong>g 46 Ti nucleus [12-14]. To further confirmhigh deformation of the 46 Ti* nucleus, α-particlespectra were <strong>in</strong>vestigated with the use of thecharged-particle multi-detector array ICARE and alarge volume BGO detector [15,16], apply<strong>in</strong>g thesame reaction as <strong>in</strong> the previous GDR decaystudies. The experimental data give strongsignatures of very large deformations of the 46 Ticompound nucleus <strong>in</strong> the Jacobi transition regionat the highest-sp<strong>in</strong>s.Fig. 1.Fig. 2.63


1. J. Styczeń, J. Chevallier, B. Haas, N. Schulz, P. Taras, M. Toulemonde, Nucl. Phys. A262, 317 (1976);2. P. Bednarczyk, J. Styczeń, R. Broda, M. Lach, W. Męczyński, D. Bazzacco, F. Brandol<strong>in</strong>i, G. de Angelis,S. Lunardi, L. Müller, N. Med<strong>in</strong>a, C. Petrache, C. Rossi-Alvarez, F. Scarlassara, G.F. Segato, C. Signor<strong>in</strong>i,F. Soramel, Nucl. Phys. A583, 227 (1995);3. P. Bednarczyk, R. Broda, M. Lach, W. Męczyński, J. Styczeń, D. Bazzacco, F. Brandol<strong>in</strong>i, G. de Angelis,S. Lunardi, L. Müller, N. Med<strong>in</strong>a, C. Petrache, C. Rossi-Alvarez, F. Scarlassara, G.F. Segato, C. Signor<strong>in</strong>i,F. Soramel, W. Nazarewicz, E. Ormand, Acta Phys. Pol. B27, 145 (<strong>1996</strong>);4. P. Bednarczyk, J. Styczeń, R. Broda, M. Lach, W. Męczyński, W. Nazarewicz, W.E. Ormand, W. Satuła,D. Bazzacco, F. Brandol<strong>in</strong>i, G. de Angelis, S. Lunardi, L. Müller, N.H. Med<strong>in</strong>a, C.M. Petrache, C. RossiAlvarez, F. Scarlassara, G.F. Segato, C. Signor<strong>in</strong>i,F. Soramel, Phys. Lett. B393, 285 (1997);5. P. Bednarczyk, J. Styczeń, R. Broda, M. Lach, W. Męczyński, D. Bazzacco, F. Brandol<strong>in</strong>i, G. de Angelis,S. Lunardi, L. Müller, N.H. Med<strong>in</strong>a, D.R. Napoli, C.M. Petrache, C. Rossi Alvarez, F. Scarlassara,G.F. Segato, C. Signor<strong>in</strong>i,F. Soramel, Eur. Phys. J. A2, 157 (1998);6. W. Męczyński, P. Bednarczyk, J. Grębosz, J. Heese, M. Janicki, K.H. Maier, J.C. Merd<strong>in</strong>ger, K.M. Spohr,M Ziębliński, J. Styczeń, Nucl. Instr. Methods, A580, 1310 (2007);7. P. Bednarczyk, W. Męczyński, J. Styczeń, J. Grębosz, M. Lach, A. Maj, M. Ziębliński, N. K<strong>in</strong>tz,J.C. Merd<strong>in</strong>ger, N. schulz, J.P. Vivien, A. Bracco, J.L. Pedroza, M.B. Smith, K.M. Spohr, Acta Phys. Pol.B32, 747 (2001);8. P. Bednarczyk, J. Styczeń, A. Bracco, D. Curien, J. Grębosz, M. Lach, A. Maj, J.C. Merd<strong>in</strong>ger,W. Męczyński, F. Nowacki, M.B. Smith, K. Spohr, J.P. Vivien, M. Ziębliński, Eur. Phys. J. A20, 45 (2004);9. M. Lach, P. Bednarczyk, A. Bracco, J. Grębosz, M. Kadłuczka, N. K<strong>in</strong>tz, A. Maj, J.C. Merd<strong>in</strong>ger,W. Męczyński, J.L. Pedroza, N. Schulz, M.B. Smith, K.M. Spohr, J.P. Vivien, M. Ziębliński, J. Styczeń,Eur. Phys. J. A12, 381 (2001);10. M. Lach, J. Styczeń, W. Męczyński, P. Bednarczyk, A. Bracco, J. Grębosz, A. Maj, J.C. Merd<strong>in</strong>ger,N. Schulz, M.B. Smith, K.M. Spohr, J.P. Vivien, M. Ziębliński, Eur. Phys. J. A16, 309 (2003);11. M. Lach, J. Styczeń, W. Męczyński, P. Bednarczyk, A. Bracco, J. Grębosz, A. Maj, J.C. Merd<strong>in</strong>ger,N. Schulz, M.B. Smith, K.M. Spohr, M. Ziębliński, Eur. Phys. J. A25, 1 (2005);12. A. Maj, M. Kmiecik, W. Królas, J. Styczeń,A. Bracco, F. Camera, B. Million, J.J. Gaardhoeje, B. Hersk<strong>in</strong>d,M. Kicińska-Habior, J. Kownacki, W.E. Ormand, Acta Phys. Pol. B32, 2433 (2001);13. A. Maj, M. Kmiecik, A. Bracco, F. Camera, P. Bednarczyk, B. Hersk<strong>in</strong>d, S. Brambilla, G. Benzoni,M. Brekiesz, D. Curien, G. De Angelis, E. Farnea, J. Grębosz, M. Kicińska-Habior, S. Leoni,W. Męczyński, B. Million, D.R. Napoli, J. Nyberg, C.M. Petrache, J. Styczeń, O. Wieland, M. Ziębliński,K. Zuber, N. Dubray, J. Dudek, K. Pomorski, Nucl. Phys. A731, 319 (2004);14. A. Maj et al., this Report;15. M. Brekiesz, P. Papka, A. Maj, M. Kmiecik, F. Beck, P. Bednarczyk, J. Grębosz, F. Haas,W. Męczyński, V. Rauch, M. Rousseau, A. Sanchez, I. Zafra, J. Styczeń, S. Thummerer, M. Ziębliński,K. Zuber, Acta Phys. Pol. B36, 1175 (2005);16. M. Brekiesz, A. Maj, M. Kmiecik, K. Mazurek, W, Męczyński, J. Styczeń, K. Zuber, P. Papka, C. Beck,F. Haas, V. Rauch, M. Rousseau, I. Zafra, J. Dudek, N. Schunck, Nucl. Phys. A788, 224C-230C (2007).64


QUEST OF CHIRAL SYMMETRY BREAKINGIN ATOMIC NUCLEICh. Droste 1 , E. Grodner 1 , M. Kisieliński 2 , A. Kordyasz 2 , M. Kowalczyk 1,2 ,J. Kownacki 2 , J. Mierzejewski 2 , T. Morek 1 , P.J. Napiorkowski 2 , W. Płóciennik 3 ,S.G. Rohoziński 4 , E. Ruchowska 3 , J. Srebrny 2 , M. Wolińska-Cichocka 2 , I. Zalewska 11 Institute of Experimental Physics, Warsaw University, Warszawa2 Heavy Ion Laboratory, Warsaw University, Warszawa3 A. Sołtan Institute for Nuclear Studies, Świerk4 Institute of Theoretical Physics, Warsaw University, WarszawaExperimental facility: OSIRIS II, U200P cyclotron at the Heavy Ion LaboratoryChirality phenomenon is well known <strong>in</strong>chemistry and biology from the times of Pasteurwho discovered that certa<strong>in</strong> molecules exist <strong>in</strong>left- and right- handed forms. Recent theoreticaland experimental works attracted attention tochirality <strong>in</strong> atomic nuclei. In these works thespontaneous break<strong>in</strong>g of chiral symmetry <strong>in</strong> thebody-fixed frame has been predicted. In thelaboratory reference frame it manifests itself asthe presence of chiral partner collective bands,which should exist if three angular momentavectors – of valence proton, valence neutron andof the even-even core – are mutuallyperpendicular form<strong>in</strong>g left- or right- handedcoord<strong>in</strong>ate frames (Fig. 1).procedure and computer code developed by A.A.Pasternak [5].The lifetime results have shown that the 132 La and128 Cs nuclei, <strong>in</strong> spite of their similar level schemes,have essentially different electromagneticproperties [6]. The reduced transition probabilitiesfor 132 La are not consistent with the symmetryrequirements imposed by chirality atta<strong>in</strong>ed <strong>in</strong> the<strong>in</strong>tr<strong>in</strong>sic system (Phys. Rev. Lett 93, 172502 (2004))The properties of the partner bands of 128 Csexhibit the ma<strong>in</strong> features expected for chiralpartner bands. It is the first case of such a goodagreement of comprehensive experimental datawith the chiral <strong>in</strong>terpretation.Recently the candidates for the chiral bands havebeen found <strong>in</strong> several nuclei, namely <strong>in</strong> the oddoddnuclei from the region of A~ 130 (nuclei <strong>in</strong>the vic<strong>in</strong>ity of 128 Cs) and region of A~104 (nucleiaround 104 Rh). In the majority of publications onthe <strong>nuclear</strong> chirality only the level schemes arepresented. Therefore, the lifetime measurementsof the excited states belong<strong>in</strong>g to the partnerbands have been undertaken [1-6] s<strong>in</strong>ce suchexperimental data are very sensitive to <strong>nuclear</strong>structure.The 132 La and 128 Cs isotopes have been studied.High sp<strong>in</strong> states of 128 Cs and 132 La nuclei werepopulated <strong>in</strong> the 122 Sn( 10 B,4n) 128 Cs and122 Sn( 14 N,4n) 132 La reactions at the beam energy of55 and 70 MeV, respectively. The beam wasprovided by the Warsaw U-200P cyclotron placedat the Heavy Ion Laboratory (Warsaw University).About 10 8 gamma-gamma co<strong>in</strong>cident events werecollected <strong>in</strong> each experiment by the OSIRIS IImultidetector array consist<strong>in</strong>g of 10 ComptonsuppressedHPGe detectors. The lifetimes of theexcited levels were determ<strong>in</strong>ed by the Dopplershift attenuation method with the use of theFig. 1. Three mutually perpendicular angular momenta vectors isodd-odd triaxial nucleus form<strong>in</strong>g right-handed and left-handedstates.65


[1] E. Grodner, J. Srebrny, Ch. Droste, T. Morek, A. A. Pasternak, J. KownackiInternational Journal of Modern Physics E13, 243-246 (2004)[2] E. Grodner, I. Zalewska, T. Morek, J. Srebrny, Ch. Droste, M. Kowalczyk, J. Mierzejewski,M. Sałata, A. A. Pasternak, J. Kownacki, M. Kisieliński, A. Kordyasz, P. Napiorkowski, M. Wolińska,S. G. Rohoziński, R. Kaczarowski, W. Płóciennik, E. Ruchowska, A. Wasilewski, J. PerkowskiInternational Journal of Modern Physics E14, 347 (2005)[3] J. Srebrny, E. Grodner, T. Morek, I. Zalewska, Ch. Droste, J. Mierzejewski, J. Kownacki,J. Perkowski Acta Physica Polonica B36, 1063-1069 (2005)[4] E. Grodner, J. Srebrny, I. Zalewska, T. Morek, Ch. Droste, M. Kowalczyk, J. Mierzejewski,A.A. Pasternak, J. Kownacki, M. Kisieliński International Journal of Modern Physics E15, 548 (<strong>2006</strong>)[5] E. Grodner, A.A. Pasternak, Ch. Droste, T. Morek, J. Srebrny, J. Kownacki, W. Płóciennik,Wasilewski, M. Kowalczyk, M. Kisieliński, R. Kaczarowski, E. Ruchowska, A.Kordyaszand M.Wolińska Eur. Phys. J. A27, 325-340 (<strong>2006</strong>)[6] E.Grodner,J. Srebrny,A.A. Pasternak,I. Zalewska,T. Morek,Ch. Droste,J. Mierzejewski,M.Kowalczyk,J. Kownacki,M. Kisieliński,S.G. Rohoziński,T. Koike,K. Starosta,A. Kordyasz,P.J.Napiorkowski,M. Wolińska-Cichocka,E. Ruchowska,W. Płóciennik,J. PerkowskiPhys. Rev. Lett. 97, 172501 (<strong>2006</strong>)66


NUCLEAR STRUCTURE CLOSE TO N=Z=50Z.Janas 1 , M.Palacz 2 , M.Gierlik 1 , M.Karny 1 , J.Kownacki 2 , M.Moszyński 3 , A.Płochocki 1 ,W.Urban 1 , M.Wolińska-Cichocka 2 , D.Wolski 3 , J.Żylicz 11 Institute of Experimental Physics, Warsaw University, Warszawa2 Heavy Ion Laboratory, Warsaw University, Warszawa3 A. Sołtan Institute for Nuclear Studies, ŚwierkExperimental facility: GSI on-l<strong>in</strong>e mass separator, TAS spectrometer, EUROBALL detectorStudies of nuclei <strong>in</strong> the 100 Sn region offerthe possibility to test <strong>nuclear</strong> models describ<strong>in</strong>gproperties of nuclei <strong>in</strong> which protons andneutrons occupy identical orbitals near a doubleshell closure. A variety of phenomena arepredicted to occur <strong>in</strong> such systems. Nuclei withN≈Z are expected to show enhanced neutronprotoncorrelations giv<strong>in</strong>g rise e.g. to a newpair<strong>in</strong>g mode, high-sp<strong>in</strong> isomers or enhancedα-decay probability.An <strong>in</strong>sight <strong>in</strong>to the role of the protonneutron<strong>in</strong>teraction and/or core excitation <strong>in</strong> theshell model structure of N=Z nuclei close to 100 Sncan be ga<strong>in</strong>ed, e.g. <strong>in</strong> studies of decay propertiesof their ground and isomeric states, as well as byγ-ray spectroscopy <strong>in</strong>vestigations of excited nearyraststates populated <strong>in</strong> heavy ions <strong>in</strong>ducedfusion-evaporation reactions.Beta decay of nuclei <strong>in</strong> the 100 Sn regionproceeds ma<strong>in</strong>ly via the Gamow-Teller (GT)transformation of a g 9/2 proton <strong>in</strong>to a g 7/2 neutron.S<strong>in</strong>ce the N=Z=50 shell closure occurs far from thebeta stability l<strong>in</strong>e, isotopes <strong>in</strong> this region haverelatively large Q EC values and the GT strengthcan be <strong>in</strong>vestigated and confronted withtheoretical predictions over a broad range ofexcitation energies. Recently, decays of severalnuclei <strong>in</strong> the 100 Sn region have been studied us<strong>in</strong>gthe total absorption spectroscopy technique.These measurements provided reliable <strong>in</strong>formationon the GT strength distribution <strong>in</strong> the decaysof close neighbours of 100 Sn e.g. 100,102 In and102,103 Sn [1-4]. The same nuclei were also <strong>in</strong> focusof numerous <strong>in</strong>-beam γ-ray <strong>in</strong>vestigations, whichgradually overcome technical difficulties ofpopulat<strong>in</strong>g excited states of more and more closeneighbours of 100 Sn. A significant example of suchstudies was first identification of excited states <strong>in</strong>103 Sn, which lead to the determ<strong>in</strong>ation of s<strong>in</strong>gleparticleenergy spac<strong>in</strong>g between neutron g 7/2 andf 5/2 orbitals (110±40 keV) [5].Slightly more distant neighbours of 100 Sn,like 99 Ag, 101 Ag, 106 Sb were <strong>in</strong>vestigated <strong>in</strong>-beam,up to the highest sp<strong>in</strong> which can be generated bythe respective valence particle (hole) configurationswith the rigid N=Z=50 core [6,7].Investigation of prompt γ-ray radiation emittedfrom excited states of 102 In led <strong>in</strong> turn to theidentification of states related to the neutronexcitations across the N=50 shell gap [8].Several high-sp<strong>in</strong> isomers are predicted tooccur <strong>in</strong> nuclei close to 100 Sn as a result of theattractive <strong>in</strong>teraction of pg 9/2 -ng 9/2 holes <strong>in</strong> theupper part of the g 9/2 sub-shell, which lowers theenergy of stretched configurations and createssp<strong>in</strong> gaps. Studies of sp<strong>in</strong>-gap isomerscharacterized by very specific configurationsprovide a valuable test of residual <strong>in</strong>teractionsand truncation schemes <strong>in</strong> the shell modelcalculations. One of the most spectaculardiscoveries of the recent years was the observationof the decay of 94m Ag(21 + ) isomer result<strong>in</strong>gfrom the stretched coupl<strong>in</strong>g of the (g 9/2-3 ) 21/2proton and neutron configurations. This stateshows unprecedented variety of dis<strong>in</strong>tegrationmodes such as β-decay and delayed protonemission, proton decay and even two protonemission to the high sp<strong>in</strong> states of the f<strong>in</strong>al nuclei[9-10]. Another important result is the observationof the core-excited E4 isomer <strong>in</strong> 98 Cd, from whichthe size of the 100 Sn shell gap of 6.46(15) MeV was<strong>in</strong>ferred [11].One of the consequences of the N, Z=50shell closure is the occurrence of an island ofα-emitters <strong>in</strong> the trans-t<strong>in</strong> region. Moreover,strong b<strong>in</strong>d<strong>in</strong>g of nuclei close to the 100 Sn opens apossibility of cluster emission – a very exoticdecay mode observed so far only <strong>in</strong> the 208 Pbregion. In the 100 Sn region, 114 Ba is predicted to bethe most promis<strong>in</strong>g candidate for the observationof 12 C cluster emission. Measurements of theenergies <strong>in</strong> the 114 Ba → 110 Xe → 106 Te α-decaycha<strong>in</strong> provided precise <strong>in</strong>formation on the Q-value for the 12 C emission from 114 Ba and allowedverification of the theoretical models [12].67


[1] C.Plettner, L.Batist, J.Dor<strong>in</strong>g, A.Blazhev, H.Grawe, V.Belleguic, C.R.B<strong>in</strong>gham, R.Borcea, M.Gierlik,M.Górska, N.Harr<strong>in</strong>gton, Z.Janas, M.Karny, R.Kirchner, C.Mazzocchi, P.Munro, E.Roeckl, K.Schmidt,R.Schwengner, Phys. Rev. C66, 044319 (2002).[2] M.Gierlik, A.Płochocki, M.Karny, W.Urban, Z.Janas, L.Batist, F.Moroz, R.Collatz, M.Gorska, H.Grawe,M.Hellstrom, Z.Hu, R.Kirchner, W.Liu, M.Rejmund, E.Roeckl, M.Shibata, J.Agramunt, A.AlGóra, A.Gadea,B.Rubio, J.L.Ta<strong>in</strong>, D.Cano-Ott, S.Harissopulos, Nucl. Phys. A724, 313 (2003).[3] M.Karny, L.Batist, A.Banu, F.Becker, A.Blazhev, B.A.Brown, W.Bruchle, J.Dor<strong>in</strong>g, T.Faestermann,M.Gorska, H.Grawe, Z.Janas, A.Jungclaus, M.Kavatsyuk, O.Kavatsyuk, R.Kirchner, M.La Commara,S.Mandal, C.Mazzocchi, K.Miernik, I.Mukha, S.Muralithar, C.Plettner, A.Plochocki, E.Roeckl, M.Romoli,K.Rykaczewski, M.Schadel, K.Schmidt, R.Schwengner, J.Żylicz, Eur. Phys. J. A27, 129 (<strong>2006</strong>).[4] O.Kavatsyuk, M.Kavatsyuk, L.Batist, A.Banu, F.Becker, A.Blazhev, W.Bruchle, J.Dor<strong>in</strong>g, T.Faestermann,M.Górska, H.Grawe, Z.Janas, A.Jungclaus, M.Karny, R.Kirchner, M.La Commara, S.Mandal, C.Mazzocchi,I.Mukha, S.Muralithar, C.Plettner, A.Płochocki, E.Roeckl, M.Romoli, M.Schadel, R.Schwengner, J.Żylicz,Eur.Phys. J. A25, 211 (2005)[5] C.Fahlander, M.Palacz, D.Rudolph, D.Sohler, J.Blomqvist, J.Kownacki, K.Lagergren, L.O.Norl<strong>in</strong>,J.Nyberg, A.AlGóra, C.Andreoiu, G.de Angelis, A.Atac, D.Bazzacco, L.Berglund, T.Back, J.Cederkall,B.Cederwall, Zs.Dombradi, B.Fant, E.Farnea, A.Gadea, M.Gorska, H.Grawe, N.Hashimoto-Saitoh,A.Johnson, A.Kerek, W.Klamra, S.M.Lenzi, A.Likar, M.Lipoglavsek, M.Moszynski, D.R.Napoli, C.Rossi-Alvarez, H.A.Roth, T.Saitoh, D.Seweryniak, O.Skeppstedt, M.Weiszflog, M.Wol<strong>in</strong>ska,Phys. Rev. C63, 021307 (2001).[6] D.Sohler, Zs.Dombradi, J.Blomqvist, J.Cederkall, J.Huijnen, M.Lipoglavsek, M.Palacz, A.Atac,C.Fahlander, H.Grawe, A.Johnson, A.Kerek, W.Klamra, J.Kownacki, A.Likar, L.-O.Norl<strong>in</strong>, J.Nyberg,J.Persson, D.Seweryniak, G.de Angelis, P.Bednarczyk, D.Foltescu, D.Jerrestam, S.Juut<strong>in</strong>en, E.Makela,M.dePoli, H.A.Roth, T.Shizuma, O.Skeppstedt, G.Sletten, J.Timar, S.Tormanen, M.Weiszflog,Eur. Phys.J. A16, 171 (2003).[7] D.Sohler, M.Palacz, Zs.Dombradi, M.Hjorth-Jensen, C.Fahlander, L.-O.Norl<strong>in</strong>, J.Nyberg, T.Back,K.Lagergren, D.Rudolph, A.AlGóra, C.Andreoiu, G.de Angelis, A.Atac, D.Bazzacco, J.Cederkall,B.Cederwall, B.Fant, E.Farnea, A.Gadea, M.Gorska, H.Grawe, N.Hashimoto-Saitoh, A.Johnson, A.Kerek,W.Klamra, J.Kownacki, S.M.Lenzi, A.Likar, M.Lipoglavsek, M.Moszynski, D.R.Napoli, C.Rossi-Alvarez,H.A.Roth, T.Saitoh, D.Seweryniak, O.Skeppstedt, J.Timar, M.Weiszflog, M.Wol<strong>in</strong>ska, Nucl. Phys. A753,251 (2005).[8] D.Sohler, M.Palacz, Zs.Dombradi, J.Blomqvist, C.Fahlander, L.-O.Norl<strong>in</strong>, J.Nyberg, T.Back, K.Lagergren,D.Rudolph, A.AlGóra, C.Andreoiu, G.de Angelis, A.Atac, D.Bazzacco, J.Cederkall, B.Cederwall, B.Fant,E.Farnea, A.Gadea, M.Gorska, H.Grawe, N.Hashimoto-Saitoh, A.Johnson, A.Kerek, W.Klamra,J.Kownacki, S.M.Lenzi, A.Likar, M.Lipoglavsek, M.Moszynski, D.R.Napoli, C.Rossi-Alvarez, H.A.Roth,T.Saitoh, D.Seweryniak, O.Skeppstedt, J.Timar, M.Weiszflog, M.Wol<strong>in</strong>ska, Nucl. Phys. A708, 181 (2002).[9] I.Mukha, E.Roeckl, J.Dor<strong>in</strong>g, L.Batist, A.Blazhev, H.Grawe, C.R.Hoffman, M.Huyse, Z.Janas, R.Kirchner,M.La Commara, C.Mazzocchi, C.Plettner, S.L.Tabor, P.Van Duppen, M.Wiedek<strong>in</strong>gPhys. Rev. Lett. 95, 022501 (2005).[10] I.Mukha, E.Roeckl, L.Batist, A.Blazhev, J.Dor<strong>in</strong>g, H.Grawe, L.Grigorenko, M.Huyse, Z.Janas, R.Kirchner,M.La Commara, C.Mazzocchi, S.L.Tabor, P.Van Duppen, Nature 439, 298 (<strong>2006</strong>).[11] A.Blazhev, M.Górska, H.Grawe, J.Nyberg, M.Palacz, E.Caurier, O.Dorvaux, A.Gadea, F.Nowacki,C.Andreoiu, G.de Angelis, D.Balabanski, Ch.Beck, B.Cederwall, D.Curien, J.Dor<strong>in</strong>g, J.Ekman, C.Fahlander,K.Lagergren, J.Ljungvall, M.Moszynski, L.-O.Norl<strong>in</strong>, C.Plettner, D.Rudolph, D.Sohler, K.M.Spohr,O.Thelen, M.Weiszflog, M.Wisell, M.Wol<strong>in</strong>ska, D.Wolski, Phys. Rev. C69, 064304 (2004).[12] C.Mazzocchi, Z.Janas, L.Batist, V.Belleguic, J.Dor<strong>in</strong>g, M.Gierlik, M.Kapica, R.Kirchner, G.A.Lalazissis,H.Mahmud, E.Roeckl, P.R<strong>in</strong>g, K.Schmidt, P.J.Woods, J.Żylicz Phys. Lett. 532B, 29 (2002).68


OCTUPOLE DEFORMATION IN THE ACTINIDE AND LANTHANIDEREGIONSW.KurcewiczInstitute of Experimental Physics, Warsaw University, WarszawaThe follow<strong>in</strong>g Polish physicists were <strong>in</strong>volved <strong>in</strong> different parts of <strong>in</strong>vestigations:K.Gulda 1 , R.Kaczarowski 2 , A.Korgul 1 , W.A.Płóciennik 2 , E.Ruchowska 2 , T.Rząca-Urban 1 , A.Syntfeld 1,2 ,W.Urban 1 , A.A.Wasilewski 2 , J.Żylicz 11 Institute of Experimental Physics, Warsaw University, Warszawa2 A. Sołtan Institute for Nuclear Studies, ŚwierkExperimental facilities: Isotope Separator On L<strong>in</strong>e ISOLDE at CERN, OSIRIS at StudsvikNumerous experimental and theoretical studieswere performed <strong>in</strong> the 80’s provid<strong>in</strong>g evidence ofreflection asymmetric octupole deformation <strong>in</strong> theact<strong>in</strong>ide nuclei around A=225. The octupoledeformed nuclei exhibit features familiar tomolecular <strong>physics</strong>. One signature of such shape <strong>in</strong>the ground state of even-even nuclei is thepresence of particularly low K, J π =0,1 - states, and<strong>in</strong> odd-A nuclei a characteristic feature is theexistence of a parity-doublet band with levelsconnected by strong electric dipole (E1)transitions. In the reflection-symmetric nuclei theexpectation value of E1 moment, D 0 , is zero, thus alarge static E1 moment may arise only <strong>in</strong> the<strong>in</strong>tr<strong>in</strong>sic frame of reflection asymmetric system.Many of these nuclei have been studied atISOLDE/CERN <strong>in</strong> the beta decay experiments (see[1] and references quoted there<strong>in</strong>) us<strong>in</strong>g advancedfast tim<strong>in</strong>g and γ-ray techniques. The lifetimes ofthe excited states have been measured us<strong>in</strong>g thetime-delayed βγγ(t) method. Two-fold γ–co<strong>in</strong>cidences were recorded <strong>in</strong> the Tardismultidetector array. It represents the first use ofthese complex techniques at ISOLDE. In particularthe spectroscopic properties of the transitionalnuclei 225,227 Fr, 227,228,229,231 Ra and 229,231 Th werestudied [2-9]. Recent results provide the first<strong>in</strong>formation on the absolute values of B(E1) <strong>in</strong> theoctupole transitional Fr, Ra and Th nuclei. In thetheoretical part of this study the quasiparticleplus-phononmodel (QPPM) with <strong>in</strong>clusion of theCoriolis coupl<strong>in</strong>g was <strong>in</strong>troduced to <strong>in</strong>terpret theresults, and particularly the transition rates, foroctupole transitional nuclei. The modelcalculations reproduce remarkably well thegeneral enhancement (and occasional quench<strong>in</strong>g)of the E1 <strong>in</strong>tra-doublet transitions. It was the firsttime that this model had been used for the<strong>in</strong>terpretation of the transition rates <strong>in</strong> the act<strong>in</strong>ideregion.The presence of pronounced octupole effects <strong>in</strong>the heavy lanthanides region around N=88 andZ=56 was predicted by Nazarewicz et al.,Nucl.Phys.A429(1984) 269. In fact, this region isthe second one besides the heavy Ra-Th region,where these correlations are exceptionally strong,although they are somewhat weaker than <strong>in</strong> theRa-Th nuclei. Some of these features were studiedus<strong>in</strong>g γ -ray multidetector arrays such asEUROGAM2 or GAMMASPHERE andspontaneously fission<strong>in</strong>g 248 Cm and 252 Cf sources(see review [10]). The experimental data allowedto establish the extent of the enhanced octupolecorrelation region, the low-Z and high-Z at 54 and63, respectively. The low-N limit has been found atN=85, while high-N limit is at present not known(see e.g.[11-13]).Systematic studies of octupole collectivity <strong>in</strong> theBa-Nd region were undertaken by the Warsaw-Uppsala-Świerk collaboration, and werecomplementary to the <strong>in</strong>vestigation of octupolecollective nuclei <strong>in</strong> the heavy act<strong>in</strong>ide region.Recent advance <strong>in</strong> research on the odd-A nucleifrom A=147 and A=149 provide for the first timean opportunity to establish structure systematicsof these nuclei, from the region near the l<strong>in</strong>e ofstability to the most exotic one [14,15].The resultsfrom the beta decay work obta<strong>in</strong>ed recently atOSIRIS were crucial <strong>in</strong> order to correct the levelscheme proposed <strong>in</strong> the prompt-fission studies on149 Ce, the most exotic A=149 nucleus on whichthere is detailed spectroscopy <strong>in</strong>formation.69


[1] W. Kurcewicz, Hyperf<strong>in</strong>e Interactions 129, 175 (2000).[2] A.J. Aas, H. Mach, M.J.G. Borge, B. Fogelberg, I.S. Grant, K. Gulda, E. Hagebo, W. Kurcewicz,J. Kvasil, A. L<strong>in</strong>droth, T. Mart<strong>in</strong>ez, D. Nosek, B. Rubio, J.F. Smith, K. Steffensen, J.L. Ta<strong>in</strong>, O. Tengblad,T.F.Thorste<strong>in</strong>sen, Nucl. Phys. A611, 281 (<strong>1996</strong>).[3] W.Kurcewicz, I.S. Grant, K. Gulda, A.J. Aas, J. Billowes, M.J.G. Borge, D.G. Burke, P.S. Butler,J.F.C. Cocks, B. Fogelberg, S.J. Freeman, G.D. Jones, E. Hagebo, P. Hoff, J. Honsi, A. L<strong>in</strong>droth,G. Lovhoiden, H. Mach, T. Mart<strong>in</strong>ez, R.A. Naumann, K. Nybo, G. Nyman, H. Ravn, B. Rubio, J. Simpson,A.G. Smith, J.F. Smith, K. Steffensen, J.L. Ta<strong>in</strong>, O. Tengblad, T.F. Thorste<strong>in</strong>sen, and the ISOLDECollaboration, Nucl. Phys. A621, 827 (1997).[4] D.G.Burke,W. Kurcewicz, G. Lovhoiden, M.J.G. Borge, M. Cronqvist, H. Gabelmann, H. Gietz, P. Hill,N. Kaffrell, S. Mattson, R.A. Naumann, K. Nybo, G. Nyman, J. Rogowski, G.L. Struble, T.F. Thorste<strong>in</strong>sen,Nucl. Phys. A612, 91 (1997).[5] K.Gulda, H. Mach, A.J. Aas, M.J.G. Borge, D.G. Burke, B. Fogelberg, H. Gietz, I.S. Grant, E. Hagebo,P. Hill, P. Hoff, N. Kaffrell, W. Kurcewicz, A. L<strong>in</strong>droth, G. Lovhoiden, T. Mart<strong>in</strong>ez, S. Mattson,R.A. Naumann, K. Nybo, G. Nyman, B. Rubio, M. Sanchez-Vega, J.L.Ta<strong>in</strong>, R.B.E. Taylor, O. Tengblad,T.F. Thorste<strong>in</strong>sen, Nucl. Phys. A636, 28 (1998).[6] A.J.Aas, H. Mach, J. Kvasil, M.J.G. Borge, B. Fogelberg, I.S. Grant, K. Gulda, E. Hagebo, P. Hoff,W. Kurcewicz, A. L<strong>in</strong>droth, G. Lovhoiden, A. Mackova, T. Mart<strong>in</strong>ez, B. Rubio, M. Sanchez-Vega,J.F. Smith, J.L. Ta<strong>in</strong>, R.B.E. Taylor, O. Tengblad, T.F. Thorste<strong>in</strong>sen, Nucl. Phys. A654, 499 (1999).[7] L.M. Fraile, M.J.G.Borge, H. Mach, R. Boutami, A.J. Aas, B Fogelberg, L.M. Garcia-Reffi, I.S. Grant,K. Gulda, E. Hagebo, W. Kurcewicz, J. Kvasil, M.J. Lopez, G. Lovhoiden, T. Mart<strong>in</strong>ez, B. Rubio, J.L. Ta<strong>in</strong>,O. Tengblad, Nucl.Phys. A686, 71 (2001).[8] M.J.G. Borge, L.M. Fraile, W. Kurcewicz, H. Mach, Nucl. Phys. A690, 227c (2001).[9] E.Ruchowska, W.A.Płóciennik, J.Żylicz, H.Mach, J.Kvasil, A.AlGóra, N.Amzal, T.Back, M.G.Borge,R.Boutami, P.A.Butler, J.Cederkall, B.Cederwall, B.Fogelberg, L.M.Fraile, H.O.U.Fynbo, E.Hagebo,P.Hoff, H.Gausemel, A.Jungclaus, R.Kaczarowski, A.Kerek, W.Kurcewicz, K.Lagergren, E.Nacher,B.Rubio, A.Syntfeld, O.Tengblad, A.A.Wasilewski, L.Weissman, Phys.Rev. C73, 044326 (<strong>2006</strong>).[10] W.Urban, “Experimental Studies of Octupole Correlations <strong>in</strong> Lanthanide Nuclei”, Habilitation, WarsawUniversity, Warszawa 2001.[11]W.Urban, A.Korgul, T.Rząca-Urban, N.Schulz, M.Bentaleb, E.Lubkiewicz, J.L.Durell, M.J.Leddy,M.A.Jones, W.R.Phyllips, A.G.Smith, B.J.Varley, I.Ahmad, L.R.Morss, Phys.Rev. C61, 041301 (2000).[12] W.Urban, W.R.Phillips, I.Ahmad, J.Rękawek, A.Korgul, T.Rząca-Urban, J.L.Durell, M.J.Leddy,A.G.Smith, B.J.Varley, N.Schulz, L.R.Morss, Phys.Rev. C66, 044302 (2002).[13] W.Urban, T.Rząca-Urban, J.L.Durell, W.R.Phillips, A.G.Smith, B.J.Varley, N.Schulz, I.Ahmad, Phys.Rev.C69, 017305 (2004).[14]A.Syntfeld, H.Mach, W.Kurcewicz, B.Fogelberg, W.Płóciennik, E.Ruchowska, Phys.Rev. C68, 024304(2003).[15]A.Syntfeld, H.Mach, W.Kurcewicz, B.Fogelberg, N.Amzal, J.Galy, K.Gulda, A.Korgul, A.L<strong>in</strong>droth,W.A.Płóciennik, M.Sanchez-Vega, W.Urban, Eur. Phys. J. A23, 481 (2005).70


NUCLEAR SHAPE COEXISTENCE STUDIED BY COULOMBEXCITATIONT. Czosnyka 1 , J. Choiński 1 , Ch. Droste 3 , J. Iwanicki 1 , M. Kisieliński 1,2 , M. Kowalczyk 1,3 ,P. Napiorkowski 1 , J. Srebrny 1,3 , K. Wrzosek 1 , M. Zielińska 11 Heavy Ion Laboratory, Warsaw University, Warszawa2 A. Sołtan Institute for Nuclear Studies, Warszawa3 Institute of Experimental Physics, Warsaw University, WarszawaExperimental facility: Warsaw Cyclotron, REX-ISOLDE (CERN), GANIL, JYFL Jyvaskyla, GSI Darmstadt, JAEATokai, NBI Copenhagen, NSRL Rochester, LBL BerkeleyLow-energy multiple Coulomb excitationprovides a wealth of <strong>in</strong>formation onelectromagnetic structure of atomic nuclei. Thispowerful experimental method allows <strong>in</strong>particular to <strong>in</strong>fer <strong>nuclear</strong> shapes, which makes itideally suited to <strong>in</strong>vestigate the cases of predictedshape coexistence. The present renaissance ofmodern Coulex can be associated with evolutionof accelerator facilities, deliver<strong>in</strong>g large variety ofboth stable and radioactive beams as well as withdevelopment of sophisticated software such asWarsaw-Rochester Coulomb excitation leastsquare code GOSIA.One of the <strong>in</strong>dications of shapecoexistence <strong>in</strong> even-even nuclei is an observationof a low-ly<strong>in</strong>g 0 + state, which <strong>in</strong> some rare cases,such as 72 Ge or 98 Mo, can be the first excited state.These two nuclei, together with neighbor<strong>in</strong>gisotopes, were subjects of an extensive Coulombexcitation study. The second 0 + excited state <strong>in</strong>72,74,76 Ge isotopes, as well as <strong>in</strong> 96 Mo, was found tobe of spherical shape [1,2], while for 70 Ge and98 Mo both 0 + states were deformed, differ<strong>in</strong>geither by magnitude of deformation ( 70 Ge, [1]) orby triaxiality ( 98 Mo, [3]). A complicated <strong>in</strong>terplayof collective and s<strong>in</strong>gle-particle effects, which ischaracteristic for the nuclei <strong>in</strong> the transitionalregion, makes a full and consistent explanation ofobserved phenomena a real challange.A series of experiments performed onbeams of the Warsaw Cyclotron allowed todeterm<strong>in</strong>e the deformation parameters of the twogamma bands <strong>in</strong> 165 Ho, differ<strong>in</strong>g by the projectionof K quantum number [4]. Unexpectedly, thedeformations proved to be different, show<strong>in</strong>g the<strong>in</strong>fluence of the K sp<strong>in</strong> projection on the <strong>in</strong>ternalstructure of the nucleus.For the radioactive odd-A 231 Pa nucleusCoulomb excitation studies [5] allowed fordeterm<strong>in</strong>ation of 78 matrix elements of E1, M1,E2, E3, E4 multipolarities. It is the richest set ofelectromagnetic matrix elements ever known foran odd-A nucleus.The rich and precise experimental dataobta<strong>in</strong>ed us<strong>in</strong>g Coulomb excitation methodprovide a str<strong>in</strong>gent test for theoretical models,stimulat<strong>in</strong>g the mutual cooperation betweenexperimentalists and theorists[8]. Anotherexample are the experimental results on evenevenMo isotopes [2,3] <strong>in</strong>dicated the significanceof neutron-proton pair<strong>in</strong>g, which was by thenconsidered as negligible for N ≠ Z nuclei.Recently new <strong>in</strong>terest <strong>in</strong> Coulex is drawnby availability of radioactive beams allow<strong>in</strong>g toperform Coulomb excitation of short-livedunstable nuclei. For the neutron-deficient 74,76 Krisotopes studied at the SPIRAL facility of GANIL,states up to 8 + were excited, and large sets ofmatrix elements, <strong>in</strong>clud<strong>in</strong>g diagonal ones, weredeterm<strong>in</strong>ed [6], which provided new arguments<strong>in</strong> the discussion of shape coexistence <strong>in</strong> this massregion. The recent measurement of quadrupolemoment of the first excited state <strong>in</strong> 70 Se [7].suggested a prolate shape of this nucleus, <strong>in</strong>contrary to the theoretical predictions.Fig1. Quadrupole deformation parameters of Mo and Ge isotopesdeterm<strong>in</strong>ed us<strong>in</strong>g Coulomb excitation method [1,2,3].71


[1] M. Sugawara, Y. Toh, T.Czosnyka, M. Oshima, T. Hayakawa, H. Kusakari, Y. Hatsukawa, J. Katakura,N. Sh<strong>in</strong>ohara, M. Matsuda, T. Morikawa, A. Seki, F. Sakata, Eur. Phys. J A16, 409 (2003).[2] K. Wrzosek, M. Zielińska, J. Choiński, T. Czosnyka, Y. Hatsukawa, J. Iwanicki, J. Katakura,M. Kisieliński, M. Koizumi, M. Kowalczyk, H. Kusakari, M. Matsuda, T. Morikawa, P. J. Napiorkowski,A. Osa, M. Oshima, L. Reissig, T. Shizuma, J. Srebrny, M. Sugawara, Y. Toh, Y. Utsuno, K. Zając,Int. J. Mod. Phys. E15, 374 (<strong>2006</strong>).[3] M. Zielińska, T. Czosnyka, J. Choiński, J. Iwanicki, P. J. Napiorkowski, J. Srebrny, Y. Toh, M. Oshima,A. Osa, Y. Utsuno, Y. Hatsukawa, J. Katakura, M. Koizumi, M. Matsuda, T. Shizuma, M. Sugawara,T. Morikawa, H. Kusakari, A. D. Efimov, V. M. Mikhajlov, Nucl. Phys. A712, 3 (2002).[4] J. Iwanicki, M. Zielińska, T. Czosnyka, J. Choiński, P. J. Napiorkowski, M. Loewe, M. Wurkner,J. Srebrny, Journal of Physics G-Nuclear and Particle Physics Vol 29, 743 (2003).[5] M. Wurkner, J. de Boer, A. I. Levon, M. Loewe, J. Kvasil, J. Srebrny, P. J. Napiorkowski, J. Iwanicki,T. Czosnyka, Nucl. Phys. A725, 3 (2003).[6] W. Korten, E. Bouchez, E. Clement, A. Chatillon, A. Gorgen, Y. Le Coz, C. Theisen, J. Wilson,J. M. Casandjian, G. de France, G. Sletten, T. Czosnyka, J. Iwanicki, M. Zielińska, C. Andreoiu, P. Butler,R. D. Herzberge, D. Jenk<strong>in</strong>s, G. Jones, F. Becker, J. Gerl, W. Catford, C. Timis, Nucl. Phys. A746, 90c (2004).[7] A. Hurst, P. Butler, D. Jenk<strong>in</strong>s, P. Delahaye, F. Wenander, F. Ames, C. Barton, T. Behrens, A. Burger,J. Cederkall, E. Clement, T. Czosnyka, T. Dav<strong>in</strong>son, G. de Angelis, J. Eberth, A. Ekstrom, S. Franchoo,G. Georgiev, A. Gorgen, R.-D. Herzberg, M. Huyse, O. Ivanov, J. Iwanicki, G. Jones, P. Kent, U. Koster,T. Kroll, R. Krucken, A. Larsen, M. Nespolo, M. Pantea, E. Paul, M. Petri, H. Scheit, T. Sieber, S. Siem, J.Smith, A. Steer, I. Stefanescu, N. Syed, J. Van de Walle, P. Van Duppen, R. Wadsworth, N. Warr, D.Weisshaar, M. Ziel<strong>in</strong>ska, Phys. Rev. Lett. 98, 072501 (2007).[8] J. Srebrny, T. Czosnyka, C. Droste, S. G. Rohoziński, L. Próchniak, K. Zając, K. Pomorski, D. Cl<strong>in</strong>e,C. Y. Wu, A. Backl<strong>in</strong>, L. Hesselgren, R. M. Diamond, D. Habs, H. J. Korner, F. S. Stephens, C. Baktash,R. P. Kostecki, Nucl. Phys. A766, 25 (<strong>2006</strong>).[9] N. Amzal, P. A. Butler, D. Hawcroft, N. J. Hammond, R. D. herzberge, G. D. Jones, C. Scholey,O. Stezowski, T. Czosnyka, J. Iwanicki, P. J. Napiorkowski, R. Jul<strong>in</strong>, H. Mach, J. Cederkall, L. M. Fraile,H. O. U. Fynbo, Nucl. Phys. A734, 465 (2004).[12] F. Becker, A. Petrovici, J. Iwanicki, N. Amzal, W. Korten, K. Hauschild, A. Hurstel, Ch. Theisen, P.A.Butler, R.A. Cunn<strong>in</strong>gham, T. Czosnyka, G. de France, J. Gerl, P. Greenlees, K. Helariutta, R.-D.Herzberg, P. Jones, R. Jul<strong>in</strong>, S. Juut<strong>in</strong>en, H. Kankaanpaa, M. Muikku, P. Niem<strong>in</strong>en, O. Radu, P. Rahkila,Ch. Schlegel, Nucl.Phys. A770, 107 (<strong>2006</strong>).72


A STUDY OF THE VIOLATION OF K – SELECTION RULESP. Napiorkowski 1 , T. Morek 2 , J. Srebrny 1,2 , T. Czosnyka 1 , J.Choiński 1 , Ch. Droste 2 ,J. Iwanicki 1 , R. Kaczorowski 3 , M. Kisieliński 1,3 , M. Kowalczyk 1,2 , J. Kownacki 1 ,P. Olbratowski 2 , E. Ruchowska 31 Heavy Ion Laboratory, Warsaw University, Warszawa2 Institute of Experimental Physics, Warsaw University, Warszawa3 A. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: NBI Tandem accelerator & NORDBALL, Risø, Denmark,Tandem Accelerator <strong>in</strong> Garch<strong>in</strong>g, Germany ATLAS & GAMMASPHERE & CHICO,Argonne, USA, Warsaw Cyclotron & OSIRIS II, WarszawaThe projection K of the total angularmomentum I on the symmetry axis of a deformednucleus appears to be conserved, as evidenced bythe existence of ‘‘K isomers,’’ <strong>nuclear</strong> states thatare metastable despite the availability of alloweddecay paths. In axially symmetric nuclei K isexpected to be a good quantum number, so thatan electromagnetic (EM) transition must obey theselection rule |∆K|≤λ, where λ is themultipolarity of the electromagnetic transition.However, K-forbidden γ decays are known to bemerely h<strong>in</strong>dered, rather than truly forbidden.Coulomb excitation of high-K bands hasbeen observed, show<strong>in</strong>g an apparent violation ofthe K selection rule, but the mechanism rema<strong>in</strong>eda mystery. Coriolis mix<strong>in</strong>g or break<strong>in</strong>g of axialsymmetry can result <strong>in</strong> EM transitions, such asdirect excitation of a high-K isomer band from theGSB, that are forbidden between pure-K bands.Alternatively, if there is a multi-step pathavailable, consist<strong>in</strong>g of successive allowed or lowforbiddennesstransitions, then multiple Coulombexcitations can populate high-K bands.The first case, <strong>in</strong>vestigated us<strong>in</strong>gCOULEX technique, was a study of K-isomer <strong>in</strong>180 Ta. Two types of Coulomb excitationexperiments were performed to f<strong>in</strong>d a fastdepopulation path from the K π =9 − extremely longlivedexcited state to K π =1 + GSB. Regular <strong>in</strong>-beamstudies allowed to identify γ-vibrational bandswith typical bandhead E2 excitation strengths. Acomplementary measurement us<strong>in</strong>g Coulombactivation technique was performed with 36 S and64 Ni projectiles and th<strong>in</strong> Ta targets. The excitationfunctions and the 180 Ta recoil angulardistributions favor a K π = 7 + octupole vibration atEx = 1155(40) keV as <strong>in</strong>termediate state <strong>in</strong> thepopulation of the ground state [1,2,3].Coulomb excitation of 178 Hf target with a650 MeV 136 Xe beam has revealed three dist<strong>in</strong>ctlydifferent mechanisms to populate theK π =6 + (T ½ =77 ns), 16 + (31 yr) and 8 + (4 s) high sp<strong>in</strong>states <strong>in</strong> the 178 Hf isomer bands. The bands <strong>in</strong>question were populated <strong>in</strong> a Coulexmeasurement, although a direct excitation ofhigh-K bands is strongly K-forbidden. A rapid<strong>in</strong>crease <strong>in</strong> K-mix<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g sp<strong>in</strong> <strong>in</strong> theisomer bands was observed, as well as an onsetand saturation of K-mix<strong>in</strong>g <strong>in</strong> low-K bands,whereas the mix<strong>in</strong>g was negligible <strong>in</strong> the high-Kbands [4,5,6,7].The decay of the 9.3 ms K π =8 − isomer <strong>in</strong>132 Ce was <strong>in</strong>vestigated by us<strong>in</strong>g the 136 Xe( 16 O,4n)132 Ce reaction. A band mix<strong>in</strong>g mechanism<strong>in</strong>volv<strong>in</strong>g the ground state and s bands isresponsible for h<strong>in</strong>drance factors of E1 transitionsfor N=74 isotones. The newly discovered+transition to 5 γ state can result from a K-mix<strong>in</strong>gdue to the large degree of nonaxiality [8].Fig.1. The decay scheme of the K π =8 − isomer <strong>in</strong> 132 Ce established onbeam of Warsaw Cyclotron. The K-forbidden E1 (8 - →8 + ) and E3 (8 -→5 + ) decays of the isomer were newly found[8].73


[1] M.Loewe, J.de Boer, H.J.Maier, M.Wurkner, P.Olbratowski, J.Srebrny, J.Cho<strong>in</strong>ski, T.Czosnyka,J.Iwanicki, P.J.Napiorkowski, G.Hagemann, G.Sletten, S.A.Karamian, P.von Neumann-Cosel, A.Richter,C.Schlegel, H.J.Wollersheim, Z.Phys. A356, 9 (<strong>1996</strong>)[2] Ch.Schlegel, P.von Neumann-Cosel, J.de Boer, J.Gerl, M.Kaspar, I.Kozhoukharov, M.Loewe, H.J.Maier,P.J.Napiorkowski, I.Peter, M.Rejmund, A.Richter, H.Schaffner, J.Srebrny, M.Wurkner, H.J.Wollersheim,and the EBGSI96-Collaboration, Eur.Phys.J. A 10, 135 (2001)[3] M.Loewe, P.Alexa, T.Czosnyka, J.de Boer, J.Iwanicki, A.I.Levon, H.J.Maier, P.J.Napiorkowski, P.vonNeumann-Cosel, A.Richter, C.Schlegel, G.Sletten, J.Srebrny, M.Wurkner, Phys.Lett. 551B, 71 (2003)[4] P.J. Napiorkowski, J. Srebrny, T. Czosnyka, J. Gerl, Ch. Schlegel, H-J. Wollersheim, D. Cl<strong>in</strong>e, C.Y. Wu, R.Teng, K. Vetter, A. Macchiavelli, M. Devl<strong>in</strong>, J. deBoer, J. Iwanicki, J. Kownacki, M. Loewe, M. WuerknerActa Phys. Pol. B 32, 861(2001)[5] A.B.Hayes, D.Cl<strong>in</strong>e, C.Y.Wu, M.W.Simon, R.Teng, J.Gerl, C.Schlegel, H.J.Wollersheim, A.O.Macchiavelli,K.Vetter, P.Napiorkowski, J.Srebrny, Phys.Rev.Lett. 89, 242501 (2002)[6] A.B.Hayes, D.Cl<strong>in</strong>e, C.Y.Wu, J.Ai, H.Amro, C.Beausang, R.F.Casten, J.Gerl, A.A.Hecht, A.He<strong>in</strong>z,R.Hughes, R.V.F.Janssens, C.J.Lister, A.O.Macchiavelli, D.A.Meyer, E.F.Moore, P.Napiorkowski,R.C.Pardo, Ch.Schlegel, D.Seweryniak, M.W.Simon, J.Srebrny, R.Teng, K.Vetter, H.J.Wollersheim,Phys.Rev.Lett. 96, 042505 (<strong>2006</strong>)[7] A.B.Hayes, D.Cl<strong>in</strong>e, C.Y.Wu, H.Ai, H.Amro, C.Beausang, R.F.Casten, J.Gerl, A.A.Hecht, A.He<strong>in</strong>z, H.Hua,R.Hughes, R.V.F.Janssens, C.J.Lister, A.O.Macchiavelli, D.A.Meyer, E.F.Moore, P.Napiorkowski,R.C.Pardo, Ch.Schlegel, D.Seweryniak, M.W.Simon, J.Srebrny, R.Teng, K.Vetter, H.J.Wollersheim,Phys.Rev. C 75, 034308 (2007)[8] T.Morek, J.Srebrny, Ch.Droste, M.Kowalczyk, T.Rzaca-Urban, K.Starosta, W.Urban, R.Kaczarowski,E.Ruchowska, M.Kisiel<strong>in</strong>ski, A.Kordyasz, J.Kownacki, M.Palacz, E.Wesolowski, W.Gast, R.M.Lieder,P.Bednarczyk, W.Meczynski, J.Styczen, Phys.Rev. C63, 034302 (2001).74


POLARIZATIONAL-DIRECTIONAL CORRELATION FROM ORIENTEDNUCLEIB. Czajkowska 1 , T. Czosnyka 2 , Ch. Droste 1 , P. Magierski 3 , Z. Marc<strong>in</strong>kowska 1 ,T. Morek 1 , P.J. Napiorkowski 2 , S.G. Rohoziński 4 , J. Srebrny 2 , K. Starosta 1 ,T. Rząca-Urban 1 , E. Wesołowski 2 , A. Wierzchucka 11 Institute of Experimental Physics, Warsaw University, Warszawa2 Heavy Ion Laboratory, Warsaw University, Warszawa3 Faculty of Physics, Warsaw University of Technology, Warszawa4 Institute of Theoretical Physics, Warsaw University, WarszawaExperimental facility: EUROGAM II and EUROBALL IIIExperimental determ<strong>in</strong>ation of the sp<strong>in</strong> andparity of excited states is crucial for <strong>nuclear</strong>structure study. To determ<strong>in</strong>e these quantities <strong>in</strong>the “<strong>in</strong>-beam” spectroscopy, one should comb<strong>in</strong>eresults of the DCO analysis (giv<strong>in</strong>g <strong>in</strong>formationabout sp<strong>in</strong>s) with l<strong>in</strong>ear polarization of γ-transitions (giv<strong>in</strong>g <strong>in</strong>formation about parities). Inmodern multidetector γ-spectrometers (e.g.EUROBALL, RISING, EXOGAM) segmented Gedetectors are frequently used. In future suchdetectors will be employed <strong>in</strong> the AGATA andGRETA γ-track<strong>in</strong>g arrays. Such highly segmenteddetectors can work as sensitive Comptonpolarimeters. Nowadays, the large total efficiencyof arrays allows us to carry out co<strong>in</strong>cidencemeasurements between γ-ray polarimeters and therema<strong>in</strong><strong>in</strong>g Ge-detectors.In the typical situation of nuclei exciteddur<strong>in</strong>g a heavy ion reaction, γ-rays are emitted <strong>in</strong>the cascade from an aligned nucleus. In thestandard procedure aimed at the paritydeterm<strong>in</strong>ation, the polarization of γ-quantum ismeasured at θ 1 ≈90 o (see Fig. 1) <strong>in</strong> co<strong>in</strong>cidence withγ-rays registered <strong>in</strong> the rema<strong>in</strong><strong>in</strong>g detectors.Often, the f<strong>in</strong>al results for the sp<strong>in</strong> and parityassignment are not unique. It was the reason thatwe have proposed to measure new additionalobservables, namely:1. the correlation between l<strong>in</strong>ear polarization ofone γ-ray quantum and direction of emission ofanother γ-quantum (be<strong>in</strong>g <strong>in</strong> co<strong>in</strong>cidence with theformer one). This polarizational-directionalcorrelation from oriented nuclei is named PDCO.Two different modes are considered, namelyPOL-DIR (correlation between polarization of γ 1and direction of emission of γ 2 - see <strong>in</strong>set <strong>in</strong> Fig. 1)and DIR-POL (correlation between direction of γ 1and polarization of γ 2 .2. the correlation between l<strong>in</strong>ear polarization of γ 1and polarization of γ 2 , both γ’s be<strong>in</strong>g <strong>in</strong> thecascade. In this case a standard detector located atθ 2 (Fig. 1) should be replaced by the secondpolarimeter e.g. CLOVER. This polarizationpolarizationcorrelation from oriented nuclei isnamed PPCO.A general formula for both types ofcorrelations was derived [1,2] and appropriateobservables were proposed. The formula and acomputer program (available for request) give anopportunity for measur<strong>in</strong>g new observablessensitive for γ-multipolarity, sp<strong>in</strong>s and parities of<strong>in</strong>vestigated levels. Some important symmetries,[2] very helpful for plann<strong>in</strong>g the PDCO or PPCOexperiments, result from our formula. Theabilities of the PDCO and PPCO methods werechecked experimentally [3,4] by us<strong>in</strong>g data fromthe EUROGAM II experiments. The generalformula describes also the cases well known fromthe literature e.g. the standard case whenpolarization of γ 1 is measured and <strong>in</strong>formation is<strong>in</strong>tegrated over all the possible emission directionof γ 2 (“4π <strong>in</strong>tegrated PDCO”).We suggest the follow<strong>in</strong>g strategy [4]when polarization is measured by means ofmultidetector arrays: use the “4π <strong>in</strong>tegratedPDCO” method [2,3], but if results turn out to benot unique then use the PDCO [3] and PPCO [4]methods. The l<strong>in</strong>ear polarization sensitivities ofthe CLOVER and CLUSTER detectors follow<strong>in</strong>gfrom our experiments are given <strong>in</strong> [3] and [5],respectively.beamγ 1γ 2γ 1θ 1θ 2Fig. 1. Geometry of an <strong>in</strong>-beam experiment <strong>in</strong> which polarization anddirection of γ 1 and direction of γ 2 are measured.γ 2φ75


[1] S.G. Rohoziński, K. Starosta, Ch. Droste, T. Morek, J. Srebrny, P. Magierski, Acta Phys. Polonica B27(<strong>1996</strong>) 499[2] Ch. Droste, S.G. Rohoziński, K. Starosta, T. Morek, J. Srebrny, P. Magierski, Nucl. Instr. and Meth.A378 (<strong>1996</strong>) 518[3] K. Starosta, T. Morek, Ch. Droste, S.G. Rohoziński, J. Srebrny, A. Wierzchucka, M. Bergstrom,B. Hersk<strong>in</strong>d, E. Melby, T. Czosnyka, P.J. Napiorkowski, Nucl. Instr. and Meth. A423 (1999) 16[4] Ch. Droste, K. Starosta, A. Wierzchucka, T. Morek, S.G. Rohoziński, J. Srebrny, M. Bergstrom,B. Hersk<strong>in</strong>d, E. Wesołowski, Nucl. Instr. and Meth. A430 (1999) 260[5] Ch. Droste, B. Czajkowska, Z. Marc<strong>in</strong>kowska, R.M. Lieder, T. Morek, T. Rząca-Urban, W. Gast,Nucl. Instr. and Meth. A556 (<strong>2006</strong>) 18276


LEVEL DENSITY PARAMETERB.Nerlo-Pomorska, K.PomorskiInstitute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>The level density parameter “a”, necessary tocalculate the s<strong>in</strong>gle-particle level densities fromthe experimental data, was obta<strong>in</strong>ed with<strong>in</strong> theselfconsistent models. Us<strong>in</strong>g the mean fieldpotential obta<strong>in</strong>ed by Hartree-type procedurewith the relativistic mean field theory (NL3) [1-5],Skyrme <strong>in</strong>teraction (Skm*) [6] and Yukawa folded(YF) [7, 8] potential we have smoothed the s<strong>in</strong>gleparticle level schemes with temperature us<strong>in</strong>g theStrut<strong>in</strong>sky shell correction method by and fold<strong>in</strong>gthe free energy <strong>in</strong> energy or nucleon numberspace [9]. The calculation was done for even-evenspherical nuclei. The level density parameters “a”,where fitted to the liquid drop like formula andcompared to the experimental data:T. von Egidy,H. H. Schmidt, A. N. Behkam, Nucl. Phys. A481,189 (1988), J. Töke, W. J, Świątecki, Nucl. Phys.A372, 141 (1981),N. Dilg, W. Schantl, H. Vonach,M. Uhl, Nucl. Phys. A 217, 269 (1973) <strong>in</strong> Fig. 1.The best agreement was obta<strong>in</strong>ed for the YFpotential with the formula of von Egidy (Egidy).The Thomas Fermi estimate (TF) is larger than allother microscopic predictions. The NL3 and Skm*results lie near the predictions of Dijg obta<strong>in</strong>edwith<strong>in</strong> the back shifted Fermi gas model (Dilg).The results are displayed for different nuclei(upper panel), isotones (second panel) and β-stable elements (third panel). The number n = A/ais presented <strong>in</strong> the lowest panel.The deformation dependence of level densityparameter “a” was <strong>in</strong>vestigated for a few nucleiwith the Yukawa folded potential and thecommon formula for “a” for spherical anddeformed nuclei was found <strong>in</strong> [7]:a YF23= 0.92A+ 0.036 A Bsurf( def ) +1/ MeV132 13+ 0.275 A B ( def ) − 0.001 Z / A BcurvCoul( def ),where B surf (def), B curv (def) and B Coul (def) are theratios of surface, curvature and Coulomb energyof deformed nucleus to the spherical one. TheYukawa folded mean field gives the levelsdensities closest to the experimental data of vonEgidy while the selfconsistent mean fields providethe lower densities of Dilg.Fig. 1. Nuclear levels density parameters as functions of mass number Afor different isotopes (upper panel), isotones (second panel) and β-stablenuclei (third panel). Lowest panel shows n number for β-stable nuclei.77


[1] B. Nerlo-Pomorska, K. Pomorski, J. Bartel, Phys. Rev. C 66, 0516302 (2002)[2] B. Nerlo-Pomorska, K. Pomorski, J. Sykut, J. Bartel, Int. Journ. of Modern Phys. E 13, 75 (2004)[3] B. Nerlo-Pomorska, J. Sykut, Int. Journ. of Modern Phys. E 13, 117 (2004)[4] B. Nerlo-Pomorska, J. Sykut, J. Bartel, Acta Phys. Polon. B 36, 1377 (2005)[5] B. Nerlo-Pomorska, K. Pomorski, J. Sykut, J. Bartel, Int. Journ. Mod. Phys. E 14, 505 (2005)[6] J. Bartel, K. Pomorski, B. Nerlo-Pomorska, Int. Journ. Mod. Phys. E 15, 478 (<strong>2006</strong>)[7] B. Nerlo-Pomorska, K. Pomorski, J. Bartel, Phys. Rev. C 74, 034327 (<strong>2006</strong>)[8] K. Pomorski, B. Nerlo-Pomorska, J. Bartel, Int. Journ. Mod. Phys. E 16, 368 (2007)[9] K. Pomorski, Phys. Rev. C 70, 044306 (2004)78


THE „QUADRUPOLE PLUS PAIRING” COLLECTIVE MODELK. Pomorski 1 , L. Próchniak 1 , S.G. Rohoziński 2 , J. Srebrny 3 , K. Zając 11 Institute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>2 Institute of Theoretical Physics, Warsaw University, Warszawa3 Institute of Experimental Physics, Warsaw University, WarszawaThe lowest-ly<strong>in</strong>g excited levels <strong>in</strong> evenevennuclei are <strong>in</strong>terpreted as the quadrupoleexcitations of <strong>nuclear</strong> surface. The description ofthem with<strong>in</strong> the collective model worksqualitatively excellently. A fair quantitativeagreement between the model and theexperimental data can be achieved by fitt<strong>in</strong>gparameters of the collective Hamiltonian.However, when we have determ<strong>in</strong>ed theHamiltonian from a microscopic many-bodytheory, we have obta<strong>in</strong>ed excitation energies ofthe collective states out of scale when comparedto the experimental energy spectra (cf. e.g. Nucl.Phys. A292, 66 (1977)). Such a disagreementbetween the theory and experiment seems tooccur <strong>in</strong>dependently of the range of nuclei<strong>in</strong>vestigated, the version of microscopic approachand the method of calculation of the collectiveHamiltonian. This led us to conclusion that thecollective space should conta<strong>in</strong> not only the fivequadrupole degrees of freedom but also the fourcollective pair<strong>in</strong>g variables, namely the protonand neutron energy gaps and gauge angles.The collective model which we call “thequadrupole plus pair<strong>in</strong>g collective model” isformulated <strong>in</strong> [1,2,3]. It describes, apart from thequadrupole excitations, also the proton and theneutron pair<strong>in</strong>g vibrations, and the transfer of thelike nucleon pairs, that is the rotations <strong>in</strong> theproton and neutron gauge spaces.As the lowest excitations have ma<strong>in</strong>ly thequadrupole character, to describe them we solvethe model <strong>in</strong> the Born-Oppenheimerapproximation [1,4] assum<strong>in</strong>g that the pair<strong>in</strong>gvibrations have energies high enough. First, for agiven deformations β and γ we separate from thecollective Hamiltonian the proton and the neutronpair<strong>in</strong>g Hamiltonians, and f<strong>in</strong>d the proton andneutron zero-po<strong>in</strong>t energies E p (β,γ), E n (β,γ), andthe most probable energy gaps ∆ p (β,γ), ∆ n (β,γ).This is shown <strong>in</strong> Fig. 1. Secondly, the effectiveBohr Hamiltonian for the quadrupole excitationsis obta<strong>in</strong>ed through substitut<strong>in</strong>g the pair<strong>in</strong>gterms, previously separated <strong>in</strong> the collectiveHamiltonian, by the sum of zero-po<strong>in</strong>t energiesand <strong>in</strong>sert<strong>in</strong>g the most probable values of energygaps. F<strong>in</strong>ally, we diagonalize the effective BohrHamiltonian [1].The collective Hamiltonian has beendeterm<strong>in</strong>ed from the microscopic many-bodytheory which has treated the nucleus as a systemof Z protons and N neutrons <strong>in</strong> the deformedNilsson mean fields <strong>in</strong>teract<strong>in</strong>g via the standardpair<strong>in</strong>g forces [1]. The deformation potential hasbeen calculated us<strong>in</strong>g the microscopicmacroscopicmethod. The crank<strong>in</strong>g method hasbeen used to calculate the <strong>in</strong>ertial functions [4].The pair<strong>in</strong>g correlations have been treated with<strong>in</strong>the BCS approximation and the GeneratorCoord<strong>in</strong>ate Method[1]. No parameter has beenfitted to data.The present approach has been applied tothe description of the quadrupole collective states<strong>in</strong> nuclei from different regions. A prom<strong>in</strong>entexample is the 104 Ru nucleus, for which rich datafrom COULEX [5] are available. We reproducedthese data with an unexpected accuracy [3,6]. Afairly good agreement of the theory withexperimental data was achieved for otherneutron-rich[6,7], rare-earth [8] and neutrondeficientnuclei [1].5B ∆∆ [ 100 /hω 0]4.0N=74β=0.15, γ=60 o3.53.02.52.01.51.00.50E n [h ω 0]∆ nP [ 1 /hω 0]V pair[h ω 0 ]0.00 0.12 0.24 0.36 0.48 0.60 0.72∆ [h ω 0]Fig. 1. The zero-po<strong>in</strong>t pair<strong>in</strong>g vibration <strong>in</strong> the system of N=74neutrons. Blue l<strong>in</strong>es: <strong>in</strong>ertial function B ∆∆ and pair<strong>in</strong>g potentialV pair . Red l<strong>in</strong>e: the probability distribution P of ∆’s at zero-po<strong>in</strong>tvibration. Zero-po<strong>in</strong>t energy E n and the most probable energy gap ∆ n(the abscissa of maximum of P) are marked <strong>in</strong> green.79


[1] L.Próchniak, K.Zając, K.Pomorski, S.G. Rohoziński, J.Srebrny, Nucl. Phys. A648, 181 (1999).[2] S.G. Rohoziński, K. Zając, L. Próchniak, K. Pomorski, J. Srebrny, Particles and Nuclei, 31, part 7B, 237(2000).[3] S.G. Rohoziński, K. Pomorski, L. Próchniak, K. Zając, Ch. Droste, J.Srebrny, Yadernaya Fizika 64,1081 (2001).[4] K.Pomorski, L. Próchniak, K. Zając, S.G. Rohoziński, J. Srebrny, Physica Scripta T88, 111 (2000).[5] J. Srebrny, T. Czosnyka, Ch. Droste, S.G. Rohoziński, L. Próchniak, K. Zając, K. Pomorski, D. Cl<strong>in</strong>e,C. Y. Wu, A. Bäckl<strong>in</strong>, L. Hasselgren, R. M. Diamond, D. Habs, H. J. Körner, F. S. Stephens, C. Baktash,R. P. Kostecki, Nucl. Phys. A766, 25 (<strong>2006</strong>).[6] K.Zając, L.Próchniak, K.Pomorski, S.G. Rohoziński , J.Srebrny, Nucl. Phys. A653, 71 (1999).[7] K. Zając, L.Próchniak, K.Pomorski, S.G. Rohoziński , J.Srebrny, Acta Phys. Polon. B30, 765 (1999).[8] K. Zając, L. Próchniak, K. Pomorski, S.G. Rohoziński ,J. Srebrny, Acta Phys. Polon. B31, 459 (2000).80


EXOTIC NUCLEAR SYMMETRIESJ. Dobaczewski 1 , A. Góźdź 2 , P. Magierski 3 , P. Olbratowski 1 , and K. Zberecki 31 Faculty of Physics, Warsaw University of Technology, Warszawa2 Institute of Theoretical Physics, Warsaw University, Warszawa3 Institute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>Believed to be spherical after their discovery<strong>in</strong> 1909, then found elongated <strong>in</strong> the 50s, theatomic nuclei are now known to exhibit a varietyof shapes and symmetries. The <strong>in</strong>terest <strong>in</strong> the lastdecade went towards phenomena like themagnetic and chiral rotations or the tetrahedraland octahedral deformations.We <strong>in</strong>vestigate these effects theoretically byus<strong>in</strong>g the Skyrme energy density functional. Wedeveloped one of the first computer codes [1,2]which impose no limitations on the symmetry ofthe density, and are thus applicable here.The peculiarity of the magnetic rotation is thatit occurs <strong>in</strong> nuclei with almost spherical massdistribution, which cannot rotate as a quantumobject. The total sp<strong>in</strong> is generated by the<strong>in</strong>dividual angular momenta of high-j valenceparticles and holes, which take perpendiculardirections and then align toward each other like apair of shears. In 142 Gd, we performed the firstHartree-Fock calculations for magnetic rotation[3]. They confirm the important role of the shearsmechanism, although the collective rotation seemsto dom<strong>in</strong>ate, possibly because the pair<strong>in</strong>gcorrelations were not taken <strong>in</strong>to account.In a triaxially deformed nucleus, the high-jvalence particles and holes align their angularmomenta with the short and long axes,respectively, while the collective rotation takesplace about the medium axis. Thus, the vectors ofthe particle, hole, and collective sp<strong>in</strong>s areapproximately perpendicular, and can form a leftor right-handed set. Such a configuration is calledchiral and gives rise to characteristic pairs ofrotational bands.We argued that the chiral system can bemodeled by two gyroscopes stiffly attached alongthe short and long axes of a classical rigid body.Such a model leads to an important conclusionthat chiral rotation can occur only above a certa<strong>in</strong>critical angular frequency [4].Tak<strong>in</strong>g 132 La as a sample nucleus, we obta<strong>in</strong>edthe first self-consistent chiral solutions [5]. Theresults agree surpris<strong>in</strong>gly well with thepredictions of our classical model. The calculatedvalue of the critical frequency lies <strong>in</strong> half thefrequency range covered by the experimentalbands, suggest<strong>in</strong>g that they actually represent atransition from non-chiral to chiral rotation.Quantum systems are most bound when largeenergy gaps between s<strong>in</strong>gle-particle levels exist atthe Fermi surface. Gaps are most likely to appearif the levels themselves are strongly degenerate.Degeneracy <strong>in</strong> turn results from conservation ofsymmetries. It has been suggested that thesymmetries of the regular tetrahedron andoctahedron, which give four-fold degeneracies,may lead to stable shapes like that <strong>in</strong> Fig. 1.Fig. 1. The tetrahedral deformation.Indeed, we found tetrahedral Hartree-Fock-Bogolyubov solutions <strong>in</strong> Zr, Ba, Sm, Gd, Yb, andTh [6,7]. The Skyrme forces differ as to the valuesof excitation energies of the tetrahedral m<strong>in</strong>ima,sometimes predict<strong>in</strong>g them even as ground states.The depths of those m<strong>in</strong>ima can be significantlyreduced by the pair<strong>in</strong>g correlations. We also usedthe Generator-Coord<strong>in</strong>ate Method for the case ofZr isotopes [8,9], and found that tetrahedralvibrations about the spherical shape are morelikely than a static deformation. Moreover, suchvibrations are mixed with those related to thepear-like shape. First attempts to considerrotations of tetrahedrally deformed nuclei [10]showed that regular bands are difficult to developbecause the moment of <strong>in</strong>ertia is very small andmultiple level cross<strong>in</strong>gs occur.On the other hand, we <strong>in</strong>dicated that theobserved E1 and lack<strong>in</strong>g E2 transitions, as well asthe alignment properties of some bands <strong>in</strong> the Gdregion may result from zero-po<strong>in</strong>t quadrupolevibrations about the tetrahedral shape [11].Apparently, the role of the tetrahedral symmetrystill rema<strong>in</strong>s a puzzle, which encourages us toundertake further efforts.81


[1] J. Dobaczewski, J. Dudek, Comp. Phys. Comm. 102, 166 (1997); 102, 183 (1997); 131, 164 (2000).[2] J. Dobaczewski, P. Olbratowski, Comp. Phys. Comm. 158, 158 (2004); 167, 214 (2005).[3] P. Olbratowski, J. Dobaczewski, J. Dudek, T. Rząca-Urban, Z. Marc<strong>in</strong>kowska, R.M. Lieder, Acta Phys.Pol. B33, 389 (2002).[4] P. Olbratowski, J. Dobaczewski, J. Dudek, W. Płóciennik, Phys. Rev. Lett. 93, 052501 (2004).[5] P. Olbratowski, J. Dobaczewski, J. Dudek, Phys. Rev. C73, 054308 (<strong>2006</strong>).[6] P. Olbratowski, J. Dobaczewski, P. Powałowski, M. Sadziak, K. Zberecki, Int. J. of Mod. Phys. E15, 333(<strong>2006</strong>).[7] J. Dudek, J. Dobaczewski, N. Dubray, A. Góźdź, V. Pangon, N. Schunck, Int. J. Mod. Phys. E16, 516(2007).[8] K. Zberecki, P. Magierski, P.-H. Heenen, N. Schunck, Phys.Rev. C74, 051302 (<strong>2006</strong>).[9] K. Zberecki, P. Magierski, P.-H. Heenen, N. Schunck, Int. J. Mod. Phys. E16, 533 (2007).[10] N. Schunck, P. Olbratowski, J. Dudek, J. Dobaczewski, Int. J. of Mod. Phys. E15, 490 (<strong>2006</strong>).[11] J. Dudek, D. Curien, N. Dubray, J. Dobaczewski, V. Pangon, P. Olbratowski, N. Schunck, Phys. Rev.Lett. 97, 072501 (<strong>2006</strong>).82


HIGH SPIN STATES OF STRONGLY DEFORMED CONFIGURATIONSIN MEDIUM-MASS NUCLEIJ. Dobaczewski 1 , W. Nazarewicz 1,2,3 , W. Satuła 1 , T.R. Werner 11 Institute of Theoretical Physics, Warsaw University, Warszawa2 Oak Ridge National Laboratory, Oak Ridge, USA3 Department of Physics, University of Tennessee, Knoxville, USAMagic and doubly magic nuclei and their nearbyneighbors play a special role <strong>in</strong> our quest forunderstand<strong>in</strong>g <strong>nuclear</strong> structure. Informationobta<strong>in</strong>ed for these nuclei, both experimental andtheoretical, is <strong>in</strong>tensively used for determ<strong>in</strong>ationof s<strong>in</strong>gle-particle energies needed, e.g., for largescalecalculations with<strong>in</strong> the shell model; it alsoprovides estimates of two-body matrix elementsof the residual <strong>in</strong>teractions which enter this k<strong>in</strong>dof calculations. Properties of these nuclei havealways been used <strong>in</strong> procedures of fitt<strong>in</strong>gparameters <strong>in</strong> various theoretical models, like,e.g., simple <strong>in</strong>dependent particle models ofNilsson or Woods-Saxon type or more <strong>in</strong>volvedmean-field approaches like those based onHartree-Fock (HF) or Hartree-Fock-Bogoliubov(HFB) equations, Relativistic Mean Field (RMF)methods, Monte Carlo shell models, etc. [1,2].The region around doubly magic 56 Ni nucleus isof particular <strong>in</strong>terest. Nuclei <strong>in</strong> this region (Fe, Co,Ni, Cu, Zn) have <strong>in</strong>termediate masses which arelarge enough to <strong>in</strong>duce pronounced collectivephenomena, but still sufficiently small to makethese nuclei amenable to “low-level” microscopictheoretical treatment. S<strong>in</strong>ce proton and neutronnumbers are similar (Z ≈ N), valence nucleons canoccupy the same subshells and, as the mass is stillnot too large, their spatial distributions can alsobe very close: this can lead to manifestations ofT=0 channel of pair<strong>in</strong>g <strong>in</strong>teractions. In addition,neutron and proton shell effects can actcoherently, what results <strong>in</strong> particularly reachpattern of shape coexistence and shape transitions— these shapes range from spherical to triaxialand superdeformed (with deformation up to β 2 ≈0.5) and can be alternatively described by varioustheoretical models: particle-hole excitationswith<strong>in</strong> shell model, m<strong>in</strong>ima <strong>in</strong> the total Routhiansurfaces <strong>in</strong> Strut<strong>in</strong>sky-Woods-Saxon crank<strong>in</strong>g calculations,special configurations of alpha clusters,etc. Peculiarities of this region of nuclei makes itparticularly well suited for analyz<strong>in</strong>g the<strong>in</strong>terplay between T=0 and T=1 channels of thepair<strong>in</strong>g <strong>in</strong>teractions; while the T=1 component isquickly quenched by high frequency rotation, theT=0 component should survive longer [5,8].In our studies we used ma<strong>in</strong>ly the Skyrme-Hartree-Fock (and/or HFB) crank<strong>in</strong>g approach, aswell as <strong>in</strong>dependent particle model of Woods-Saxon type (with crank<strong>in</strong>g and shell and pair<strong>in</strong>gcorrections taken <strong>in</strong>to account) [2-8]. In thesemodels (as well as <strong>in</strong> the shell model), high sp<strong>in</strong>states of low-isosp<strong>in</strong> nuclei <strong>in</strong> the A ≈ 60 regioncan be described as multi-particle-multi-holeconfigurations <strong>in</strong>volv<strong>in</strong>g f 7/2 hole and g 9/2 particleorbitals (i.e., excitations across N = Z = 28 shellgap). Dynamic moments of <strong>in</strong>ertia, alignments,branch<strong>in</strong>g ratios and other observable quantitiesare highly sensitive to assumed physical scenariosand details of models used for <strong>in</strong>terpret<strong>in</strong>g theexperimental f<strong>in</strong>d<strong>in</strong>gs; this gives us a possibilityto “f<strong>in</strong>e tune” our models and to understandbetter the <strong>physics</strong> beh<strong>in</strong>d phenomena observed <strong>in</strong>experiments.J (2) --(h 2 /MeV)Relative alignment252015106420EXP[4 3 4 2 ][4 2 4 2 ]HF+SLy40 0.5 1 1.5 2EXP[4 3 4 2 ][4 2 4 2 ]CZ1327777Z1227A77(a)(b)61Zn61Zn – 58 Cu0.6 0.8 1 1.2 1.4Rotational frequency (MeV)Fig. Dynamic moments of <strong>in</strong>ertia, J (2) , of the super-deformed band <strong>in</strong>61Zn (a) and its relative alignment with respect to SD bands <strong>in</strong> 58 Cu(b). Two different configurations are compared with experimentalresults. From Ref. [5].83


[1] W. Nazarewicz, J. Dobaczewski, T.R. Werner, J.A. Maruhn, P.- G. Re<strong>in</strong>hard, K. Rutz, C.R. Ch<strong>in</strong>n,A.S. Umar, M.R. Strayer, Phys. Rev. C53, 740 (<strong>1996</strong>).[2] D. Rudolph, C Baktash, W. Satuła, J. Dobaczewski, W. Nazarewicz, M.J. Br<strong>in</strong>kman, M. Devl<strong>in</strong>, H.-Q. J<strong>in</strong>,D.R. LaFosse, L.L. Ried<strong>in</strong>ger, D.G. Sarantites, C.-H. Yu, Nucl. Phys. A630, 417c (1998).[3] D. Rudolph, C Baktash, J. Dobaczewski, W. Nazarewicz, W. Satuła, M.J. Br<strong>in</strong>kman, M. Devl<strong>in</strong>, H.-Q. J<strong>in</strong>,D.R. LaFosse, L.L. Ried<strong>in</strong>ger, D.G. Sarantites, C.-H. Yu, Phys. Rev. Lett. 80, 3018 (1998).[4] D. Rudolph, C Baktash, M.J. Br<strong>in</strong>kman, E. Caurier, D.J. Dean, M. Devl<strong>in</strong>, J. Dobaczewski, P.-H. Heenen,H.-Q. J<strong>in</strong>, D.R. LaFosse, W. Nazarewicz, F. Nowacki, A. Poves, L.L. Ried<strong>in</strong>ger, D.G. Sarantites, W. Satuła,C.-H. Yu, Phys. Rev. Lett. 82, 3763 (1999).[5] C.-H. Yu, C Baktash, J. Dobaczewski, J.A. Cameron, C. Chitu, M. Devl<strong>in</strong>, J. Eberth, A. Gal<strong>in</strong>do-Uribari,D.S. Haslip, D.R. LaFosse, T.J. Lampman, I.-Y. Lee, F. Lerma, A.O. Macchiavelli, S.D. Paul, D.C. Radford,D. Rudolph, D.G. Sarantites, C.E. Svensson, J.C. Wadd<strong>in</strong>gton, J.N. Wilson, Phys. Rev. C60, 031305 (1999).[6] W. Nazarewicz, J. Dobaczewski, M. Matev, M. Mizutori, W. Satuła, Acta Phys. Pol. B32, 2349 (2001).[7] W. Reviol, D.G. Sarantites, R.J. Charity, V. Tomov, J. Dobaczewski, D. Rudolph, R.M. Clark, M. Cromaz,P. Fallon, A.O. Macchiavelli, M.P. Carpenter, D. Seweryniak, Phys. Rev. C65, 034309 (2002).[8] J. Dobaczewski, J. Dudek, R. Wyss, Phys. Rev. C67, 034308 (2003).84


SELF-CONSISTENT TREATMENT OF QUADRUPOLE EXCITATIONSLeszek PróchniakInstitute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>Modern <strong>nuclear</strong> mean field theories offerdetailed, uniform description of large range ofproperties of both β-stable and exotic nuclei. Selfconsistentpotentials <strong>in</strong> such models are obta<strong>in</strong>edfrom effective nucleon-nucleon <strong>in</strong>teraction (ofSkyrme or Gogny type) or from the relativisticapproach with a nucleon <strong>in</strong>teraction mediated byseveral types of bosons. The <strong>in</strong>teraction <strong>in</strong> theparticle-particle channel is approximated byvarious forms of short-range, pair<strong>in</strong>g type force.The mean field theory as based on the variationalpr<strong>in</strong>ciple is aimed at description of a ground state;however it can be extended to cover also excitedstates, <strong>in</strong>clud<strong>in</strong>g collective ones. There are twomethods used to study large scale collectivemotion, as e.g. connected with changes of <strong>nuclear</strong>deformation, namely the Generat<strong>in</strong>g Coord<strong>in</strong>ateMethod and the Adiabatic Time Dependent HFBtheory. In case of quadrupole collectiveexcitations the collective space is 5 dimensional(as it <strong>in</strong>cludes rotational and vibrational degreesof freedom) so the GCM is hardly applicable andthe ATDHFB method rema<strong>in</strong>s the ma<strong>in</strong>theoretical tool (see Phys. Rev. C60, 054301 (1999),Phys. Rev. C70, 054321 (2004) and [2]).Collective variables used <strong>in</strong> the mean fieldapproach are components of the quadrupole massdistribution tensor, and hence they have clear,model <strong>in</strong>dependent mean<strong>in</strong>g. Aftertransformation to the pr<strong>in</strong>cipal axis frame theycan be expressed through Euler angles anddeformation variables β, γ. The ATDHFBexpressions for potential energy and massparameters lead <strong>in</strong> case of quadrupole variables tothe general collective Bohr Hamiltonian.Eigenvalues of the Bohr Hamiltonian are directly<strong>in</strong>terpreted as energies of collective states whileits eigenfunctions allow us to calculate B(E2)transition probabilities and values of <strong>in</strong>variantse.g. β 2 , β 3 cos3γ which give a synthetic measure ofa <strong>nuclear</strong> shape. It is worth to note that presentedmethod does not <strong>in</strong>troduce any new additionalparameters besides the ones def<strong>in</strong><strong>in</strong>g the<strong>in</strong>teraction.In the papers [1,2,3] we presented results ofcalculations for several medium heavy nuclei(from Mo-Ru and Xe-Ba region) us<strong>in</strong>g the modelwith Skyrme <strong>in</strong>teraction. The B(E2) probabilitiesare reproduced very well but energy spectra aresomewhat stretched. This effect weakly dependson the variant of used Skyrme force and the typeof the pair<strong>in</strong>g <strong>in</strong>teraction (seniority, δ-force orsurface δ-force). The Relativistic Mean Fieldmodel was used for some nuclei from the sameregion <strong>in</strong> [4, 5] lead<strong>in</strong>g to conclusions similar tomentioned previously. An example of calculatedpotential energy and comparison of theoreticaland experimental levels for the 104 Ru nucleus ispresented <strong>in</strong> Fig. 1. The effect of stretch<strong>in</strong>g of thespectra which is a consequence of too small valuesof the mass parameters can <strong>in</strong>dicate a need for anextension of the collective space by <strong>in</strong>clud<strong>in</strong>gpair<strong>in</strong>g degrees of freedom and/or forconsideration of so called Thouless-Valat<strong>in</strong>corrections, see [4, 5]. The approach presentedhere, based on a sound foundation of the meanfield theory and employ<strong>in</strong>g well def<strong>in</strong>ed collectivevariables, is well suited also for <strong>in</strong>terpretation ofshape coexistence phenomena and for a criticaldiscussion of various phenomenological models,such as e.g. us<strong>in</strong>g recently proposed dynamicalsymmetry E(5) and X(5) [3,7].Fig. 1. Calculated potential energy and comparison oftheoretical and experimental levels of the 104 Ru nucleus (see alsotext).85


[1] L. Próchniak, P. Quent<strong>in</strong>, D. Samsoen, and J. Libert, Acta Phys. Pol. B 34, 2461 (2003).[2] L. Próchniak, P. Quent<strong>in</strong>, D. Samsoen, and J. Libert, Nucl. Phys. A730, 59 (2004).[3] L. Próchniak, Acta. Phys. Pol. B, (2007), <strong>in</strong> press.[4] L. Próchniak and P. R<strong>in</strong>g, Int. J. Mod. Phys. E 13, 217, (2004).[5] L. Próchniak, Int. J. Mod. Phys. E 15, 379 (<strong>2006</strong>).[6] L. Próchniak, Int. J. Mod. Phys. E (2007), <strong>in</strong> press.[7] L. Próchniak, to be published.86


THE ISOSCALAR BOSONS IN NUCLEAR COLLECTIVE EXCITATIONSK.ZającInstitute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>Proton-neutron pair<strong>in</strong>g forces are hard to<strong>in</strong>vestigate because of their almost negligible<strong>in</strong>fluence on <strong>nuclear</strong> ground-state properties. Butthe observed [Nucl.Phys.A712(2002)79] features ofthe excited 0 + state of 98 Mo (i.e. the lower<strong>in</strong>g ofexcitation energies and the change of <strong>nuclear</strong>shape) suggest the affection of isoscalar pair<strong>in</strong>g<strong>in</strong>teraction on the behaviour of some excited N≠Znuclei. Especially <strong>in</strong> A=98 region the energyneeded to create a proton-neutron „deuteron-like”pair could be found so small that therecomb<strong>in</strong>ation of two-nucleon cluster structurecould compete with such collective movementsas vibrations or even rotations [1]. In order toconsider such an assumption (or just to po<strong>in</strong>t outpossible orig<strong>in</strong>s of observed symmetries) thespecial version of the IBM-4 approximation [J.Phys. G14, 869 (1988)] was adopted.The isoscslar–isovector boson scheme canbe applied to even nuclei which valence protonsand valence neutrons occupy shell-model levelswith the same orbital angular momentum. Thelow-ly<strong>in</strong>g 0 + and 1 + states of such a nucleus aredescribed <strong>in</strong> terms of a system of N <strong>in</strong>teract<strong>in</strong>gbosons of two types [1]: „deuteron-like” isoscalarL=0, S=1, T=0 and isovector L=0, S=0, T=1 bosonsrepresent<strong>in</strong>g nucleon pairs coupled to the sameangular momentum L, sp<strong>in</strong> S and isosp<strong>in</strong> Tvalues. The analysis [Acta Phys. Pol.B20,815(1989)] of possible dynamical symmetries of thegroup cha<strong>in</strong> U(6) ⊃ SO S (3) ⊗ SO T (3) .allows us toapproximate excitation energies of the bosonsystem – and, as follows, of a nucleus – <strong>in</strong> thesimple form :E(N,n,S.T)= E 0 + ξn + σS(S+1) +τT(T+1), .where n=N, N-1, …,0(1) is the number of isoscalarbosons while S=n, n-2, …,0(1) and T=N-n, N-n-2,…,1(0) mean the sp<strong>in</strong> and the isosp<strong>in</strong> of the bosonsystem. Free parameters E 0 , ξ, σ and τ should befitted separately for each group of isobars.Calculations were done for all neighboursof 98 Mo that is A=94, A=96, A=98, A=100 nucleiwith valence nucleons occupy<strong>in</strong>g g-levels of theshell model (g 7/2 and g 9/2 ) [1,2]. The correspond<strong>in</strong>gnumber of bosons changes from N=12 for A=94 toN=16 for A=100 isobars and it counts nucleonpairs outside the Z c =28, A c =68 core (the same forall considered nuclei). In Fig.1 some exemplaryresults are presented <strong>in</strong> comparison toexperimental data [NNDC On-l<strong>in</strong>e Data Service].Theoretical values were obta<strong>in</strong>ed [1] with ξ=0.37MeV, σ=1.433 MeV, τ=0,483 MeV and the scaleparameter E 0 =-88.966 MeV.The 0 + and 1 + b<strong>in</strong>d<strong>in</strong>g energies of A=96and A=100 isobars were reproduced [2] with thesimilar accuracy. Discrepancies are unexpectedlysmall especially if one takes <strong>in</strong>to account theabsence of rotational and vibrational modes <strong>in</strong> theproposed description. Of course, the schemeshould be confirmed by further studies onproperties of <strong>in</strong>terpreted states <strong>in</strong>clud<strong>in</strong>g β decayand Gamow-Teller transitions [3]. But it is quiteclear that the 0 + and 1 + b<strong>in</strong>d<strong>in</strong>g energies ofconsidered isotopes follow the scheme whichcomes out of an essential symmetry <strong>in</strong>clud<strong>in</strong>g theproton-neutron <strong>in</strong>teraction. It seems that theregion of nuclei surround<strong>in</strong>g 98 Mo could bepromis<strong>in</strong>g <strong>in</strong> <strong>in</strong>vestigat<strong>in</strong>g the role and features ofisoscalar pair<strong>in</strong>g forces.b<strong>in</strong>d<strong>in</strong>g energy [MeV]-82-84-86-88T=2 T=1 T=0 T=1 T=2J π =1 + J π =0 + J π =1 + J π =0 + J π =1 ++(6) g.s.+(2) g.s.98Nb 98 Mo 98 Tc 98 Ru 98 RhFig.1. Comparison between measured (black) and calculated 0 + and1 + b<strong>in</strong>d<strong>in</strong>g energies <strong>in</strong> 98 Mo region. T means the isosp<strong>in</strong> of thecorrespond<strong>in</strong>g boson system, blue l<strong>in</strong>es mark n=0 or 1 while theviolet ones are for one extra isoscalar boson <strong>in</strong> the system.87


[1] K. Zając, Acta Phys. Pol. B34, 2241 (2003).[2] K. Zając, Int. J. Mod. Phys. 13, 103 (2004).[3] K. Zając, Int. J. Mod. Phys. 15, 515 (<strong>2006</strong>).88


QUADRUPOLE EXCITATIONS OF TRANSACTINIDE NUCLEIK.Pomorski 1 , L.Próchniak 1 , S.G.Rohoziński 2 , J. Srebrny 3 , K.Zając 11 Institute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>2 Institute of Theoretical Physics, Warsaw University, Warszawa3 Heavy Ion Laboratory, Warsaw University, WarszawaThe noticeable progress <strong>in</strong> spectroscopy oftransact<strong>in</strong>ide isotopes (especially <strong>in</strong>terest<strong>in</strong>g withregard to their nearness to the super-heavy massregion) allows us to discuss their collectiveproperties <strong>in</strong> reference to experimental data.Because of the axial symmetry some ground-statefeatures of transact<strong>in</strong>ides could be <strong>in</strong>terpreted <strong>in</strong>the frame of rotational model. However, theproper description of excited states can be onlyachieved when one adds at least the coupl<strong>in</strong>g ofthe rotational motion with quadrupole shapevibrations. As a suitable approximation weadopted the model [1] developed on the basis ofearlier ideas [2].Allow<strong>in</strong>g only for the zero-po<strong>in</strong>t pair<strong>in</strong>gvibrations [1] we obta<strong>in</strong> the modified quadrupoleplus-pair<strong>in</strong>gHamiltonianĤ CQP ≈ Ĥ CQ ( β,γ,Ω; ∆ p max ,∆ n max ) = Ĥ vib + Ĥ rot + V coll,which describes the motion of an even-evennucleus <strong>in</strong> terms of the <strong>in</strong>tr<strong>in</strong>sic Bohr deformationvariables β and γ, Euler angles Ω and the mostprobable values of pair<strong>in</strong>g gap energies forprotons and neutrons ∆ p max and ∆ n max determ<strong>in</strong>edfor each deformation po<strong>in</strong>t. In this way [1] we canapproximately <strong>in</strong>clude <strong>in</strong>to description ofquadrupole <strong>nuclear</strong> modes the ma<strong>in</strong> effect ofcoupl<strong>in</strong>g with the pair<strong>in</strong>g collective degrees offreedom.The Ĥ CQP does not conta<strong>in</strong> any freeparameters but its form is determ<strong>in</strong>ed by theparameters of adopted s<strong>in</strong>gle-particle potentialand the strengths of the pair<strong>in</strong>g <strong>in</strong>teraction. Forvery heavy transuranium nuclei we justextrapolate the known [Nucl.PhysA131(1969)]Nilsson s<strong>in</strong>gle-particle potential and we calculate<strong>in</strong>ertial functions for a given isotope with<strong>in</strong>Strut<strong>in</strong>sky microscopic - macroscopic methodwith recently obta<strong>in</strong>ed [2] LSD parameters. Inorder to solve the problem of pair<strong>in</strong>g vibrationsand to get the most probable gap values we usethe estimations of pair<strong>in</strong>g strengths obta<strong>in</strong>ed forheavy isotopes from the appropriate massformulas [Z. Phys. A332, 259 (1989)].Thus, solv<strong>in</strong>g the eigenproblem of Ĥ CQP wewere able to reproduce observed excitationenergies and E2 transition probabilities for alleven-even U, Pu, Cm, Fm and No isotopes withnumber of neutrons N=146-156 [3-5]. The detailedcomparison with known experimental data(i.e.[4]) shows that our approach reproducessuccessfully both, low-ly<strong>in</strong>g excitation energiesand electromagnetic transition probabilities. Itshould be noticed that we get a dynamical picture– we are able to immanently <strong>in</strong>dicate purerotational modes as well as deviations from theaxial symmetry.Of course, the description is restricted toquadrupole deformations, but obta<strong>in</strong>ed resultsconfirm that it takes <strong>in</strong>to account the ma<strong>in</strong>features of collective excitations even <strong>in</strong> theextreme mass region. Thus we expect that somepredictions provided by our model (see Fig.1) forg.s.-bands and γ-bands could be quite reliableeven if higher multipolarities are not <strong>in</strong>cluded.NN156154152150148energy [keV]14692 94 96 98 100 102ZFig. 1. Properties of the first 2 + excited state as a function of protonZ and neutron N numbers. Above: the contour plot of the energy;below: map of the average triaxial parameter γ .156154152150148[dag]14692 94 96 98 100 102Z89


[1] L. Próchniak, K. Zając, K. Pomorski, S.G. Rohoziński, J.Srebrny, Nucl. Phys. A648, 181 (1999).[2] K. Pomorski, J. Dudek, Phys. Rev. C7, (2003) 044316.[3] K. Zając, L. Próchniak, K. Pomorski, S.G. Rohoziński, J.Srebrny, Acta Phys. Pol. B32, 691 (2001).[4] L. Próchniak, K. Zając, K. Pomorski, S.G. Rohoziński, J.Srebrny, Acta Phys. Pol. B33, 405 (2002).[5] K. Zając, L. Próchniak, K. Pomorski, S.G. Rohoziński, J.Srebrny, Acta Phys. Pol. B34,1789 (2003).90


GIANT DIPOLE RESONANCE AS A PROBE OF SHAPES OF HOTROTATING ATOMIC NUCLEIA. Maj, M. Kmiecik, K. Mazurek, M. Brekiesz, J. Styczeń, P. Bednarczyk, J. Grębosz,M. Lach, W. Męczyński, M. Ziębliński, K. ZuberH. Niewodniczański Institute of Nuclear Physics PAN, KrakówExperimental facilities: LNL Legnaro (Italy), IRES Strasbourg (France)Dur<strong>in</strong>g the last decade the field of the giantdipole resonance <strong>in</strong> hot nuclei has progressivelyexpanded, due to new exclusive experimentaltechniques [1-3]. Among the structure and reactioneffects explored with the GDR there are, forexample, the coupl<strong>in</strong>g to low ly<strong>in</strong>g states and toquadrupole deformation [4-7], damp<strong>in</strong>g due tocollisions and thermal shape fluctuations [8-11],fission time scales [12], entrance channel effectsand pre-equilibrium giant dipole vibrations [13-15] and, especially the determ<strong>in</strong>ation of the<strong>nuclear</strong> shape [16-21]. This paper focuses on thelatter problem, and more specifically, on thesearch for the Jacobi shape transitions <strong>in</strong> hot rotat<strong>in</strong>g46 Ti nuclei. The results were achieved <strong>in</strong> theexperiments at Large Scale Facilities, such as LNLLegnaro and IRES Strasbourg, performed <strong>in</strong> large<strong>in</strong>ternational collaborations.The shape of hot atomic nuclei is predicted, <strong>in</strong>the liquid drop models, to change under stress ofrotation and the shape evolution pattern dependsamong others on the mass. Heavy nuclei withA>160 change their equilibrium shape fromspherical to oblate, the size of the oblatedeformation <strong>in</strong>creases with angular momentumand at certa<strong>in</strong> value the nucleus undergoes thefission process. Lighter nuclei, with A


[1] A.Maj, M.Kmiecik, F.Camera, B.Hersk<strong>in</strong>d, J.J.Gaardhøje, A.Bracco, A.Ataç, R.A.Bark, I.G.Bearden,P.Bosetti, S.Leoni, M.Mattiuzzi, T.S.Tveter, Z. Żelazny, Acta Phys. Pol. B27, 541 (<strong>1996</strong>).[2] B.Million, A.Bracco, F.Camera, S.Brambilla, A.Gadea, D.Giugni, B.Hersk<strong>in</strong>d, M.Kmiecik, R. Isocrate,S. Leoni, A. Maj, F.Prelz, O.Wieland, Nucl. Instr. Meth. <strong>in</strong> Phys. Res. A452, 422 (2000).[3] A.Maj, Acta Phys.Pol. B32, 793 (2001).[4] F.Camera, A. Bracco, A. Maj, B. Hersk<strong>in</strong>d, A. Ataç, P. Bosetti, R. Bark, I.G. Bearden, J.J. Gaardhøje,M. Kmiecik, S. Leoni, M. Mattiuzzi, G. Turri, European Physical Journal A2 (1998) 1.[5] G.Benzoni, A.Bracco, F.Camera, S.Leoni, B.Million, A.Maj, A.AlGóra, A.Axelsson, M.Bergstrom, N.Blasi,M.Castoldi, S.Fratt<strong>in</strong>i, A.Gadea, B.Hersk<strong>in</strong>d, M.Kmiecik, G.Lo Bianco, J.Nyberg, M.Pignanelli, J.Styczen,O.Wieland, M.Ziebl<strong>in</strong>ski, A.Zucchiatti, Phys.Lett. 540B, 199 (2002).[6] B.Hersk<strong>in</strong>d, G.Benzoni, J.N.Wilson, T.Doss<strong>in</strong>g, G.B.Hagemann, G.Sletten, C.R.Hansen, D.R.Jensen,A.Bracco, F.Camera, S.Leoni, P.Mason, O.Wieland, A.Maj, M.Brekiesz, M.Kmiecik, H.Hubel, P.Br<strong>in</strong>gel,A.Neusser, A.K.S<strong>in</strong>gh, R.M.Diamond, R.M.Clark, M.Cromaz, P.Fallon, A.Gorgen, I.Y.Lee,A.O.Macchiavelli, D.Ward, F.Hannachi, A.Korichi, A.Lopez-Martens, T.Byrski, D.Curien, P.Bednarczyk,J.Dudek, H.Amro, W.C.Ma, J.Lisle, S.Odegard, C.Petrache, D.Petrache, T.Ste<strong>in</strong>hardt, O.Thelen, ActaPhys.Pol. B34, 2467 (2003).[7] M.Kmiecik, A.Maj, J. Styczeń, P.Bednarczyk, M.Brekiesz, J.Grębosz, M.Lach, W.Męczyński,M.Ziębliński, K.Zuber, A.Bracco, F.Camera, G.Benzoni, B.Million, S.Leoni, O.Wieland, B.Hersk<strong>in</strong>d,D.Curien, N.Dubray, J.Dudek, N.Schunck, K.Mazurek, Acta Phys. Pol. B36, 1169 (2005).[8] M.Mattiuzzi, A.Bracco, F.Camera, W.E.Ormand, J.J.Gaardhøje, A.Maj, B.Million, M.Pignanelli, T.Tveter,Nucl. Phys. A612, 262 (1997).[9] F.Camera, A.Bracco, S.Leoni, B.Million, M.Mattiuzzi, M.Pignanelli, A.Maj, M.Kmiecik, R.Bark, J.Bearden,J.J.Gaardhoje, W.E.Ormand, T.Lonnroth, R.Osterbacka, Phys. Rev. C60, 014306 (1999).[10] M.Kmiecik, A.Maj, A.Bracco, F.Camera, M.Casanova, S.Leoni, B.Million, B.Hersk<strong>in</strong>d, R.A.Bark,W.E.Ormand, Nucl. Phys. A674, 29 (2000).[11] M.Kmiecik, A.Maj, B.Million, M.Brekiesz, W.Królas, W.Męczyński, J.Styczen, M.Ziębliński, A.Bracco,F.Camera, G.Benzoni, S.Leoni, O.Wieland, S.Brambilla, B.Hersk<strong>in</strong>d, M.Kic<strong>in</strong>ska-Habior, N.Dubray,J.Dudek and N.Schunck, Phys. Rev. C70, 064317 (2004).[12] T.S.Tveter, J.J.Gaardhøje, A.Maj, T.Ramsøy, A.Ataç, J.Bacelar, A.Bracco, A.Buda, F.Camera, B.Hersk<strong>in</strong>d,W.Korten, W.Królas, A.Menthe, B.Million, H.Nifenecker, M.Pignanelli, J.A.P<strong>in</strong>ston, H.v.d.Ploeg,F.Schussler, G.Sletten, Phys. Rev. Lett 76, 1035 (<strong>1996</strong>).[13] M.Kmiecik, A.Maj, B.Hersk<strong>in</strong>d, A.Bracco, R.Bark, M.Bergström, F.Camera, G.Hagemann, N.Hashimoto,A.Holm, S.Leoni, T.Saitoh, T.S.Tveter, European Physical Journal A1, 11 (1998).[14] A.Maj, M.Kmiecik, B.Hersk<strong>in</strong>d, A.Bracco, F.Camera, G.Hagemann, P.Varmette, Nucl. Phys. A649, 137(1999).[15] O.Wieland, A.Bracco, F.Camera, G.Benzoni, N.Blasi, S.Brambilla, F.Crespi, A.Giussani, S.Leoni,B.Million, A.Moroni, S.Barl<strong>in</strong>i, V.L.Kravchuk, F.Gramegna, A.Lanchais, P.Mast<strong>in</strong>u, A.Maj, M.Brekiesz,M.Kmiecik, M.Bruno, E.Geraci, G.Vann<strong>in</strong>i, G.Cas<strong>in</strong>i, M.Chiari, A.Nann<strong>in</strong>i, A.Ord<strong>in</strong>e, E.Ormand, Phys.Rev. Lett. 97, 012501 (<strong>2006</strong>).[16] A.Maj, M.Kmiecik, W.Królas, W.Męczyński, J.Styczeń, M.Ziębliński, B.Million, A.Bracco, F.Camera,S.Leoni, O.Wieland, B.Hersk<strong>in</strong>d, M.Kicińska-Habior, Nucl. Phys. A687, 192 (2001).[17]A.Maj, M.Kmiecik, A.Bracco, F.Camera, P.Bednarczyk, B.Hersk<strong>in</strong>d, S.Brambilla, G.Benzoni, M.Brekiesz,D.Curien, G.De Angelis, E.Farnea, J.Grębosz, M.Kicińska-Habior, S.Leoni, W.Męczyński, B.Million,D.R.Napoli, J.Nyberg, C.M.Petrache, J.Styczeń, O.Wieland, M.Ziębliński, K.Zuber, N.Dubray, J.Dudek,K.Pomorski, Nucl.Phys. A731, 319 (2004).[18] M.Brekiesz, A.Maj, M.Kmiecik. K.Mazurek, W.Męczyński, J.Styczeń, K.Zuber, P.Papka, C.Beck,F.Haas, V.Rauch, M.Rousseau, A.Sànchez i Zafra, J.Dudek and N.Schunck., Nucl. Phys. A788, 224c (2007).[19] M.Kmiecik, A.Maj, M.Brekiesz, K.Mazurek, P.Bednarczyk, J.Grębosz, W.Męczyński, J.Styczeń,M.Ziębl<strong>in</strong>ski, K.Zuber, P.Papka, C.Beck, D.Curien, F.Haas, V.Rauch, M.Rousseau, J.Dudek, N.Schunck,A.Bracco, F.Camera, G.Benzoni, O.Wieland, B.Hersk<strong>in</strong>d, E.Farnea, G. De Angelis, Acta Phys. Pol. B38,1437 (2007).[20] K.Mazurek, M.Kmiecik, A.Maj, J.Dudek, N.Schunck., Acta Phys. Pol. B38, 1455 (2007).[21]J.Styczeń, P.Bednarczyk, M.Brekiesz, J.Grębosz, M.Kmiecik, M.Lach, A.Maj, W.Męczyński,M.Ziębliński, K. Zuber, this Report.92


GIANT DIPOLE RESONANCE AS A PROBEOF ISOSPIN MIXING IN HOT NUCLEIM. Kicińska-Habior 1 , M. Kisieliński 2 , O. Kijewska 1 , M. Kowalczyk 1 , Z. Trznadel 1 ,E. Wójcik 11 Institute of Experimental Physics, Warsaw University, Warszawa2 Heavy Ion Laboratory, Warsaw University, WarszawaExperimental facility: Warsaw Cyclotron at HIL, and Superconduct<strong>in</strong>g L<strong>in</strong>ear Accelerator at the University ofWash<strong>in</strong>gton, SeattleExperimental and theoretical studies ofthe Giant Dipole Resonance (GDR) built on highlyexcited states <strong>in</strong> compound nuclei formed <strong>in</strong>heavy-ion collisions proved already <strong>in</strong> the 1990-ties that the γ-decay of the GDR is an importanttool for learn<strong>in</strong>g about the <strong>nuclear</strong> properties athigh temperatures and angular momenta [1-3].Thus, shortly after heavy-ion beams started to beavailable from the Warsaw Cyclotron, anexperimental set-up JANOSIK suitable to measurehigh-energy γ-rays was built at the Heavy IonLaboratory of Warsaw University [4]. Severalprojects were from then performed at HIL butsome were still done <strong>in</strong> collaboration with theSeattle group at the University of Wash<strong>in</strong>gton.In all our experiments high-energy γ-rayshave been measured <strong>in</strong> the large NaI spectrometerpositioned at several angles with respect to thebeam axis. The multiplicity of low-energy γ-rayshas been measured by us<strong>in</strong>g the small multiplicityfilter. The n-γ discrim<strong>in</strong>ation has been achieved bythe standard time-of-flight technique [4, 5].Character of the high-energy (E γ = 10-50MeV) γ-ray radiation emitted <strong>in</strong> heavy-ioncollisions at projectile energies 3-11 MeV/udepends strongly on a projectile energy. Atprojectile energies up to 6 MeV/u the ma<strong>in</strong> sourceof high-energy γ-rays is the decay of the GDRexcited <strong>in</strong> a compound nucleus formed bycomplete fusion reactions. At such beam energieswe have performed shape evolution [1-2, 5-6], andisosp<strong>in</strong> mix<strong>in</strong>g [7-11] studies <strong>in</strong> hot nuclei. One ofthe results was the observation of the Jacobi shapetransition <strong>in</strong> the 45 Sc nuclei [1, 2] measured <strong>in</strong>Seattle.Pure isovector character of the GDRprovided possibilities to study isosp<strong>in</strong> symmetry<strong>in</strong> hot nuclei. In order to extract the isosp<strong>in</strong>mix<strong>in</strong>g probability and <strong>in</strong>vestigate its dependenceon the atomic number Z of highly excited selfconjugatenuclei, four nuclei: 32 S, 36 Ar, 44 Ti and60 Zn, with Z <strong>in</strong>creas<strong>in</strong>g from 16 to 30, wereformed at excitation energies around 50 MeV bythe entrance channels with the isosp<strong>in</strong> T = 0. Thereactions populat<strong>in</strong>g neighbour<strong>in</strong>g compoundnuclei: 31 P, 37 Ar, 45 Ti, and 61 Zn at similar excitationenergy, but with the T ≠ 0 were also measured. Allexperiments were performed with the use of thebeams from the Warsaw Cyclotron. Experimentalmethod was based on the rule that the E1 decaysfrom T = 0 to T = 0 states are isosp<strong>in</strong> forbiddendue to the isovector nature of the electric dipoleradiation. The GDR parameters, Coulombspread<strong>in</strong>g widths, and the isosp<strong>in</strong> mix<strong>in</strong>gprobabilities and their dependence on the atomicnumber Z were extracted [7-11]. It was shown forthe first time that the isosp<strong>in</strong> mix<strong>in</strong>g probabilityfor highly excited states <strong>in</strong>creases with the Znumber of the self-conjugate nuclei [11].Fig. 1. Isosp<strong>in</strong> mix<strong>in</strong>g α 2 as deduced from the GDR studies, as afunction of the atomic number Z.At projectile energies above 6 MeV/uadditional sources of γ-rays may occur <strong>in</strong> theheavy-ion collision. Statistical decay of the GDRmay follow formation of the compound nucleusby the complete, as well as <strong>in</strong>complete, fusion.Also bremsstrahlung emission may take place. Inorder to study these effects the 12 C + 24, 26 Mg, 12 C +58,64 Ni and 20 Ne+ 12 C reactions have been studied[5-6,12-15]. It was found that simultaneousanalysis of γ-ray spectra and angular distributionsallows to differentiate between statistical decayand bremsstrahlung [12-15]. It was also shownthat the GDR parameters, especially the width, arestrongly <strong>in</strong>fluenced by the presence of <strong>in</strong>completefusion <strong>in</strong> the analysis [15].93


[1] M.Kicińska-Habior, K.A.Snover, J.A.Behr, C.A.Gossett, Y.Alhassid and N.Whelan, Phys. Lett. B 308, 225(1993) .[2] M.Kicińska-Habior, K.A.Snover, J.A.Behr, C.A.Gossett, J.H.Gundlach, Z.M.Drebi, M.S.Kaplan,D.P.Wells, Nucl. Phys. A569, 17c (1994).[3] M.Kicińska-Habior, A.Maj, Z.Sujkowski, Acta Phys. Pol. B27, 285 (<strong>1996</strong>).[4] M.Kicińska-Habior, Z.Trznadel, M.Kisieliński, J.Kownacki, M.Kowalczyk, Z.Żelazny, T.Matulewicz,D.Chmielewska, A.Maj, Z.Sujkowski, J. Dworski, M.Augsburg, A. Kordyasz, A. Krzyczkowska,J. Kwieciński, J.Romanowski, Acta Phys. Pol. B28, 219 (1997) .[5] M.Kicińska-Habior, Acta Phys. Pol. B30, 1353 (1999).[6] M. Kicińska-Habior, Z. Trznadel, O. Kijewska, E. Wójcik, Acta Phys. Pol. B33, 949 (2002).[7] M. Kicińska-Habior, E. Wójcik, O. Kijewska, M. Kisieliński, M. Kowalczyk, J. Choiński, Nucl. Phys.A 731c, 138 (2004).[8] M. Kicińska-Habior, Acta Phys. Pol. B36, 1133 (2005).[9] O. Kijewska, M. Kicińska-Habior, E. Wójcik, M. Kisieliński, M. Kowalczyk, J. Choiński,W. Czarnacki, Acta Phys. Pol. B36, 1185 (2005).[10] E. Wójcik, M. Kicińska-Habior, O. Kijewska, M. Kowalczyk, M. Kisieliński, J. Choiński, Acta Phys.Pol. B37, 207 (<strong>2006</strong>).[11] E. Wójcik, M. Kicińska-Habior, O. Kijewska, M. Kowalczyk, M. Kisieliński, J. Choiński, Acta Phys.Pol. B38, 1469 (2007).[12] M.Kicińska-Habior, Z. Trznadel, K.A.Snover, A.Maj, M.Kelly, Acta Phys. Pol. B28, 189 (1997).[13] M.Kicińska-Habior, Z. Trznadel, A. Maj, M.P. Kelly, J.P.S. van Schagen, K.A. Snover, Nucl. Phys. A649,130 (1999).[14] M.Kicińska-Habior, Z. Trznadel, Acta Phys. Pol. B30, 535 (1999).[15] Z. Trznadel, M.Kicińska-Habior, M.P. Kelly, J.P.S. van Schagen, K.A. Snover, Nucl. Phys. A687, 199c(2001) .94


LOW-LYING DIPOLE STRENGTH AND PYGMY RESONANCEIN UNSTABLE NEUTRON-RICH ISOTOPES IN THE MASS REGIONOF DOUBLY-MAGIC 132 Sn NUCLEUSP.Adrich, A.Klimkiewicz, R.Kulessa, G.Surówka, W.WaluśM. Smoluchowski Institute of Physics, Jagiellonian University, KrakówExperimental facility: LAND-FRS setup at GSI, DarmstadtExotic neutron-rich nuclei display uniquestructural phenomena as a consequence of strongneutron-proton asymmetry. Large neutron excessleads to formation of regions with very diffuseneutron densities. Heavy nuclei develop neutronsk<strong>in</strong>, an outer coat of neutron-rich matter thatsurrounds the isosp<strong>in</strong> saturated core.Modifications of effective <strong>nuclear</strong> potential,evolution of the shell structure and regroup<strong>in</strong>g ofenergy levels can be observed as well, hav<strong>in</strong>gimpact on the multipole response of nuclei.Theoretical calculations predict appearance of anew collective mode <strong>in</strong> medium and heavyneutron-rich nuclei at excitation energies belowthe giant dipole resonance (GDR), near oneneutronseparation threshold. This so-called“pygmy” dipole resonance (PDR) is pictured asan oscillation of the neutron sk<strong>in</strong> aga<strong>in</strong>st the<strong>nuclear</strong> core. Experimental evidence for PDR israther scarce.This report presents results from ameasurement performed at GSI facility, whosema<strong>in</strong> aim was <strong>in</strong>vestigation of dipole response <strong>in</strong>unstable nuclei around doubly-magic 132 Sn, withspecial emphasis placed on the low-energycomponents [1]. The secondary, radioactive beamwas produced via <strong>in</strong>-flight fission of a primary238 U beam at 550 MeV/u. Isotopes with similarA/Z ratio, <strong>in</strong>clud<strong>in</strong>g 129-132 Sn and 133,134 Sb, wereselected with the fragment separator FRS,identified on an event-by-event basis andtransported to the experimental area host<strong>in</strong>g theLAND setup (detailed description of the setup canbe found <strong>in</strong> [2,3,4]). Projectiles then passedthrough a Pb target where a dom<strong>in</strong>ant reactionprocess are electromagnetic dipole excitations tostates of relatively high excitation energies whichsubsequently decay by neutron and γ-rayemission. The excitation energy of projectiles wasreconstructed <strong>in</strong> an <strong>in</strong>variant-mass analysisapplied to all decay products. Dipole strengthdistributions were obta<strong>in</strong>ed from measuredenergy-differential Coulomb cross sections.In order to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the low-ly<strong>in</strong>gstrength <strong>in</strong> isotopes of <strong>in</strong>terest, contribution fromthe GDR and associated <strong>in</strong>strumental effects hadFig. 1. Low-ly<strong>in</strong>g dipole strength distributions obta<strong>in</strong>ed forunstable Sn and Sb isotopes.to be subtracted first. GDR parameterization,common for all isotopes, was chosen as aLorentzian distribution with resonance energyE o =15.5 MeV, width Γ=4.75 MeV and photoabsorptioncross section (<strong>in</strong>tegrated up to 25 MeV)σ γ =2150±140 mb MeV, be<strong>in</strong>g <strong>in</strong> good agreementwith systematics known from photo-absorptionmeasurements <strong>in</strong> stable nuclei. The rema<strong>in</strong><strong>in</strong>glow-ly<strong>in</strong>g strength is shown <strong>in</strong> Fig.1. It appears <strong>in</strong>all isotopes studied. Distributions for isotopeswith odd-neutron number seem to extendtowards lower excitation energies. It should benoted, however, that the experimental data coverexcitation energies only above the one-neutronseparation threshold, which is significantly higher<strong>in</strong> case of even neutron numbers. Strengthcomponents <strong>in</strong> 130 Sn and 132 Sn isotopes exhaust7(3)% and 4(3)% of the Thomas-Reiche-Kuhnenergy-weighted sum rule [1]. Such an amount ofstrength appears too large to be <strong>in</strong>terpreted <strong>in</strong>terms of a s<strong>in</strong>gle-particle excitation and suggests acoherent motion of part of nucleons. Theexperimental f<strong>in</strong>d<strong>in</strong>gs are rather close to results ofcalculations with<strong>in</strong> the (Q)RPA-phonon-coupl<strong>in</strong>g(Phys. Lett. B601 (2004) 27) and the relativisticRPA approach (Phys. Rev. C67 (2003) 34312). Itshould be noted, however, that any decisiveconclusion on the collectivity degree of theobserved low-ly<strong>in</strong>g strength cannot be made.95


[1] P.Adrich, A.Klimkiewicz, M. Fallot, K. Boretzky, T.Aumann, D. Cort<strong>in</strong>a-Gil, U. Datta Pramanik,Th.W. Elze, H. Eml<strong>in</strong>g, H. Geissel, M. Hellstroem, K.L. Jones, J.V. Kratz, R. Kulessa, Y. Leifels,C. Nociforo, R. Palit, H. Simon, G. Surówka, K. Sümmerer and W. Waluś, Phys. Rev. Lett. 95,132501 (2005)[2] K. Boretzky, A. Grünschloß, S. Ilievski, P.Adrich, T.Aumann, C.A. Bertulani, J. Cub, W. Dostal,B. Eberle<strong>in</strong>, Th.W. Elze, H. Eml<strong>in</strong>g, M. Fallot, J.Holeczek, R. Holzmann, C. Kozhuharov, J.V. Kratz,R. Kulessa, Y. Leifels, A. Leistenschneider, E. Lubkiewicz, S. Mordechai, T. Ohtsuki, P.Reiter, H.Simon,K. Stelzer, J.Stroth, K. Sümmerer, A. Surowiec, E. Wajda and W. Waluś, Phys. Rev. C68, 024317(2003)[3] Th. Blaich, Th.W. Elze, H.Eml<strong>in</strong>g, H. Freiesleben, K. Grimm, W. Henn<strong>in</strong>g, R. Holzmann, G. Ickert,J.G. Keller, H. Kl<strong>in</strong>gler, W. Kneissl, R. Koenig, R. Kulessa, J.V. Kratz, D. Lambrecht, J.S. Lange,Y. Leifels, E. Lubkiewicz, M. Proft, W. Prokopowicz, C. Schütter, R. Schmidt, H. Spies, H. Stelzer,J.Stroth, E. Wajda, W.Waluś, H.J. Wollersheim, M. Z<strong>in</strong>ser and E. Zude, Nucl. Instr. Methods A314,136 (1992)[4] J. Cub, G. Stengel, A. Grünschloß, K. Boretkzy, T. Aumann, W. Dostal, B. Eberle<strong>in</strong>, Th.W. Elze, H.Eml<strong>in</strong>g, G. Ickert, J. Holeczek, R. Holzmann, J.V. Kratz, R. Kulessa, Y. Leifels, H. Simon, H.Stelzer,J. Stroth, A. Surowiec and E. Wajda, Nucl. Instr. Methods A402, 67 (1998)96


ISOSPIN MIXING IN DEUTERON-INDUCED REACTIONSAT VERY LOW ENERGIESK. CzerskiInstitute of Physics, University of Szczec<strong>in</strong>, Szczec<strong>in</strong>Experimental facility: electrostatic accelerator at the Technical University of Berl<strong>in</strong>,GermanyNuclear reactions at very low energies areusually of astrophysical <strong>in</strong>terest. The deuteron<strong>in</strong>ducedreactions on light nuclei are especiallyimportant for the creation and destruction ofchemical elements <strong>in</strong> the early universe <strong>in</strong> terms ofthe <strong>in</strong>homogeneous Big-Bang model. Moreover,the primordial abundance of 2 H provides verysharp limits for the cosmological baryon-tophotonratio, strictly related to the baryon densityof the universe. On the other hand, the <strong>nuclear</strong>reactions on the odd-odd self-conjugated nuclei2 H, 6 Li and 10 B reported here possess manyexceptional features mak<strong>in</strong>g them <strong>in</strong>terest<strong>in</strong>g forfundamental <strong>nuclear</strong> <strong>physics</strong>. S<strong>in</strong>ce both projectileand target nuclei have <strong>in</strong> the ground state isosp<strong>in</strong>T=0, only compound-nucleus states with T=0 canbe excited. Thus, any isosp<strong>in</strong> impurity of thecompound states can then be easily studied bymeans of the branch<strong>in</strong>g ratio between the neutronand proton exit channels [1]. The isosp<strong>in</strong> mix<strong>in</strong>geffects were observed <strong>in</strong> all of the studied systems.The <strong>in</strong>vestigations performed on 6 Li and10 B nuclei could solve some long-stand<strong>in</strong>gproblems concern<strong>in</strong>g the reaction mechanisms atvery low deuteron energies. In the case of 6 Li itwas shown that an isosp<strong>in</strong>-mixed subthresholdresonanceconsist<strong>in</strong>g of the 2 + isosp<strong>in</strong>-doubletexpla<strong>in</strong>s the branch<strong>in</strong>g ratio between the neutronand proton channels for the ground and firstexcited states of the f<strong>in</strong>al mirror nuclei 7 Li and 7 Be[1,2] (see Fig.1). It was also po<strong>in</strong>ted out that theconstructive <strong>in</strong>terference between this resonanceand the direct reaction amplitude correctlydescribes the experimentally observed angulardistribution of the 6 Li(d,α) 4 He reaction [3-5].The isosp<strong>in</strong>-mix<strong>in</strong>g mechanism also playsan important role <strong>in</strong> deuteron-<strong>in</strong>duced reactionson 10 B. Here, it was <strong>in</strong>dicated that only anexcitation of the giant dipole resonance as adoorway-state at projectile energies as low as 300keV can expla<strong>in</strong> the experimental data (Fig.2).Similarly to 6 Li, an isosp<strong>in</strong> impurity of the giantdipole resonance and its coherent contribution tothe reaction amplitude had to be <strong>in</strong>cluded [5,6].The theoretical calculations could also describeobserved angular distributions for the 10 B(d,p) 11 Breaction to the excited states as well as for the10 B(d,α) 8 Be reaction [6,7].At very low projectile energies thescreen<strong>in</strong>g of the <strong>nuclear</strong> charges by surround<strong>in</strong>gelectrons enhances the experimental cross sections.This effect, important for astrophysical plasmas,could be studied for the mirror reactions2 H(d,p) 3 H and 2 H(d,n) 3 He [8]. The neutron-protonbranch<strong>in</strong>g ratio of about 1 observed for gas targetsresults from two 1 - isosp<strong>in</strong> mixed states <strong>in</strong> thecompound nucleus 4 He. For deuteron energiessmaller than 20 keV, we observed [9] a quench<strong>in</strong>gof the neutron channel by about 20 % and<strong>in</strong>creas<strong>in</strong>g of anisotropy of the angulardistribution when the reactions preceded <strong>in</strong>metallic Sr or Li environments. The effect could beexpla<strong>in</strong>ed by a partial polarization of deuterons <strong>in</strong>the crystal lattice.Fig.1. Branch<strong>in</strong>g ratio 6 Li(d,n 1 )/ 6 Li(d,p 1 ). The dashed l<strong>in</strong>es representtheoretical calculations performed with<strong>in</strong> DWBA. The solid l<strong>in</strong>e<strong>in</strong>clude the resonant reaction amplitude additionally.Fig..2. S-factor and angular distribution coefficients of the10B(d,p 0 ) 11 B reaction. The dashed l<strong>in</strong>es represent the direct reactioncomponent only, the solid l<strong>in</strong>es correspond to the coherentsuperposition of direct and resonant (GDR) components.97


[1] K. Czerski, H. Bucka, P. Heide and T. Makubire, Phys. Lett. B 307 (1993) 20[2] K. Czerski, H. Bucka, P. Heide and G. Ruprecht, Nucl. Phys. A621 (1997) 119[3] K. Czerski, A. Huke, H. Bucka, P. Heide, G. Ruprecht and B. Unrau, Phys. Rev. C 55 (1995) 1517[4] G. Ruprecht, D. Bemmerer, K. Czerski, P. Heide and M. Hoeft, Nucl. Phys. A688 (2001) 521c[5] G. Ruprecht, K. Czerski, D. Bemmerer, M. Hoeft, P. Heide, Phys. Rev. C 70 (2004) 025803[6] G. Ruprecht, K. Czerski, D. Bemmerer, M. Hoeft, P. Heide, Nucl. Phys. A758 (2005) 170[7] M. Hoeft, K. Czerski, P. Heide and M. Lang, Nucl. Phys. A688 (2001) 524c[8] K. Czerski, A. Huke, A. Biller, P. Heide, M. Hoeft and G. Ruprecht, Europhys. Lett. 54 (2001) 449[9] A. Huke, K. Czerski, T. Dorsch, A. Biller, P. Heide, G. Ruprecht, Eur. Phys. J. A 27 (<strong>2006</strong>) 18798


PROTON EMISSIONR.Grzywacz 1,2 , Z.Janas 1 , M.Karny 1 , A.Korgul 1 , W.Królas 3 , K.Rykaczewski 1,41 Institute of Experimental Physics, Warsaw University, Warszawa2 Department of Physics and Astronomy, University of Tennessee, Knoxville, USA3 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków4 Oak Ridge National Laboratory, Oak Ridge, USAExperimental facility: Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL),Oak Ridge, Tennessee, USA.Discovery of proton emitt<strong>in</strong>g isomer 53mCo(1970) and, about ten years later, ground-stateproton emitters 151 Lu and 147 Tm marked thebeg<strong>in</strong>n<strong>in</strong>g of the proton radioactivity studies.Today more than forty proton emitt<strong>in</strong>g groundandisomeric states are known <strong>in</strong> over thirtyproton-emitt<strong>in</strong>g nuclei, many of them discoveredwith a substantial Polish contribution.Simple experimental observables like protonenergy and a partial half-life confronted withtheoretical model<strong>in</strong>g allow us to deduce anangular momentum of the emitted proton and thecomponent of the wave function active <strong>in</strong> thedecay process. For odd-Z even-N nuclei, anobservation of the proton emission to the firstexcited 2 + state yields the deformation of thetunneled potential as well as unveils morecomponents of the wave function of these veryexotic unbound nuclei.We perform our studies at the HRIBF at OakRidge, USA. S<strong>in</strong>ce 1998, 6 new proton emitt<strong>in</strong>gstates, 150m Lu, 151m Lu, 144,145 Tm, 140 Ho, 141m Howere found, and three ( 145 Tm, 141 Ho, 141m Ho)out of 4 known odd-even proton radioactivitiesexhibit<strong>in</strong>g f<strong>in</strong>e structure <strong>in</strong> proton emission werediscovered there (by Karny et al.).At HRIBF, fusion-evaporation products aremass-over-charge selected and implanted <strong>in</strong>to theDouble-sided Silicon Strip Detector where energyand time are measured for implanted ion andemitted proton. The ma<strong>in</strong> experimentalimprovement, which allowed the studies of µsemitters,was a development of digital signalprocess<strong>in</strong>g. Spectroscopy with programmabledigital modules (DGFs) allows us to efficientlyselect and count rare decays, at µs lifetimes andnano-barn cross section level. Exotic 144 Tm hasthe shortest half-life (T 1/2 =1.9 +1.2 -0.5(µs) observedto date for proton radioactivity, while protontransition from 141m Ho to 2 + state <strong>in</strong> 140 Dy has theestimated cross section of 4 nb.Figure 1 presents the results on 145 Tmhav<strong>in</strong>g second shortest half-life observed(T 1/2 =3.1(3) µs) <strong>in</strong> proton emission. The h 11/2component coupled to the 0 + core configuration isresponsible for the proton emission to the 0 +ground state, while f 7/2 ⊗0 + component governsproton emission to the 2 + state <strong>in</strong> the transitional(β 2 =0.18) 144 Er.Our latest discovery of the f<strong>in</strong>e structure <strong>in</strong>proton emission from 141m Ho and 141gs Hocreated a challenge for theoretical models.Observed four proton energies, two half-lives,two 2 + /0 + branch<strong>in</strong>g ratios and experimentallydeterm<strong>in</strong>ed β 2 deformation turned out to be hardto reproduce with<strong>in</strong> one <strong>nuclear</strong> structure model.Fig. 1. 145 Tm wave function components calculated on the basis of theobservation of the proton emission to the ground 0 + state as well as tothe first 2 + excited state.99


[1] C.R B<strong>in</strong>gham, M.N. Tantawy, J.C. Batchelder, M. Danchev, T.N. G<strong>in</strong>ter, C.J. Gross, D.J. Fong, R. Grzywacz,K. Hag<strong>in</strong>o K, J.H. Hamilton, M. Karny, W. Królas, C. Mazzocchi, A. Piechaczek, A. Ramayya,K. Rykaczewski, A. Stolz, J.A. W<strong>in</strong>ger, C-H. Yu, E.F. Zganjar, Nucl. Instr. Methods B241, 185 (2005)[2] R. Grzywacz, M. Karny, K.P Rykaczewski , J.C. Batchelder, C.R. B<strong>in</strong>gham, D. Fong, C.J. Gross, W. Królas,C. Mazzocchi, A.Piechaczek, M.N. Tantawy, J.A W<strong>in</strong>ger, E.F.Zganjar. Eur.Phys. J. A25, 145 (2005)[3] J.C. Batchelder, Tantawy M, C.R. B<strong>in</strong>gham, Danchev M, D. Fong, T.N. G<strong>in</strong>ter, C.J. Gross, R. Grzywacz,Hag<strong>in</strong>o K, J.H. Hamilton, M. Karny, W. Królas, C. Mazzocchi, A.Piechaczek, A. Ramayya,K.P. Rykaczewski, A. Stolz, J.A W<strong>in</strong>ger, C.H. Yu, E.F.Zganjar. Eur.Phys. J. A25, 149 (2005)[4] T.N. G<strong>in</strong>ter, J.C. Batchelder, C.R. B<strong>in</strong>gham, C.J. Gross, R. Grzywacz, J.H. Hamilton, Janas Z, M. Karny,A.Piechaczek, A. RamayyaV, K.P. Rykaczewski, Walters WB, E.F.Zganjar. Phys. Rev. C68, 034330 (2003),[5] M. Karny, R. Grzywacz, J.C. Batchelder, C.R. B<strong>in</strong>gham, C.J. Gross, K. Hag<strong>in</strong>o, J.H. Hamilton, Z. Janas,W.D. Kulp, J.W. McConnell, M. Momayezi, A.Piechaczek, K.P. Rykaczewski, P.A. Semmes,M.N. Tantawy, J.A W<strong>in</strong>ger, C.H. Yu, E.F.Zganjar. Phys.Rev.Lett 90, 012502 (2003)[6] K. Rykaczewski, J.W. McConnell, C.R. B<strong>in</strong>gham, R. Grzywacz, M. Karny, J.C. Batchelder, C.J. Gross,Z. Janas, M. Momayezi, Wahl J, A.Piechaczek, Zganjar ER, T.N. G<strong>in</strong>ter, J.H. Hamilton, W.B. Walters,W.D. Kulp, J.A W<strong>in</strong>ger. Nucl.Phys. A701, 179c (2002)[7]W. Krolas, R. Grzywacz, K.P. Rykaczewski, J.C. Batchelder, C.R. B<strong>in</strong>gham, C.J.Gross, D. Fong, J.H. Hamilton,D.J. Hartley, J.K. Hwang, Y. Larochelle, T.A. Lewis, K.H. Maier, J.W. McConnell, A.Piechaczek,A.V. Ramayya, K. Rykaczewski, D. Shapira, M. N.Tantawy, J.A. W<strong>in</strong>ger, C.-H. Yu, E.F. Zganjar,A.T. Kruppa, W.Nazarewicz, T.Vertse, Phys.Rev. C65, 031303R (2002)[8] K.P. Rykaczewski, J.C. Batchelder, C.R. B<strong>in</strong>gham, T.N. G<strong>in</strong>ter, C.J. Gross, R. Grzywacz, J.H. Hamilton,D.J. Hartley, Z. Janas , M. Karny, W.D. Kulp, M. Lipoglavsek, J.W. McConnell, M. Momayezi,A.Piechaczek, M.N. Tantawy, J. Wahl, W.B. Walters, J.A W<strong>in</strong>ger, E.F.Zganjar. Acta Phys. Pol. B32 ,971 (2001)[9] K.P. Rykaczewski, R. Grzywacz, M. Karny, J.W. McConnell, M. Momayezi, Wahl J, Z. Janas,J.C. Batchelder, C.R. B<strong>in</strong>gham, D. Hartley, M.N. Tantawy, C.J. Gross, T.N. G<strong>in</strong>ter, J.H. Hamilton,W.D. Kulp, M. Lipoglavsek, A.Piechaczek, E.F.Zganjar, W.B. Walters, J.A W<strong>in</strong>ger. Nucl. Phys. A682, 270c(2001)[10] T.N. G<strong>in</strong>ter, J.C. Batchelder, C.R. B<strong>in</strong>gham, C.J. Gross, R. Grzywacz, J.H. Hamilton, Z. Janas, M. Karny,S.H. Kim SH,J.F. Mas, J.W. McConnell, A.Piechaczek, A. Ramayya, K. Rykaczewski , P.B. Semmes ,J.Szerypo, K.S. Toth, R. Wadsworth, C.H. Yu, E.F.Zganjar. Phys.Rev. C61, 014308 (2000)[11] K. Rykaczewski, J.C. Batchelder, C.R. B<strong>in</strong>gham, Dav<strong>in</strong>son T, T.N. G<strong>in</strong>ter, C.J. Gross, R. Grzywacz,M. Karny, MacDonald BD, Mas JF, J.W. McConnell, A.Piechaczek, Sl<strong>in</strong>ger RC, K.S. Toth, Walters WB,Woods PJ, E.F.Zganjar, B. Barmore, L.G. Ixaru, A.T Kruppa, W. Nazarewicz, M. Rizea, T. Vertse .Phys. Rev. C60, 011301 (1999)[12] C.R. B<strong>in</strong>gham, J.C. Batchelder, K Rykaczewski, K.S. Toth, C.H. Yu, T.N. G<strong>in</strong>ter, C.J. Gross, R. Grzywacz,M. Karny, Kim SH, MacDonald BD, Mas J, J.W. McConnell, Semmes PB, J.Szerypo, We<strong>in</strong>traub W,E.F.Zganjar. Phys. Rev. C59 (R2984 (1999)[13] K. Rykaczewski , J.C. Batchelder, C.R. B<strong>in</strong>gham, Dav<strong>in</strong>son T, T.N. G<strong>in</strong>ter, C.J. Gross, R. Grzywacz,Z. Janas, M. Karny, MacDonald BD, Mas JF, J.W. McConnell, A.Piechaczek, Sl<strong>in</strong>ger RC, J.Szerypo,K.S. Toth, Walters WB, Woods PJ, E.F.Zganjar, Nazarewicz W, Semmes PB. Acta Phys. Pol. B30, 565 (1999)[14]C. R. B<strong>in</strong>gham, J. C. Batchelder, K. Rykaczewski, K. S. Toth, C. -H. Yu, T. N. G<strong>in</strong>ter, C. J. Gross,R. Grzywacz, M. Karny, S. H. Kim, B. D. MacDonald, J. Mas, J. W. McConnell, P. B. Semmes, J.Szerypo,W.We<strong>in</strong>traub, E. F. Zganjar Phys. Rev. C59, R2984 (1999)[15]J.C Batchelder, C. R. B<strong>in</strong>gham, K. Rykaczewski, K. S. Toth, T.Dav<strong>in</strong>son, J.A.McKenzie, P.J.Woods,T.N.G<strong>in</strong>ter, C. J. Gross, J.W.McConnell, E.F.Zganjar,J.H Hamilton, W.B.Walters, C.Baktash,J.Greene,J. Mas, W.T. Milner, S.D. Paul, D.Shapira, X.J.Xu, C. -H. Yu, Phys. Rev. C57, R1042, (1998).[16] C.H. Yu, J.C. Batchelder, C.R. B<strong>in</strong>gham, R. Grzywacz, Rykaczewski K, K.S. Toth, Akovali Y, Baktash C,Gal<strong>in</strong>do-Uribarri A, T.N. G<strong>in</strong>ter, C.J. Gross, M. Karny, S.H. Kim, B.D. MacDonald, S.D. Paul, D.C.Radford, J.Szerypo, W. We<strong>in</strong>traub. Phys. Rev. C58, R3042 (1998)100


TWO-PROTON RADIOACTIVITYR. Grzywacz 1,3 , Z. Janas 2 , M. Pfützner 2 , K. Rykaczewski 31 Department of Physics and Astronomy, University of Tennessee, Knoxville, USA2 Institute of Experimental Physics, Warsaw University, Warszawa3 Oak Ridge National Laboratory, Oak Ridge, USATwo-proton (2p) radioactivity is a process, predictedalready <strong>in</strong> 1960 for medium-mass, even-Z,extremely neutron deficient nuclei, <strong>in</strong> which twoprotons are ejected simultaneously by a nucleus <strong>in</strong>a ground state. Theoretical predictions identifieda few nuclides like 45 Fe, 48 Ni, and 54 Zn as the bestcandidates for this new decay mode. For manyyears, however, these systems could not bereached experimentally. Only the development ofmethods based on projectile fragmentation and<strong>in</strong>-flight identification of selected reaction productsallowed for a breakthrough <strong>in</strong> this field.The road to the discovery of the 2p radioactivitywas opened when 3 atoms of 45 Fe wereidentified for the first time at GSI Darmstadtamong the fragmentation products of relativistic58 Ni beam [1]. Later, at GANIL Caen, also 48 Niwas sythesized us<strong>in</strong>g the same productionmethod with lower beam energy [2], and a steptowards production of 54 Zn was made [3]. In thesepioneer<strong>in</strong>g experiments, however, no <strong>in</strong>formationon decay properties of 2p candidates could beobta<strong>in</strong>ed. In order to <strong>in</strong>vestigate decays ofselected and identified ions, detection systemsbased on silicon detectors were developed. Ions of<strong>in</strong>terest were implanted <strong>in</strong>to a stack of such detectorswhere their decays could be recorded [4].The first <strong>in</strong>formation on the decay of 45 Fe hasbeen obta<strong>in</strong>ed <strong>in</strong> a GSI experiment us<strong>in</strong>g theimplantation method. Ions of <strong>in</strong>terest, producedby the fragmentation of 58 Ni beam at 650 MeV/u,selected by the FRS separator and <strong>in</strong>dentified <strong>in</strong>flight,were stopped <strong>in</strong>to a stack of 8 silicondetectors, each 300 µm thick. A special care hasbeen taken to provide sensitivity of the set-up to abroad range of lifetime values rang<strong>in</strong>g frommicroseconds to milliseconds [5]. Fast-resetpreamplifiers, specially developed for thispurpose, and the data acquisition system based ondigital electronic modules were used [5]. Decaysof five ions of 45 Fe were recorded [6]. Four of themwere <strong>in</strong>terpreted as the first evidence of the 2pradioactivity. One event was consistent with theβ + decay of 45 Fe followed by a beta-delayed highenergyproton emission. The 2p decay energy wasestimated to be 1.1 ± 0.1 MeV and the deducedhalf-life of 45 2.6Fe was 3 .2+ − 1.0 ms [6].Similar results were obta<strong>in</strong>ed <strong>in</strong> a <strong>in</strong>dependentexperiment performed at GANIL, where the 58 Nibeam at 75 MeV/u and the LISE spectrometerwere used to produce and separate ions of 45 Fewhich were implanted <strong>in</strong>to a double-sided siliconstrip detector of 300 µm thickness [7]. Out of 22identified events of 45 Fe, for eight of them a s<strong>in</strong>gledecay energy of 1.14 ± 0.04 MeV was observed <strong>in</strong>agreement with the 2p decay scenario. Thebranch<strong>in</strong>g ratio for the 2p decay channel wasdeduced to be 70% - 80% and the half-life was3.4measured to be 4 .7+ − 1. 4 ms [7].In both experiments only the total decay energyand decay time were recorded, so the 2p decay<strong>in</strong>terpretation had to be based on theoreticalarguments [8,9]. A crutial next step <strong>in</strong> the study of2p radioactivity will be a direct observation of thisprocess by record<strong>in</strong>g both proton <strong>in</strong>dependently.Even more important would be the determ<strong>in</strong>ationof angular and energy correlations betweenprotons. Only these observables may shed lighton the mechanism of the 2p radioactivity [10].To achieve this goal, a novel type of a detector –the gaseous time projection chamber with opticalreadout is be<strong>in</strong>g developed at Institute ofExperimental Physics, Warsaw University [11].The comb<strong>in</strong>ation of imag<strong>in</strong>g by means of a digitalcamera with the dift-time profile of ionisationelectrons will allow the reconstruction of thecharged particles tracks <strong>in</strong> three dimensions [12].101


NUCLEAR OPEN QUANTUM SYSTEM MANY-BODY PROBLEMW. Nazarewicz 1,2,3 , J. Okołowicz 41 Institute of Theoretical Physics, Warsaw University, Warszawa2 Department of Physics, University of Tennessee, Knoxville, USA3 Oak Ridge National Laboratory, Oak Ridge, USA4 H. Niewodniczański Institute of Nuclear Physics PAN, KrakówMany-body <strong>nuclear</strong> Hamiltonian does notdescribe just one nucleus (N, Z), but all nuclei thatcan exist. In this sense, a nucleus is never isolated(closed) but `communicates’ with other systemsthrough decays and captures. If the cont<strong>in</strong>uumspace is not considered, this communication is notallowed: the system is closed.The <strong>nuclear</strong> shell model (SM) is thecornerstone of our understand<strong>in</strong>g of nuclei. SM,<strong>in</strong> its standard realization, assumes than themany-nucleon sys-tem is perfectly isolated froman external environment of scatter<strong>in</strong>g states anddecay channels. That is, with<strong>in</strong> the standard SMthe nucleus is viewed as a closed quantum system(CQS). However, weakly bound or unbound<strong>nuclear</strong> states obviously cannot be treated <strong>in</strong> aCQS framework. The theoretical description ofstrongly correlated open quantum systems (OQS)requires the rigorous treatment of both: manybodycorrelations, and the cont<strong>in</strong>uum of positiveenergy states and decay channels. Solution of thischalleng<strong>in</strong>g <strong>nuclear</strong> OQS many-body problem hasbeen advanced recently through a new-generationcont<strong>in</strong>uum SM approaches, <strong>in</strong>clud<strong>in</strong>g shell modelembedded <strong>in</strong> the cont<strong>in</strong>uum (SMEC) (Hilbertspace formulation) and Gamow shell model(GSM) (the rigged Hilbert space formulation).Properties of unbound states ly<strong>in</strong>g abovethe particle (or cluster) threshold directly impactthe cont<strong>in</strong>uum structure. Coupl<strong>in</strong>g to the particlecont<strong>in</strong>uum is also important for weakly boundstates, such as `halos’. The generic mechanism ofalignment of bound and unbound near-thresholdstates with the decay channel expla<strong>in</strong>s theappearance of cluster structures close to theircluster decay thresholds. A unified description of<strong>nuclear</strong> structure and <strong>nuclear</strong> reaction aspectsbecame possible only recently <strong>in</strong> the framework ofthe SMEC [1-3]. The SMEC has been applied forthe description of spectra and reactions <strong>in</strong>volv<strong>in</strong>gone particle <strong>in</strong> the scatter<strong>in</strong>g cont<strong>in</strong>uum, like the(p, p’) reaction, the nucleon radiative capturereactions [1-5], the Coulomb dissociation reaction[6], or the first forbidden β-decay [7]. Furtherapplications of the SMEC with one-particlecont<strong>in</strong>uum <strong>in</strong>volved the study of b<strong>in</strong>d<strong>in</strong>gsystematics of neutron-rich nuclei <strong>in</strong> sd shell [8],and the statistical aspects of the cont<strong>in</strong>uumcoupl<strong>in</strong>g for states <strong>in</strong> 24 Mg [9]. The generalizationof SMEC to the two-particle cont<strong>in</strong>uum allowedto formulate a microscopic theory of the twoprotondecay [10-11].The GSM [12-15] is the first multiconfigurationalSM approach for OQS with norestriction on number of particles <strong>in</strong> thecont<strong>in</strong>uum. In the roots of GSM lies the Berggrenone body completeness relation [Nucl. Phys.A109, 265 (1968)] that provides mathematicalfoundation for unify<strong>in</strong>g bound and unboundstates. The fundamental difference between GSMand a real-energy SM is that the many-bodyresonant states of the GSM are embedded <strong>in</strong> thebackground of scatter<strong>in</strong>g eigenstates. Thepr<strong>in</strong>cipal limitation of GSM applications is theexplosive growth <strong>in</strong> the number of configurationsbecause for each resonant s<strong>in</strong>gle particle state <strong>in</strong>the Berggren ensemble one should <strong>in</strong>clude a largeset of discrete non-resonant cont<strong>in</strong>uum states. Allthese states become new active shells <strong>in</strong> the manybodyframework of GSM and, because of theirpresence, the dimension of the many-body Fockspace grows extremely fast. This crucial problemfor GSM has been solved recently by generaliz<strong>in</strong>gthe density-matrix renormalization group methodfor OQSs [16].The GSM has been applied for thedescription of spectra of weakly-bound orunbound nuclei <strong>in</strong> p and sd shells [12-15]. Thesestudies have demonstrated that nucleon-nucleoncorrelations <strong>in</strong> weakly bound or unbound states,as probed by spectroscopic factors, can besignificantly different from SM predictions (CQSdescription) and may even exhibit a nonanalyticalbehavior at the particle threshold [17].This phenomenon, resembl<strong>in</strong>g a quantum phasetransition, shares many features of the nearthresholdbehavior of scatter<strong>in</strong>g cross sections,first noted by Wigner [Phys. Rev. 73, 1002 (1948)].The GSM provides first explanation of the Wignercusp phenomenon and multi-channel coupl<strong>in</strong>geffects <strong>in</strong> the vic<strong>in</strong>ity of particle emissionthreshold(s) with<strong>in</strong> a microscopic many-bodyapproach based on many-fermion <strong>in</strong>teraction.103


[1] K. Bennaceur, F. Nowacki, J. Okołowicz, M. Płoszajczak, J. Phys. G: Nucl. Part. Phys. 24, 1631 (1998)[2] K. Bennaceur, F. Nowacki, J. Okołowicz, M. Płoszajczak, Nucl. Phys. A651, 289 (1999)[3] J. Okołowicz, M. Płoszajczak, I. Rotter, Phys. Rep. 374, 271 (2003)[4] K. Bennaceur, F. Nowacki, N. Michel, J. Okołowicz, M. Płoszajczak, Phys. Lett. 488B, 75 (2000)[5] K. Bennaceur, F. Nowacki, J. Okołowicz, M. Płoszajczak, Nucl. Phys. A671, 203 (2000)[6] R. Shyam, K. Bennaceur, J. Okołowicz, M. Płoszajczak, Nucl. Phys. A669, 65 (2000)[7] N. Michel, J. Okołowicz, F. Nowacki, M. Płoszajczak, Nucl. Phys. A703, 202 (2002)[8] Y. Luo, J. Okołowicz, M. Płoszajczak, N. Michel, arXiv:nucl-th/0201073; N. Michel, W. Nazarewicz,J. Okołowicz, M. Płoszajczak, Proc. Int. Symposium on Frontiers of Collective Motion (CM2002) H. Sagawaand H. Iwasaki eds., World Scientific (2003) p. 157[9] S. Drożdż, J. Okołowicz, M. Płoszajczak, I. Rotter, Phys. Rev. C 62, 024313 (2000)[10] J. Rotureau, J. Okołowicz, M. Płoszajczak, Phys. Rev. Lett. 95, 042503 (2005)[11] J. Rotureau, J. Okołowicz, M. Płoszajczak, Nucl. Phys. A767, 13 (<strong>2006</strong>)[12] N. Michel, W. Nazarewicz, M. Płoszajczak, K. Bennacur, Phys. Rev. Lett. 89, 042502 (2002)[13] N. Michel, W. Nazarewicz, M. Płoszajczak, J. Okołowicz, Phys. Rev. C 67, 054311 (2003)[14] N. Michel, W. Nazarewicz, M. Płoszajczak, Phys. Rev. C 70, 054311 (2004)[15] N. Michel, W. Nazarewicz, M. Płoszajczak, J. Rotureau, Phys. Rev. C 74, 054305 (<strong>2006</strong>)[16] J. Rotureau, N. Michel, W. Nazarewicz, M. Płoszajczak, J. Dukelsky, Phys. Rev. Lett. 97, 110603 (<strong>2006</strong>)[17] N. Michel, W. Nazarewicz, M. Płoszajczak, Phys. Rev. C 75, 031301 (2007)104


THREE-NUCLEON FORCE EFFECTS IN NUCLEON-DEUTERONREACTIONSJ.Golak, R. Skibiński, H. WitałaM. Smoluchowski Institute of Physics, Jagiellonian University, KrakówThe 3N system is the first nontrivial caseto test the nucleonic Hamiltonian. Traditionally itis taken <strong>in</strong> a nonrelativistic form with realistic NNforces, which are adjusted to the NN data. We usethe most modern NN forces AV18, CD Bonn, andNijmegen I and II, which are very well tuned tothe NN data base up to about 350 MeV. In generalsuch a Hamiltonian gives a quite gooddescription for 3N scatter<strong>in</strong>g observables and thepredictions show stability aga<strong>in</strong>st exchanges ofmodern NN forces [1]. In the calculations with theTM three-nucleon force (3NF) we adjust the formfactor parameter <strong>in</strong> that force together with eachof the NN forces to the triton b<strong>in</strong>d<strong>in</strong>g energy.These Hamiltonians are then used to provideestimates for 3NF effects <strong>in</strong> the 3N cont<strong>in</strong>uum.A complete overview of our results andtheir comparison to many data is shown <strong>in</strong> [2-4].For the total nd cross section up to about E n =100MeV there is a nice agreement of the pure 2Nforce predictions and the data [5,6]. A discrepancydevelops at higher energies and calculationsunderestimate the data by about 11% at 300 MeV.The effect of the TM 3NF enhances the total ndcross section at the higher energies only by about4%. The elastic Nd scatter<strong>in</strong>g is quite welldescribed with NN forces only at lower energiesbut there develops a strong discrepancy, start<strong>in</strong>gat about 30 MeV, <strong>in</strong> the m<strong>in</strong>imum of angulardistribution. It is very probably caused by 3NFeffects, which fill this m<strong>in</strong>imum [7]. Thisexpectation is supported by recent precise data[8,9] (see Fig.1). The nucleon analyz<strong>in</strong>g power A y<strong>in</strong> low energy elastic Nd scatter<strong>in</strong>g poses a stillunsolved puzzle [10]. There are, however, stilldoubts whether the 3 P J NN force components, onwhich A y is extremely sensitive, have beenconstra<strong>in</strong>ed sufficiently well by the NN data basis[10]. Present day 3N forces have <strong>in</strong>significanteffects at those low energies. If a 3NF would beresponsible for the low energy A y puzzle it mustbe of different structure than the TM 3NF. It mayturn out that 3NF derived <strong>in</strong> the framework ofchiral perturbation theory will provide solution tothat puzzle [11-13].New precise pd polarization data taken athigher energies opened recently a new region totest the 3N Hamiltonian and the properties of a3NF. At those energies large 3NF effects, as givenby the 2π-exchange TM model, are predicted forsome observables. For some of them adiscrepancies between pure NN force predictionsand data have been found. Add<strong>in</strong>g the 3NF leadsto a better description of data for deuteron vectoranalyz<strong>in</strong>g power and some sp<strong>in</strong> correlationcoefficients [14]. However, for the protonanalyz<strong>in</strong>g power the effects predicted by the TM3NF are too large <strong>in</strong>dicat<strong>in</strong>g a failure of the TM3NF [15]. Also for polarization observables <strong>in</strong> thebreakup process at higher energy large 3NFeffects are predicted <strong>in</strong> some k<strong>in</strong>ematicalconfigurations. Tests of them require a precisedata basis. Recently a rich data set was providedwhich allows to draw first conclusions onimportance of 3NF <strong>in</strong> breakup reaction [16].We started to apply two- and manynucleonforces derived <strong>in</strong> the chiral effective fieldtheory approach [17-19]. This will allow toanalyze 3N cont<strong>in</strong>uum reactions with consistentnucleonic Hamiltonian a good knowledge and awell founded understand<strong>in</strong>g of which is theprerequisite to theoretical analysis of electroweakprocesses with three participat<strong>in</strong>g nucleons.Fig.1. The Nd elastic scatter<strong>in</strong>g cross section at E d =270 MeV. The data(circles) are from [9]. The curves and bands, described <strong>in</strong> [9], showresults of calculations with different dynamical models.105


[1] W. Glöckle, H.Witała, D.Hüber, H.Kamada, J.Golak, Phys. Rep. 274, 107 (<strong>1996</strong>)[2] H.Witała, W.Glöckle, J.Golak, A. Nogga, H. Kamada,R. Skibiński, and J. Kuroś-Żołnierczuk, Phys. Rev.C63, 024007 (2001).[3] J. Kuroś-Żołnierczuk, H.Witała, J.Golak, H. Kamada, A. Nogga, R. Skibiński, W. Glöckle, Phys. Rev.C66, 024003(2002).[4] J. Kuroś-Żołnierczuk, H.Witała, J.Golak, H. Kamada, A. Nogga, R. Skibiński, W. Glöckle, Phys. Rev.C66, 024004(2002).[5] W.P.Abfalterer, F.B.Bateman, F.S.Dietrich, Ch.Elster, R.W.F<strong>in</strong>lay,W.Glöckle, J.Golak, R.C.Haight,D.Hüber, G.L.Morgan, H.Witała, Phys. Rev. Lett. 81, 57 (1998).[6] H.Witała, H. Kamada, A. Nogga, W.Glöckle, Ch. Elster, D.Hüber, Phys. Rev. C59, 3035 (1999).[7] H.Witała, W.Glöckle, D.Hüber, J.Golak, H.Kamada, Phys. Rev. Lett. 81, 1183 (1998).[8] H. Sakai, K. Sekiguchi, H.Witała, W.Glöckle, M. Hatano, H. Kamada, H. Kato, Y. Maeda, A. Nogga,T. Ohmishi, H. Okamura, N. Sakamoto, S. Sakoda, Y. Satou, K. Suda, A. Tamii, T. Uesaka, T. Wakasa,and K. Yako, Phys. Rev. Lett. 84, 5288 (2000).[9] K. Sekiguchi, H. Sakai, H.Witała, W.Glöckle, J.Golak, K. Hatanaka, M. Hatano, K. Itoh, H. Kamada,H. Kuboki, Y. Maeda, A. Nogga, H. Okamura, T. Saito, N. Sakamoto, Y. Sakemi, M. Sasano, Y. Shimizu,K. Suda, A. Tamii, T. Uesaka, T. Wakasa, and K. Yako, Phys. Rev. Lett. 95, 162301 (2005).[10] W.Tornow, H.Witała, Nucl. Phys., A637, 280 (1998).[11] E.Epelbaum, H.Kamada, A.Nogga, H.Witała, W.Glöckle, Ulf-G. Meissner, Phys. Rev. Lett. 86, 4787(2001).[12] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, Ulf-G. Meissner, H.Witała, Phys. Rev. C66,064001(2002).[13] D.R. Entem, R. Machleidt, H.Witała, Phys. Rev. C65, 064005 (2002).[14] R.V. Cadman, J. Brack, W.J. Cumm<strong>in</strong>gs, J.A. Fedchak, B.D. Fox, H. Gao, W. Glöckle, J.Golak,C. Grosshauser, R.J. Holt, C.E. Jones, H. Kamada, E.R. K<strong>in</strong>ney, M.A. Miller, W. Nagengast, A. Nogga,B.R. Owen, K. Rith, F.Schmidt, E.C. Schulte, J.Sow<strong>in</strong>ski, F.Sperisen, E.L. Thorsland, R.Tobey, J.Wilbert,H.Witała, Phys. Rev. Lett. 86, 967 (2001).[15] K. Ermisch, A.M. van den Berg, R. Bieber, W.Glöckle, J.Golak, M. Hagemann, V.M. Hannen,M.N. Harakeh, M.A. de Huu, N. Kalantar-Nayestanaki, H. Kamada, M. Kis, J. Kuroś-Żołnierczuk,M. Mahjour-Shafiei, A. Micherdzińska, A. Nogga, R. Skibiński, H.Witała, H.J. Wörtche,Phys. Rev. Lett. 86, 5862 (2001).[16] St. Kistryn, E. Stephan, A. Biegun, K. Bodek, A. Deltuva, E. Epelbaum, K. Ermisch, W. Glöckle,J.Golak, N. Kalantar-Nayestanaki, H. Kamada, M. Kis, B. Kłos, A. Kozela, J. Kuroś-Żołnierczuk,M. Mahjour-Shafiei, U.-G. Meissner, A. Micherdzińska, A. Nogga, P.U. Sauer, R. Skibiński, R. Sworst,H.Witała, J. Zejma, and W. Zipper, Phys. Rev. C72, 044006 (2005).[17] H.Witała, J.Golak, R. Skibiński, W. Glöckle, A. Nogga, E. Epelbaum, H. Kamada, A. Kievsky,M. Viviani, Phys. Rev. C73, 044004 (<strong>2006</strong>).[18] H.Witała, R. Skibiński, J.Golak, W. Glöckle, A. Nogga, and H. Kamada, Eur. Phys. J. A29, 141 (<strong>2006</strong>).[19] D.Rozpędzik, J.Golak, R. Skibiński, H.Witała, W. Glöckle, E. Epelbaum, A. Nogga, H. Kamada,Acta Phys. Polon. B37, 2889 (<strong>2006</strong>).106


RELATIVISTIC EFFECTS IN THREE-NUCLEON CONTINUUMJ.Golak, R. Skibiński, H. WitałaM. Smoluchowski Institute of Physics, Jagiellonian University, KrakówThe high precision nucleon-nucleon (NN)potentials which describe very well the NN dataset up to about 350 MeV, like e.g. AV18 and CDBonn form a very firm basis for a study of threenucleon(3N) reactions. With <strong>in</strong>creas<strong>in</strong>g amount ofprecise 3N elastic scatter<strong>in</strong>g data it turned out,that nonrelativistic description based on pairwiseforces only is <strong>in</strong>sufficient to expla<strong>in</strong> the data athigher energies of the 3N system. Moreover, the<strong>in</strong>clusion of three nucleon forces (3NF) onlypartially removes discrepancy between data andtheoretical predictions. This can be to some extentattributed to miss<strong>in</strong>g structures <strong>in</strong> modern modelsof 3NF’s but relativistic effects may be alsoimportant.To study the latter we <strong>in</strong>troduced [1] theHamiltonian scheme <strong>in</strong> equal time formulationand applied it to elastic nucleon-deuteron (Nd)scatter<strong>in</strong>g [2-4] as well as to deuteron breakup[5,6], tak<strong>in</strong>g as a start<strong>in</strong>g po<strong>in</strong>t the Lorentzboosted NN potential which generates the NN t-matrix <strong>in</strong> a mov<strong>in</strong>g frame via a modifiedLippmann-Schw<strong>in</strong>ger equation. The NN potential<strong>in</strong> an arbitrary mov<strong>in</strong>g frame is based on the<strong>in</strong>teraction <strong>in</strong> the two-nucleon c.m. system, whichenters a relativistic NN Schröd<strong>in</strong>ger or Lippmann-Schw<strong>in</strong>ger equation. We constructed therelativistic two nucleon (2N) potential byperform<strong>in</strong>g an analytical scale transformation ofmomenta, which relates NN potentials <strong>in</strong> thenonrelativistic and relativistic Schröd<strong>in</strong>gerequations <strong>in</strong> such a way, that exactly the same NNphase shifts are obta<strong>in</strong>ed by both equations. In ourstudy [2] we also looked for changes <strong>in</strong> elastic Ndscatter<strong>in</strong>g observables when the nonrelativisticform of the k<strong>in</strong>etic energy was replaced by therelativistic one and a proper treatment of boosteffects and Wigner rotations of sp<strong>in</strong> states was<strong>in</strong>cluded. It turned out, that the effects of sp<strong>in</strong>rotations <strong>in</strong> the studied energy range up to 250MeV were practically negligible for elasticscatter<strong>in</strong>g cross sections and analyz<strong>in</strong>g powers.The relativistic effects for the elastic scatter<strong>in</strong>gcross section were significant only at higherenergies and restricted to the very backwardangles, where relativity <strong>in</strong>creased thenonrelativistic cross section. The decisive role wasplayed by the boost effects which reduced thetransition matrix elements at higher energies andled, <strong>in</strong> spite of the <strong>in</strong>creased elastic scatter<strong>in</strong>grelativistic phase-space factor as compared to thenonrelativistic one, to rather small effects <strong>in</strong> thecross section [3].Investigation of polarized observables <strong>in</strong> elasticNd scatter<strong>in</strong>g shows that exist<strong>in</strong>g discrepanciesbetween data and nonrelativistic predictionsbased on NN+3NF <strong>in</strong>teractions cannot beremoved by add<strong>in</strong>g relativistic effects com<strong>in</strong>gfrom k<strong>in</strong>ematics and boost corrections to theemployed NN <strong>in</strong>eraction [2,4].For exclusive deuteron breakup at <strong>in</strong>com<strong>in</strong>gnucleon lab. energy 65 MeV and 200 MeV weperformed [6] a search for magnitudes and signsof relativistic effects on the breakup cross sectionsover the relevant parts of the breakup phasespace.We found, that depend<strong>in</strong>g on the phasespaceregion relativity can decrease as well as<strong>in</strong>crease the nonrelativistic cross section. Themagnitude of the effects rises with the <strong>in</strong>com<strong>in</strong>gnucleon energy. While at 65 MeV the effects arerather moderate (up to 20%), at 200 MeV they canchange the nonrelativistic cross section even by afactor of 2. Comparison to exist<strong>in</strong>g data (see Fig.1)seems to support this f<strong>in</strong>d<strong>in</strong>g. At 65 MeV the<strong>in</strong>clusion of relativity can expla<strong>in</strong> somediscrepancies found <strong>in</strong> the past between theoryand data.Summariz<strong>in</strong>g, our formalism allows us toestimate relativistic effects on the observables for3N processes. S<strong>in</strong>ce higher energies seem to bemore favorable to study properties of 3N forces,<strong>in</strong>clusion of relativistic effects is an important step<strong>in</strong> studies of that force component.Fig. 1. The symbols show experimental five-fold cross section for thed(n,np)n reaction at E n =200 MeV for configuration given <strong>in</strong> [6]. Thesolid l<strong>in</strong>e is for relativistic predictions and dotted and dashed l<strong>in</strong>es arefor nonrelativistic ones without and with 3NF, respectively [6] .107


[1] H.Kamada, W.Glöckle, J.Golak, and Ch.Elster, Phys. Rev. C 66, 044010 (2002).[2] H.Witała, J.Golak, W.Glöckle, H.Kamada, Phys. Rev. C 71, 054001 (2005).[3] K.Sekiguchi, H.Sakai, H.Witała, W.Glöckle, J.Golak, K.Hatanaka, M.Hatano, K.Itoh, H.Kamada,H.Kuboki, Y.Maeda, A.Nogga, H.Okamura, T.Saito, N.Sakamoto, Y.Sakemi, M.Sasano, Y.Shimizu,K.Suda, A.Tamii, T.Uesaka, T.Wakasa, and K.Yako, Phys. Rev. Lett. 95, 162301 (2005).[4] H.Witała, R.Skibiński, J.Golak, W.Glöckle, A.Nogga, and H.Kamada, Eur. Phys. J. A 29, 141(<strong>2006</strong>).[5] H.Witała, J.Golak, and R.Skibiński, Phys. Lett. B 634, 374 (<strong>2006</strong>).[6] R.Skibiński, H.Witała, J.Golak, Eur. Phys. J. A 30, 369 (<strong>2006</strong>).108


ELECTRON AND PHOTON SCATTERING ON THREE-NUCLEONBOUND STATESJ.Golak, R. Skibiński, H. WitałaM. Smoluchowski Institute of Physics, Jagiellonian University, KrakówThe <strong>in</strong>teraction of photons with chargedparticles is relatively weak and can be treatedperturbatively. This opens the possibility to probethe complicated dynamics of the <strong>nuclear</strong> systems.Electron and photon facilities, like the ThomasJefferson National Accelerator Facility (JLab), theMa<strong>in</strong>z Microtron (MAMI) or The High IntensityGamma-Ray Source (HIGS) are used to<strong>in</strong>vestigate nuclei and nucleons themselves.Few-nucleon studies are a central part <strong>in</strong>the <strong>physics</strong> program of these facilities because thelightest nuclei and reactions with few nucleonscan be treated rigorously. Especially three-ucleon(3N) systems are an excellent test ground for ourunderstand<strong>in</strong>g of <strong>nuclear</strong> forces. Exactnonrelativistic calculations are available both forthe ground states of 3 He and 3 H (see Phys. Rev.C67, 034004 (2003)) and the 3N cont<strong>in</strong>uum [1]. Inthe Faddeev framework a few modern highprecisionnucleon-nucleon (NN) realisticpotentials have been employed. Also calculationscomb<strong>in</strong><strong>in</strong>g different NN and 3N force modelshave been recently performed [1-4]. Althoughfurther <strong>in</strong>vestigations <strong>in</strong> the pure 3N system arenecessary to establish the f<strong>in</strong>al form of the 3NHamiltonian, it is mandatory to use already nowthe exist<strong>in</strong>g formalism and study electromagneticprocesses with three nucleons.In electron scatter<strong>in</strong>g on 3 He which westudy below the pion production threshold, onecan fix the sp<strong>in</strong> orientations of the electron and ofthe 3 He nucleus <strong>in</strong> the <strong>in</strong>itial state before thereaction takes place, which leads to the so-calledsp<strong>in</strong>-dependent electron helicity asymmetries.These observables are useful for study<strong>in</strong>g theneutron structure because the ground state ofpolarized 3 He is dom<strong>in</strong>ated by a spatiallysymmetric configuration <strong>in</strong> which the protonsp<strong>in</strong>s cancel and the sp<strong>in</strong> of the 3 He nucleus iscarried by the unpaired neutron.Thus electronscatter<strong>in</strong>g on polarized 3 He is very similar toelectron scatter<strong>in</strong>g on a polarized neutron. This isof great importance because of the lack of freeneutron targets. Until recently, most data on theneutron electromagnetic form factors had beendeduced from elastic and quasi-elastic electrondeuteronscatter<strong>in</strong>g. Our theoretical contributionmade it possible to extract equivalent <strong>in</strong>formationabout the magnetic and electric neutron formfactors through <strong>in</strong>clusive or semi-<strong>in</strong>clusiveelectron scatter<strong>in</strong>g on 3 He [5-7]. We could quite<strong>in</strong>dependently verify the data on fundamentalneutron properties.With<strong>in</strong> our theoretical framework it isalso possible to ask very detailed questions aboutthe properties of light nuclei. We have<strong>in</strong>vestigated for example nucleon-nucleoncorrelations [8], sp<strong>in</strong> dependent momentumdistributions [9] and proton polarizations <strong>in</strong>polarized 3 He [10]. Our results show that f<strong>in</strong>alstate <strong>in</strong>teractions among the three outgo<strong>in</strong>gnucleons, meson exchange currents and threenucleonforces play generally an important roleand that previously used approximations are notjustified. Similar conclusions can also be drawnfrom our theoretical description of photonscatter<strong>in</strong>g on 3 He and 3 H. We have studied thetotal photoabsorption cross sections [11] as well astwo- and three-body exclusive and semi-exclusivedis<strong>in</strong>tegration reactions [12-14]. Nucleon-deuteroncapture, closely related (via time reversal) to twobodydis<strong>in</strong>tegration of 3 H has been recentlystudied with potentials derived with<strong>in</strong> theframework of chiral effective field theory [15].Detailed <strong>in</strong>formation about electron and photonscatter<strong>in</strong>g on 3 He and 3 H can be found <strong>in</strong> ourrecent review paper [16].Fig. 1. The parallel asymmetry A T’ as a function of the energytransfer ω. The data are from [5]. The curves, described <strong>in</strong> [16], showresults of calculations with different dynamical models.109


[1] W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rept. 274, 107 (<strong>1996</strong>).[2] H. Witała, W. Glöckle, J. Golak, A. Nogga, H. Kamada, R. Skibiński, and J. Kuroś-Żołnierczuk,Phys. Rev. C63, 024007 (2001).[3] J. Kuroś-Żołnierczuk, H. Witała, J. Golak, H. Kamada, A. Nogga, R. Skibiński, W. Glöckle,Phys. Rev. C66, 024003 (2002).[4] J. Kuroś-Żołnierczuk, H. Witała, J. Golak, H. Kamada, A. Nogga, R. Skibiński, W. Glöckle,Phys. Rev. C66, 024004 (2002).[5] W. Xu, D. Dutta, F. Xiong, B. Anderson, L. Auberbach, T. Averett, W. Bertozzi, T. Black, J. Calarco, L.Cardman, G. D. Cates, Z. W. Chai, J. P. Chen, S. Choi, E. Chudakov, S. Churchwell, G. S. Corrado, C.Crawford, D. Dale, A. Deur, P. Djawotho, B. W. Filippone,J. M. F<strong>in</strong>n, H. Gao, R. Gilman, A. V. Glamazd<strong>in</strong>, C.Glashausser, W. Glockle, J. Golak, J. Gomez, V. G. Gorbenko, J.-O. Hansen, F. W. Hersman, D. W.Hig<strong>in</strong>botham, R. Holmes, C. R. Howell, E. Hughes, B. Humensky, S. Incerti, C. W. de Jager, J. S. Jensen, X.Jiang, C. E. Jones, M. Jones, R. Kahl, H. Kamada, A. Kievsky, I. Kom<strong>in</strong>is, W. Korsch, K. Kramer, G.Kumbartzki, M. Kuss, E. Lakuriqi, M. Liang, N. Liyanage, J. LeRose, S. Malov, D. J. Margaziotis, J. W. Mart<strong>in</strong>,K. McCormick, R. D. McKeown, K. McIlhany, Z.-E. Meziani, R. Michaels, G. W. Miller, E. Pace, T. Pavl<strong>in</strong>, G.G. Petratos, R. I. Pomatsalyuk, D. Pripste<strong>in</strong>, D. Prout, R. D. Ransome, Y. Robl<strong>in</strong>, M. Rvachev, A. Saha, G.Salmè, M. Schnee, T. Sh<strong>in</strong>, K. Slifer, P. A. Souder, S. Strauch, R. Suleiman, M. Sutter, B. Tipton, L. Todor, M.Viviani, B. Vlahovic, J. Watson, C. F. Williamson, H. Witała, B. Wojtsekhowski, J. Yeh, and P. Zolnierczuk,Phys. Rev. Lett. 85, 2900 (2000).[6] J. Golak, G. Ziemer, H. Kamada, H. Witała, W.Glöckle, Phys. Rev. C63, 034006 (2001).[7] J. Golak, W. Glöckle, H. Kamada, H. Witała, R. Skibiński, A. Nogga, Phys. Rev. C66, 024008 (2002).[8] W. Glöckle, H. Kamada, J. Golak, A. Nogga, H. Witała, R. Skibiński, and J. Kuroś-Żołnierczuk, ActaPhys. Polon. B32, 3053 (2001).[9] J. Golak, W. Glöckle, H. Kamada, H. Witała, R. Skibiński, A. Nogga, Phys. Rev. C65, 064004 (2002).[10] J. Golak, R. Skibiński, H. Witała, W. Glöckle, A. Nogga, H. Kamada, Phys. Rev. C72, 054005 (2005).[11] J. Golak, R. Skibiński, W. Glöckle, H. Kamada, A. Nogga, H. Witała, V. D. Efros, W. Leidemann, G.Orland<strong>in</strong>i, E.L. Tomusiak, Nucl.Phys. A707, 365 (2002).[12] R. Skibiński, J. Golak, H. Kamada, H. Witała, W.Glöckle, A. Nogga, Phys.Rev. C67, 054001 (2003).[13] R.Skibiński, J.Golak, H.Witała, W.Glöckle, H.Kamada, A.Nogga, Phys. Rev. C67, 054002 (2003).[14] R.Skibiński, J.Golak, H.Witała, W.Glöckle, A.Nogga, H.Kamada, Phys.Rev. C72, 044002 (2005).[15] R.Skibiński, J.Golak, H.Witała, W.Glöckle, A.Nogga, E.Epelbaum, Acta Phys. Polon. B37, 2905 (<strong>2006</strong>).[16] J. Golak, R. Skibiński, H. Witała, W. Glöckle, A. Nogga, H. Kamada, Phys. Rept. 415, 89 (2005).110


EXPERIMENTAL STUDIES OF THREE-NUCLEON SYSTEMIN VARIOUS KINEMATICAL CONDITIONSSt. Kistryn 1 , E. Stephan 2 , B. Kłos 2 , A. Biegun 2 , K. Bodek 1 , I. Ciepał 1 , A. Kozela 3 ,A. Magiera 1 , R. Sworst 1 , J. Zejma 1 , W. Zipper 21 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 Institute of Physics, University of Silesia, Katowice3 H. Niewodniczański Institute of Nuclear Physics PAN, KrakówExperimental facility: PSI, Villigen, Switzerland; KVI Gron<strong>in</strong>gen, The NetherlandsFew nucleon systems are fundamentallaboratories to study <strong>nuclear</strong> <strong>in</strong>teraction. Amongthem, the systems composed of three nucleons(3N) are the simplest non-trivial environment toexplore details of the nucleon-nucleon (NN)<strong>in</strong>teraction models and to study effects ofadditional dynamics, the so-called three nucleonforce (3NF). The deuteron-proton breakupprocess, with its cont<strong>in</strong>uum of the 3N f<strong>in</strong>al states,provides very rich test<strong>in</strong>g ground for moderntheoretical predictions, obta<strong>in</strong>ed via exactsolutions of the Faddeev equations. Physical <strong>in</strong>putto the predictions are e.g. the realistic NNpotentials comb<strong>in</strong>ed with model 3NF, the 2- and3-nucleon <strong>in</strong>teractions obta<strong>in</strong>ed by an explicittreatment of the ∆−isobar excitation with<strong>in</strong> thecoupled-channel framework or forces obta<strong>in</strong>edvia Chiral Perturbation Theory methods.Precise measurements of the breakupprocess are experimentally very demand<strong>in</strong>g.Usually, like <strong>in</strong> our early studies performed at PSIat 65 MeV proton beam energy, the experimentsprovided data conf<strong>in</strong>ed to just a few specifick<strong>in</strong>ematical configurations. Our new approach tothe breakup research assumed simultaneousmeasurement over a large part of the phase spaceby us<strong>in</strong>g high acceptance position-sensitivedetection system. Measurements of the 1 H(d,pp)nreaction were carried out at KVI at 130 MeV beamenergy. With the use of polarized deuteron beamcross sections, vector and tensor analyz<strong>in</strong>gpowers were measured <strong>in</strong> a wide range of protonangles. Data collected simultaneously for theelastic scatter<strong>in</strong>g were used for normalization anddeterm<strong>in</strong>ation of the beam polarization.Cross section values were extracted forabout 80 k<strong>in</strong>ematical configurations, def<strong>in</strong>ed bypolar angles of the two outgo<strong>in</strong>g protons, θ 1 , θ 2 ,and their relative azimuthal angle φ 12. , andpresented as functions of the arc-length variable S,giv<strong>in</strong>g <strong>in</strong> total over 1700 experimental po<strong>in</strong>ts.These results allowed to conclude on importanceof the 3NF effects for the breakup reaction – only<strong>in</strong>clusion of this additional dynamics <strong>in</strong> thecalculations leads generally to a better descriptionof the cross sections (see figure 1, left panel).In the k<strong>in</strong>ematical region of small protonpolar angles significant discrepancies between themeasured and predicted cross sections wereobserved. This has been attributed to the fact thatat a small relative energy of the two protonsCoulomb <strong>in</strong>teraction plays an important role,while the calculations are valid for nd system.Only recently Coulomb force was successfully<strong>in</strong>cluded <strong>in</strong> the coupled-channel calculations.Importance of this progress for a correctdescription of the breakup reaction isdemonstrated <strong>in</strong> figure 1, right panel. The studieson few-nucleon system dynamics are cont<strong>in</strong>uedon both, experimental and theoretical, frontiers.Fig. 1. Breakup cross sections for two k<strong>in</strong>ematical configurations,specified <strong>in</strong> the panels. Left: Data compared to predictions based onrealistic NN potentials only (blue band) and on the same forcescomb<strong>in</strong>ed with a 3NF model (magenta band). Righ: Data comparedto the coupled channel calculations without (dashed l<strong>in</strong>e) and with(solid l<strong>in</strong>e) Coulomb force.111


[1] J. Zejma, M. Allet, K. Bodek, J. Lang, R. Müller, S. Navert, O. Naviliat-Cuncic, J. Sromicki, E. Stephan,L. Jarczyk, St. Kistryn, J. Smyrski, A. Strzałkowski, W. Glöckle, J. Golak, D. Hüber, H. Witała,P. Schmelzbach, Phys. Rev. C55, 42 (1997).[2] K. Bodek, W. Glöckle, J. Golak, L. Jarczyk, St. Kistryn, B. Kozłowska, J. Lang, A. Micherdzińska,O. Naviliat-Cuncic, J. Smyrski, M. Sokołowski, J. Sromicki, A. Strzałkowski, H. Witała, J. Zejma,W. Zipper, Nucl. Phys. A631, 687c (1998).[3] R. Bieber, K. Bodek, K. Ermisch, W. Glöckle, J. Golak, M.N. Harakeh, N. Kalantar-Nayestanaki,St. Kistryn, J. Kuroś-Żołnierczuk, J. Lang, A. Micherdzińska, R. Skibiński, M. Sokołowski, J. Sromicki,E. Stephan, A. Strzałkowski, M. Volkerts, H. Witała, J. Zejma, W. Zipper, Nucl. Phys. A684, 536c (2001).[4] K. Bodek, J. Golak, L. Jarczyk, St. Kistryn, J. Kuroś-Żołnierczuk, J. Lang, A. Micherdzińska,R. Skibiński, J. Smyrski, M. Sokołowski, J. Sromicki, A. Strzałkowski, H. Witała, J. Zejma, W. Zipper,Few-Body Systems 30, 65 (2001).[5] St. Kistryn, R. Bieber, K. Bodek, K. Ermisch, W. Glöckle, J. Golak, M.N. Harakeh, N. Kalantar-Nayestanaki, J. Kuroś-Żołnierczuk, H. Kamada, A. Micherdzińska, A. Nogga, R. Skibiński,M. Sokołowski, E. Stephan, A. Strzałkowski, H. Witała, J. Zejma, W. Zipper, Nucl. Phys. A689, 345c(2001).[6] A. Micherdzińska, PhD Thesis, University of Silesia, Katowice, 2003.[7] St. Kistryn, R. Bieber, A. Biegun, K. Bodek, K. Ermisch, W. Glöckle, J. Golak, M.N. Harake, N. Kalantar-Nayestanaki, H. Kamada, J. Kuroś-Żołnierczuk, M. Kis, A. Micherdzińska, A. Nogga, M. Shafiei,R. Skibiński, E. Stephan, H. Witała, J. Zejma, W. Zipper, Few-Body Systems Suppl. 14, 141 (2003).[8] St. Kistryn, A. Micherdzińska, R. Bieber, A. Biegun, K. Bodek, K. Ermisch, W. Glöckle, J. Golak,N. Kalantar-Nayestanaki, H. Kamada, M. Kiš, A. Kozela, J. Kuroś-Żołnierczuk, A. Nogga, M. Mahjour-Shafiei, R. Skibiński, E. Stephan, H. Witała, J. Zejma, W. Zipper, Phys. Rev. C 68, 054004 (2003).[9] St. Kistryn, A. Micherdzińska, R. Bieber, A. Biegun, K. Bodek, K. Ermisch, W. Glöckle, J. Golak,M.N. Harakeh, N. Kalantar-Nayestanaki, H. Kamada, J. Kuroś-Żołnierczuk, M. Kiš, A. Nogga,M. Mahjour-Shafiei, R. Skibiński, E. Stephan, H. Witała, J. Zejma, W. Zipper, Nucl. Phys. A737, S58(2004).[10] St. Kistryn, Habilitation Thesis, published by DjaF, ISBN 83-86774-42-8, Kraków, 2005.[11] St. Kistryn, E. Stephan, A. Biegun, K. Bodek, A. Deltuva, E. Epelbaum, K. Ermisch, W. Glöckle,J. Golak, N. Kalantar-Nayestanaki, H. Kamada, M. Kiš, B. Kłos, A. Kozela, J. Kuroś-Żołnierczuk,M. Mahjour-Shafiei, U.-G. Meissner, A. Micherdzińska, A. Nogga, P.U. Sauer, R. Skibiński, R. Sworst,H. Witała, J. Zejma, W. Zipper, Phys. Rev. C 72, 044006 (2005).[12] A. Biegun, PhD Thesis, University of Silesia, Katowice, 2005.[13] A. Biegun, E. Stephan, St. Kistryn, K. Bodek, I. Ciepał, A. Deltuva, E. Epelbaum, W. Glöckle, J. Golak,N. Kalantar-Nayestanaki, H. Kamada, M. Kiš, B. Kłos, A. Kozela, J. Kuroś-Żołnierczuk, M. Mahjour-Shafiei, U.-G. Meissner, A. Micherdzińska, A. Nogga, P.U. Sauer, R. Skibiński, R. Sworst, H. Witała,J. Zejma, W. Zipper, Acta Phys. Pol. B 37, 213 (<strong>2006</strong>).[14] St. Kistryn, E. Stephan, B. Kłos, A. Biegun, K. Bodek, A. Deltuva, I. Ciepał, A.C. Fonseca, N. Kalantar-Nayestanaki, M. Kiš, A. Kozela, M. Mahjour-Shafiei, A. Micherdzińska, P.U. Sauer, R. Sworst, J. Zejma,W. Zipper, Phys. Lett. B 641, 23 (<strong>2006</strong>).112


A SEARCH FOR MAJORANA NEUTRINOExperimental facility: β – Beam project at CERNZ. Sujkowski, L. Łukaszuk and S.WycechA. Sołtan Institute for Nuclear Studies, WarszawaThe recent discovery of neutr<strong>in</strong>ooscillations implies that there is a non-vanish<strong>in</strong>gdifference between masses of neutr<strong>in</strong>os ofdifferent k<strong>in</strong>d. This means that at least one of theneutr<strong>in</strong>os has a f<strong>in</strong>ite rest mass and thus it is notfully left-handed. The right helicity component isexpected to be of the m ν /E ν order. A relatedchallenge is to determ<strong>in</strong>e this mass value andhere the <strong>nuclear</strong> <strong>physics</strong> may be of use. Anotherchallenge comes from the old idea of Majoranathat neutr<strong>in</strong>o is identical to its charge conjugate.This assumptionrequires violation of the lepton number. As theweak currents are predom<strong>in</strong>antly left handed theexperiments which could detect Majorana typeneutr<strong>in</strong>os are h<strong>in</strong>dered by small (m ν / E ν ) 2 factor.At present, the perspective experiment of thistype is the neutr<strong>in</strong>o-less double beta decay, 0νββ.Neutr<strong>in</strong>o produced <strong>in</strong> a <strong>nuclear</strong> decay of oneneutron may be absorbed <strong>in</strong> the decay of anotherneutron. The nucleus thus undergoes the 0νβ - β -transformation− −( A , Z)→ ( A,Z + 2)+ e + eThere have been several attempts at observ<strong>in</strong>g the0νβ - β - . They resulted <strong>in</strong> the limit<strong>in</strong>g values of thelife-times of the potential emitters. These <strong>in</strong> turncan be <strong>in</strong>terpreted <strong>in</strong> terms of the upper limits ofm Ve . The <strong>in</strong>terpretation requires the knowledge ofthe <strong>nuclear</strong> matrix elements. It is also modeldependent, as it requires, e.g., some assumptionsabout the right handed current. Still, even withthese constra<strong>in</strong>ts, the 0νββ decay provides atpresent the most sensitive measure of the electronneutr<strong>in</strong>o mass more so than the measurement ofthe end po<strong>in</strong>t of the β - spectrum from tritiumdecay .As an alternative it was proposed to study the<strong>in</strong>verse process [1], the radiative neutr<strong>in</strong>o-lessdouble electron capture 0ν2ECγ. The associatedmonoenergetic photon provides a convenientexperimental signature. Other advantages arethe favourable ratio of the 0ν2ECγ to the basic2ν2 ECγ capture rates as oposed to that of 0νβ - β -,2νβ - β - and, very importantly, the existence ofthe co<strong>in</strong>cidence trigger to suppress the randombackground. These advantages partly offset theexpected longer lifetimes of the 0 2ECγ process.Chances for this process were calculated and highZ atoms are strongly favored. Several availabletargets offer the capture rates of the orderof 10 -28 /year [2,3].A resonance enhancement of the capture rates ispredicted at small energy release ∆E comparableto the 2P-1S atomic level difference. Away fromthe resonance the rates depend only slowly on ∆E<strong>in</strong> strong contrast with the 0νββ decays. Thismakes studies of decays to excited states <strong>in</strong> f<strong>in</strong>alnuclei feasible, enhanc<strong>in</strong>g chances of locat<strong>in</strong>g theresonances. Candidates for such studies werefound. The experimental feasibility is estimatedand found highly encourag<strong>in</strong>g [3]. In some casesthe resonant conditions may be met to theprecision of 1 KeV. Those cases require veryprecise atomic mass measurements to beperformed [4]. These pose also an <strong>in</strong>terest<strong>in</strong>gatomic problem related to the time structure ofthe process and the relaxation time for the f<strong>in</strong>altwo hole atomic states. In some targets thecapture rates rise to 10 -25 /year. All together thedouble neutr<strong>in</strong>o-less electron capture may becomea viable alternative to the neutr<strong>in</strong>o-less doublebeta decay. The stage of experiment<strong>in</strong>g isexpected to be materialized when the possibilitiesof 0νββ process are exploited and put undercontrol.New experimental facilities produc<strong>in</strong>g fastneutr<strong>in</strong>o emitters are planned at CERN – the betabeams. Chances to produce and detect Majorananeutr<strong>in</strong>o were calculated [5]. Such a chance is ofthe order (m ν / E ν ) 2 <strong>in</strong> the system where theemitter is at rest . It may be much higher <strong>in</strong> thelaboratory frame if the emitter is very fast. Thatis due to the effect of helicity flip generated bythe Lorentz transformation. It is found to bevery strong for the neutr<strong>in</strong>o emission <strong>in</strong> thebackward direction with respect to the beam.Chances for a real experiment are evaluated [5,6]and the best emitters are looked after [7]. Theseshould be long lived and, if possible, produceneutr<strong>in</strong>os of small E ν .113


[1] Z. Sujkowski and S. Wycech , Acta Phys. Pol. B33 (2002) 471[2] Z. Sujkowski and S. Wycech , Acta. Phys.Pol. B35(2004)1223[3] Z. Sujkowski and S. Wycech , Phys. Rev.C70(2004)052501(R)[4] Z.Sujkowski and S. Wycech , Nucl.Instr.Meth. B235(2005)81[5] L. Łukaszuk, Z. Sujkowski and S. Wycech , Eur.Phys. Journ. A27(<strong>2006</strong>) 63[6] L. Łukaszuk, Z. Sujkowski and S. Wycech , Acta Phys. Pol. B33 (2007)[7] L. Łukaszuk, Z. Sujkowski and S. Wycech , To be published114


DOUBLE BETA DECAY MATRIX ELEMENTS IN THE RPA APPROACHA. Bobyk, M. Góźdź, W.A. Kamiński, P. ZarębaInstitute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>The Random Phase Approximation (RPA), s<strong>in</strong>ceits orig<strong>in</strong> <strong>in</strong> the late fifties and early sixties, hasbecome a very powerful tool for study<strong>in</strong>g the<strong>nuclear</strong> structure. In particular, the quasiparticleversion of the theory (the Quasiparticle RandomPhase Approximation -- QRPA) has beensuccessfully applied to the nuclei far from theclosed shells, and consequently extended as theproton--neutron QRPA (pnQRPA) to thedescription of charge-chang<strong>in</strong>g transitions <strong>in</strong>nuclei. Among those transitions, the double-betadecay draws very much attention, s<strong>in</strong>ce its properdescription at the <strong>nuclear</strong> level allows (and isnecessary) to understand such phenomena as theorig<strong>in</strong> and value of the neutr<strong>in</strong>o mass, theexistence of right-handed gauge bosons and otherfundamentals of the Standard Model.The ma<strong>in</strong> drawback <strong>in</strong> the formulation of theQRPA theory, however, is the violation of thePauli exclusion pr<strong>in</strong>ciple, connected with theusage of bosonic commutation relations for theQRPA phonon operators, that are <strong>in</strong> fact collectivepairs of fermions. To overcome this shortcom<strong>in</strong>gof the QRPA framework, the renormalizationtechnique has been proposed and extended to<strong>in</strong>clude proton--neutron pair<strong>in</strong>g. This approachhas been based on the early works by Rowe, Hara,Ikeda, and Schuck and Ethofer <strong>in</strong> the context ofRPA and QRPA. The ma<strong>in</strong> goal of the method,called <strong>in</strong> the literature the renormalized QRPA(RQRPA), is to take <strong>in</strong>to account additional onequasiparticlescatter<strong>in</strong>g terms <strong>in</strong> the commutationrelations by a self-iteration of the QRPA equation.Recently, we have developed and presented anextension to the RQRPA formalism [1-13], thattries to solve the problem of non-vanish<strong>in</strong>g quasiparticlecontent of the ground state that <strong>in</strong> turn<strong>in</strong>troduces some <strong>in</strong>consistency between RQRPAand the BCS approach. Our method, called theself-consistent RQRPA (SRQRPA), is based on thereformulation of the BCS equations and furtherreiteration of the BCS+RQRPA calculationscheme. This formalism has been successfullyapplied to the two-neutr<strong>in</strong>o double-beta decay ofmedium-heavy nuclei (100


[1] J. Schwieger, F. Simkovic, A. Faessler, W. A. Kamiński,Journal of Physics (Nuclear and Particle Physics) G23 (1997) 1647—1653[2] A. Bobyk, W. A. Kamiński, P. Zaręba, A. Faessler, Acta Physica Polonica 29 (1998) 470—474[3] A. Bobyk, W. A. Kamiński, P. Zaręba, A. Faessler, Acta Physica Polonica 29 (1998) 799—808[4] J. Schwieger, F. Simkovic, A. Faessler, W. A. Kamiński, Physical Review C57 (1998) 1738[5] W.A. Kamiński, A. Gozdz, P. Zaręba, Czechoslovak Journal of Physics 48 (1998), 191—195[6] A. A. Raduta, C. M. Raduta, A. Faessler, W. A. Kamiński, Nuclear Physics A634 (1998), 497[7] W.A. Kamiński, P. Zareba, Izvestya of Russian Academy of Science 11 (1998) 2147-2152[8] A. Bobyk, W. A. Kamiński, P. Zaręba, European Physics Journal A5, 385 (1999).[9] A. Bobyk, W. A. Kamiński, I. Borzov, Acta Physica Polonica. B31 (2000) 953—963[10] A. Bobyk, W. A. Kamiński, P. Zaręba, Czechoslovak Journal of Physics 50 (2000) 463—469[11] A. Bobyk, W. A. Kamiński, P. Zaręba, Nuclear Physics A669, 221 (2000).[12] A. Bobyk, W. A. Kamiński, F. Šimkovic, Physical Review C63, 051301(R) (2001).[13] F. Simkovic, M. Nowak, W. A. Kamiński, A. A. Raduta, Amand Faessler,Physical Review C64 (2001) 035501[14] A. Bobyk, W. A. Kamiński, M. Góźdź, P. Zaręba, F. Šimkovic,Czechoslovak Journal of Physics 52 (2002) 615[15] A. Bobyk, M. Góźdź, W. A. Kamiński, P. Zaręba, A. Faessler, European Physics Journal A19, 327 (2004).[16] P. Beneš, A. Bobyk, W. A. Kamiński, A. Faessler, F. Šimkovic, Acta Physica Polonica B37, 1927 (<strong>2006</strong>).116


NEUTRINOLESS DOUBLE BETA DECAYIN SUPERSYMMETRIC MODELSM. Góźdź, W.A. Kamiński, A. WodeckiInstitute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>Recent experimental evidence of neutr<strong>in</strong>ooscillations, thus non-zero mass of these particles,gave strong backup for build<strong>in</strong>g extensions of theStandard Model. One of the most promis<strong>in</strong>gcandidate is the M<strong>in</strong>imal SupersymmetricStandard Model (MSSM) <strong>in</strong> which all the gaugecoupl<strong>in</strong>gs unify at some scale m GUT ≈10 16 GeV. Asis well known, extrapolations of data from theLEP measurements suggest such behavior.However, supersymmetric (SUSY) particles havenot been observed <strong>in</strong> experiments, sosupersymmetry has to be broken <strong>in</strong> the lowenergyregime. The issue how this break<strong>in</strong>g isrealized is the least understood question of thetheory. The most widely studied version of SUSYaccidentally conserves the so-called R paritydef<strong>in</strong>ed as R = (-1) 2S+3B+L , where B and L are thebaryon and lepton numbers, and S is the sp<strong>in</strong> ofcorrespond<strong>in</strong>g particle. Consider<strong>in</strong>g, however, themore general case, <strong>in</strong> which R parity is broken,processes which do violate lepton or baryonnumber are expected - among them, the sought <strong>in</strong>many experiments neutr<strong>in</strong>oless mode of thedouble beta decay (0νββ).One of the most popular models discussed <strong>in</strong>literature is the supergravity mediated SUSYbreak<strong>in</strong>g (SUGRA MSSM models). The softbreak<strong>in</strong>g terms are generated <strong>in</strong> these models atm GUT , or even the Planck scale, and thentransmitted to the low-energy sector bygravitational <strong>in</strong>teractions. However, there is aproblem related to the flavor symmetry, which,due to high energies and radiative corrections, ispermanently broken. It is therefore desirable tolower the scale of SUSY break<strong>in</strong>g. It is achieved <strong>in</strong>the so-called gauge mediated supersymmetrybreak<strong>in</strong>g (GMSB), which has recently attracted agreat deal of attention. In GMSB modelssupersymmetry break<strong>in</strong>g is transmitted to thesuperpartners of quarks, leptons, and gaugebosons via the usual SU(3)×SU(2)×U(1) gauge<strong>in</strong>teractions and occurs at the scale m SUSY ≈10 5GeV, so there is no problem with the flavorsymmetry.Neither SUSY nor 0νββ decay has beenobserved, but extensive experimental search ofthe latter resulted <strong>in</strong> lower bounds on the half-lifeof this exotic process for different nuclei. Thedescription of 0νββ decay with<strong>in</strong> non-standardmodels <strong>in</strong>volve many uknown parameters, likemass scales, masses of new particles, and coupl<strong>in</strong>gconstants of exotic <strong>in</strong>teractions. The experimentalbounds can be used to formulate constra<strong>in</strong>ts onthese parameters. Such <strong>in</strong>vestigation has beendone <strong>in</strong> the framework of the MSSM model withbroken R parity, with SUSY break<strong>in</strong>g realizedthrough the SUGRA [1,2,4,6,11] and GMSB [3,5,8]mechanisms. An example of upper bounds on anon-standard coupl<strong>in</strong>g constant λ' 111 is presented<strong>in</strong> Fig. 1.Fig. 1. Limits on the coupl<strong>in</strong>g constant λ' 111 as the function of theGMSB scale Λ, com<strong>in</strong>g from experimental lower bounds on the halflifeof 0νββ decay <strong>in</strong> different nuclei. The correspond<strong>in</strong>g <strong>nuclear</strong>matrix elements have been calculated us<strong>in</strong>g pn-RQRPA method andthe bag model (from Ref. [8]).117


[1] Andrzej Wodecki, Wiesław A. Kamiński, Slavomir Pagerka, Physics Letters B413 (1997) 342[2] Andrzej Wodecki, Wiesław A. Kamiński, Slavomir Pagerka, Progress <strong>in</strong> Particle and Nuclear Physics 40(1998) 333[3] A. Wodecki, W. A. Kamiński, Phys. Rev. C59 (1999) R1232[4] A. Wodecki, W. A. Kamiński, F. Šimkovic, Physical Review D60 (1999) 115007[5] Wiesław A. Kamiński, A. Wodecki, F. Simkovic, Czechoslovak Journal of Physics 50 (2000) 489[6] A. Wodecki, W. A. Kamiński, International Journal of Modern Physics, A15 (2000) 2447[7] Marek Góźdź, Wieslaw A. Kam<strong>in</strong>ski, Physical Review D68 (2003) 057901[8] M.Góźdź, W. A. Kamiński, Physical Review D69, 076005 (2004).[9] M.Góźdź, W. A. Kamiński, A. Wodecki, Physical Review C69 (2004) 025501[10] Marek Góźdź, Wieslaw A. Kam<strong>in</strong>ski, International Journal of Modern Physics E13 (2004) 367[11] Marek Góźdź, Wieslaw A. Kam<strong>in</strong>ski, Fedor Simkovic, Physical Review D70 (2004) 095005[12] Marek Góźdź, Wieslaw A. Kam<strong>in</strong>ski, Amand Faessler, Physical Review D71 (2005) 096005118


FUSION BARRIER DISTRIBUTIONSP.Czosnyka 1 , T.Czosnyka 1 , J.Jastrzębski 1 , M. Kisieliński 1,4 , A.Kordyasz 1 ,M.Kowalczyk 1,2 , T.Krogulski 3 , E.Piasecki 1,2,4 , K.Piasecki 2 , K.Rusek 4 , Ł.Świderski 2,4 ,M.Witecki 21 Heavy Ion Laboratory, Warsaw University, Warszawa2 Institute of Experimental Physics, Warsaw University, Warszawa3 University of Białystok, Białystok4 A. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: Warsaw CyclotronNuclear reactions at sub-barrier energies playextremely important role <strong>in</strong> Nature, be<strong>in</strong>g responsiblefor the very existence of the stars, their evolutionand many aspects of the orig<strong>in</strong> of elements.One of the most important classes of sub-barrierreactions is fusion. It turns out that connectionbetween <strong>nuclear</strong> reaction mechanism and structureof the <strong>in</strong>teract<strong>in</strong>g nuclei exists and manifests itself<strong>in</strong> strong enhancement of fusion cross-sections atsub-barrier energies. It can be understood as theresult of coupl<strong>in</strong>gs between various reactionchannels: elastic and <strong>in</strong>elastic scatter<strong>in</strong>g, transferreactions, break-up and fusion. Experiments po<strong>in</strong>tto the presence of the barriers of various heights <strong>in</strong>the same projectile– target system, giv<strong>in</strong>g rise tothe barrier height distributions.It was demonstrated that the barrier distributionscould be extracted from the sum of the crosssectionsof all quasielastic reactions (elastic and<strong>in</strong>elastic scatter<strong>in</strong>g and the transfer reactions) us<strong>in</strong>gthe cyclotron beams [1]. S<strong>in</strong>ce 5 years we areus<strong>in</strong>g this method for study<strong>in</strong>g <strong>in</strong>teraction of20,22 Ne with various targets ( nat Ni, 90,92 Zr, 112,116,118 Sn,208 Pb).The 20 Ne nucleus was chosen for these studiesbecause of its remarkable properties: its β 2 and β 4ground state deformations are enormous, namely0.46 and 0.27. Due to this, calculations performedby means of the coupled channels method predict<strong>in</strong> the 20 Ne + Sn case the strongly structuredbarrier distribution. However, the experimentaldistribution turned out [2,3] to be completelysmooth, of the Gaussian-like shape (fig.1, upperleft panel). Suspicions, that smooth<strong>in</strong>g of the barrierdistribution was caused by the strong α particletransfer and break-up channels (due to thestrongly clustered 20 Ne nucleus) were falsified [4]by replac<strong>in</strong>g the projectile by 22 Ne. This replacementresulted <strong>in</strong> considerable (by the factor of 6)decreas<strong>in</strong>g of the α transfer probability without,however, significant chang<strong>in</strong>g of the barrier distribution(the lower left panel of Fig. 1).D qe[MeV -1 ]On the other hand, us<strong>in</strong>g the same experimentalmethod, the clear structure was observed for the20 Ne projectile, when the Sn target was replaced bythe nat Ni one (right panels) [5]. The structure hasbeen observed also for the 90 Zr target, while it waslack<strong>in</strong>g <strong>in</strong> the case of 92 Zr [6].It seems that the reason of structuresmooth<strong>in</strong>g, observed <strong>in</strong> the case of Ne + Sn, 92 Zrsystems, is due to the strong neutron transferchannels. This would po<strong>in</strong>t to the limits of thepresent version of the Coupled Channels method,consist<strong>in</strong>g <strong>in</strong> assum<strong>in</strong>g that only the collectivechannels have to be taken explicitly <strong>in</strong>to account <strong>in</strong>the calculations. Usually the other reaction channels,be<strong>in</strong>g considered as the “weak” ones, aretreated by <strong>in</strong>clud<strong>in</strong>g them <strong>in</strong>to the imag<strong>in</strong>aryOptical Model Potential. The hypothesis is presentlyundergo<strong>in</strong>g experimental and theoreticaltest<strong>in</strong>g.D qe[MeV -1 ]0.350.300.250.200.150.100.050.0050 55 60 65 700.350.300.250.200.150.100.050.0020 Ne + 118 Sn22Ne + 118 Sn50 55 60 65 70E eff[MeV]Ne(0 + ,2 + ,4 + ,6 + ) x Sn(0 + ,2 + ,2ph);β 2(Ne) = 0.46, β 2(Sn) = 0.130.350.300.25exp. data0.20<strong>in</strong>ertCC: 0.15 β 4( 20 Ne) = 0.270.100.050.000.350.300.250.150.100.050.0030 35 40 45CC: β0.204( 22 Ne) = 0.1020 Ne + nat Ni22Ne + nat Ni30 35 40 45E eff[MeV]Fig.1. Comparison of calculated and experimental quasi-elastic barrierdistributions. The dashed curves were calculated without tak<strong>in</strong>g <strong>in</strong>toaccount any coupl<strong>in</strong>gs. The blue l<strong>in</strong>es show calculated resultsassum<strong>in</strong>g the coupl<strong>in</strong>g parameters taken from the literature.119


[1] E. Piasecki, M. Kowalczyk, K. Piasecki, Ł. Świderski, J. Srebrny, M. Witecki, F. Carstoiu, W. Czarnacki,K. Rusek, J. Iwanicki, J. Jastrzębski, M. Kisieliński, A. Kordyasz, A. Stolarz, J. Tys, T.Krogulski,N.Rowley, Phys. Rev. C 65, 054611 (2002)[2] E.Piasecki, Ł. Świderski, M. Witecki, Acta Phys. Pol. 33, 397 (2002)[3] Ł.Świderski, P. Czosnyka, M. Kowalczyk, E. Piasecki, K. Piasecki, M. Witecki, J. Jastrzębski, A.Kordyasz, M. Kisieliński, T. Krogulski, N. Rowley, C. Marchetta, A. Pagano, M. Mutterer, W. H.Trzaska, K. Hag<strong>in</strong>o, Int. Journ. of Modern Phys. E, 13, 315 (2004)[4] E. Piasecki, Ł.Świderski, P. Czosnyka, M. Kowalczyk, K. Piasecki, M. Witecki, T. Czosnyka,J. Jastrzębski, A. Kordyasz, M. Kisieliński, T Krogulski, M. Mutterer, S. Khlebnikov, W.H. Trzaska,K. Hag<strong>in</strong>o, N.Rowley, Phys. Lett. B 615 (2005) 55[5] Ł. Świderski, E. Piasecki, P. Czosnyka, T. Krogulski and N. Rowley, Intl. Journ. Mod. Phys. E 14, 341(2005)[6] E.Piasecki, Ł. Świderski, K.Rusek, M.Kisieliński, J.Jastrzębski, A.Kordyasz, M.Kowalczyk,M.Mutterer, T.Krogulski, K.Piasecki, P.Russotto, A.M.Stefan<strong>in</strong>i, N.Rowley,Intl. Journ. Mod. Phys. 16 (2007) 502120


NUCLEAR OPTICAL POTENTIAL FROM LIGHT-PARTICLE TRANSFERREACTIONSA. Budzanowski 1 , J. Choiński 2 , B. Czech 1 , T. Czosnyka 2 , L. Głowacka 3 , S. Kliczewski 1 ,K. Rusek 4 , R. Siudak 1 , I. Skwirczyńska 11 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków2 Heavy Ion Laboratory, Warsaw University, Warszawa3 Military University of Technology, Warszawa4 A. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: Warsaw CyclotronInteraction of the two collid<strong>in</strong>g nuclei can bereduced to the Optical Model (OM) potential,which is complex and energy dependent. Thedependence of this OM potential on energy isespecially strong <strong>in</strong> the vic<strong>in</strong>ity of the Coulombbarrier. It is related to the fact that <strong>in</strong> this energyregion many reactions channels are opened, so theabsorptive imag<strong>in</strong>ary part of the OM potential,responsible for the removal of the scattered nucleifrom the elastic channel, changes from valuenegligibly smaller than the Coulomb barrier tosome tens of MeV above it. Like <strong>in</strong> optics, therefraction and absorption are related, and changeof the imag<strong>in</strong>ary part generates a sudden <strong>in</strong>creaseof the real part of OM potential at the barrier.All models of the direct <strong>nuclear</strong> reactions arebased on Optical Model. Thus, <strong>in</strong> order todescribe different <strong>nuclear</strong> reactions one has toknow rather precisely the OM potential for thepair of <strong>in</strong>teract<strong>in</strong>g nuclei. This knowledge isespecially important <strong>in</strong> modern <strong>nuclear</strong> <strong>physics</strong>that is oriented for <strong>in</strong>vestigations of weaklybound, radioactive, nuclei as they have to beproduced <strong>in</strong> different <strong>nuclear</strong> processes.In the recent years we have performed manyexperiments with stable nuclei look<strong>in</strong>g at thereactions that lead to exotic nuclei <strong>in</strong> the exitchannel. Chang<strong>in</strong>g the energy, we could<strong>in</strong>vestigate the energy dependence of the OMpotential <strong>in</strong> this channel [1-3,5,7-8]. An example isshown <strong>in</strong> Fig. 1. The unbound nuclei 8 Be wereproduced <strong>in</strong> the α- and triton-transfer recations<strong>in</strong>duced by 11 B beam on 12 C target. The beam wasdelivered by Warsaw Cyclotron and the reactionproducts were measured by charged particlestelescopes consist<strong>in</strong>g of gas-filled ionizationcounters and silicon detectors, mounted <strong>in</strong> thescatter<strong>in</strong>g chamber “Syrena”. The data wereanalysed by means of coupled-reaction-channelmodel, with the OM potential <strong>in</strong> the entrance 11 Be+ 12 C channel adopted from our previous studies.The values of 8 Be+ 15 N OM potential, extractedfrom the analysis, are compared with thepotential for 8 Be+ 13 C found by us previously(Fig.1 ).We have also studied the effect of coupl<strong>in</strong>gbetween different <strong>nuclear</strong> processes. In particularwe have <strong>in</strong>vestigated excitation of 14 C to a fewlow-ly<strong>in</strong>g states and its effect on 11 B + 14 C elasticscatter<strong>in</strong>g as well as s<strong>in</strong>gle-particle and collectivenature of those excited states [4,6]. One of the<strong>in</strong>terest<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs was the large radius of thewave function of the 1 - , 6.094 MeV excited state,suggest<strong>in</strong>g its neutron- halo nature.Fig. 1. Energy dependence of the OM potential parameters for the8Be+ 13 C (open triangles and dashed curves) and for 8 Be+ 15 N (filledcircles and solid curves), ref. [7].121


[1] A.T. Rudchik, A. Budzanowski, V.K. Chernievsky, B. Czech, L. Głowacka, S. Kliczewski,A.V. Mokhnach, O.A. Momotyuk, S.E. Omelchuk, Val.M. Pirnak, K. Rusek, R. Siudak, I. Skwirczyńska,A.Szczurek, L. Zemło, Nucl. Phys. A695, 51 (2001).[2] A.T. Rudchik, V.M. Kyryanchyk, A. Budzanowski, V.K. Chernievsky, B. Czech, T. Czosnyka,L. Głowacka, S. Kliczewski, E.I. Koshchy, S.Yu. Mezhevych, A.V. Mokhnach, K. Rusek, S.B. Sakuta,R. Siudak, I. Skwirczyńska, , L. Zemło , Nucl. Phys. A714, 391 (2003).[3] V.M. Kyryanchyk, A.T. Rudchik, A. Budzanowski, V.K. Chernievsky, T. Czosnyka, B. Czech,L. Głowacka, S. Kliczewski, E.I. Koshchy, S.Yu. Mezhevych, A.V. Mokhnach, K. Rusek, S.B. Sakuta,R. Siudak, I. Skwirczyńska, A. Szczurek, L. Zemło, Nucl. Phys. A726, 231 (2003).[4] S.Yu. Mezhevych and K. Rusek, Acta Phys. Pol. B 34, 2415 (2003).[5] S.Yu. Mezhevych, K. Rusek, A.T. Rudchik, A. Budzanowski, V.K. Chernievsky, B. Czech, J. Choiński,L. Głowacka, S. Kliczewski, E.I. Koshchy, V. M. Kiryanchuk, A.V. Mokhnach, A.A. Rudchik, S.B.Sakuta, R. Siudak, I. Skwirczynska, A. Szczurek, L. Zemło, Nucl. Phys. A724, 29 (2003) .[6] S. Yu. Mezhevych, A.T. Rudchik, K. Rusek, A. Budzanowski, B. Czech, J. Choiński, L. Głowacka,S. Kliczewski, E.I. Koshchy, V.M. Kyryanchuk, A.V. Mokhnach, A.A. Rudchik, S.B. Sakuta, R. Siudak,I. Skwirczyńska, A. Szczurek, Nucl. Phys. A753, 13 (2005).[7] A.A. Rudchik, A.T. Rudchik, A. Budzanowski, A.Szczurek, B. Czech, T. Czosnyka, J. Choiński,L. Głowacka, S. Kliczewski, E.I. Koshchy, S.Yu. Mezhevych, A.V. Mokhnach, O.A. Momotyuk,Val.M. Pirnak, R. Siudak, I. Skwirczyńska, Eur. Phys. J. A 23, 445 (2005).[8] A.A. Rudchik, A.T. Rudchik, M. Kozeratska, O.A. Ponkratenko, E.I. Koshchy, A. Budzanowski,B. Czech, S. Kliczewski, R. Siudak, I. Skwirczyńska, A.Szczurek, S.Yu. Mezhevych, K.W. Kemper,J. Choiński, T. Czosnyka, L. Głowacka, Phys. Rev. C 72, 034608 (2005).122


REACTIONS WITH LOOSELY BOUND PROJECTILESK. RusekA. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: GANIL, JINR Dubna, CRC Louva<strong>in</strong>-la-Neuve, FSU, NRC DemokritosPhysics of weakly bound nuclei shows howstrongly <strong>nuclear</strong> reactions are related with <strong>nuclear</strong>structure studies. A small energy separationbetween the ground state and the unbound statesfrom the cont<strong>in</strong>uum makes the coupl<strong>in</strong>gs betweenthem very probable. Thus, even such a simpleprocess like elastic scatter<strong>in</strong>g can be stronglyaffected by virtual excitations of a weakly boundnucleus to its resonant and nonresonant unboundstates.From the experiments with polarized andunpolarized 6,7 Li beams we have learnt that theproperties of these weakly bound nuclei, likedeformation of the ground state, energy of thebreakup threshold or the structure of the boundand unbound states, have an <strong>in</strong>fluence on <strong>in</strong>duced<strong>nuclear</strong> reactions [1-7,14-16,22]. These propertiescan be also directly related to some of theobservables, like the analys<strong>in</strong>g powers of differentrank.Presently, one can profit from the experiencega<strong>in</strong>ed with stable beams, stud<strong>in</strong>g the propertiesof exotic radioactive nuclei by means of <strong>nuclear</strong>reactions. For example, the dipole polarizability ofneutron-rich helium isotope, 6 He (dipolecoupl<strong>in</strong>gs between the ground state and the statesfrom the cont<strong>in</strong>uum) can by studied by means ofelastic scatter<strong>in</strong>g of this nucleus from a heavytarget [8-11,13,19,21]. At energies close to theCoulomb barrier the dipole coupl<strong>in</strong>gs generate along range absorption that suppresses theCoulomb ra<strong>in</strong>bow <strong>in</strong> the elastic scatter<strong>in</strong>g angulardistribution (Fig. 1).From the comparison of the model calculationswith experimental data one can also draw someconclusions about the cluster structure of 6 He. Thecalculations presented <strong>in</strong> Fig. 1 by the solid bluecurves were performed assum<strong>in</strong>g a simple twobodyd<strong>in</strong>eutron (α+2n) model of this nucleus.Good agreement of the calculated curves andexperimental data suggests that the most relevant<strong>in</strong>ternal degree of freedom is the coord<strong>in</strong>atebetween the alpha particle and the centre of massof the two neutrons. The d<strong>in</strong>eutron model takes<strong>in</strong>to account explicitly the excitation of this degreeof freedom that occurs dur<strong>in</strong>g the collision of 6 Hewith the target nucleus. This aspect of the <strong>in</strong>ternalstructure of 6 He seems sufficient to obta<strong>in</strong>satisfactory description of the elastic scatter<strong>in</strong>gdata.Our studies have also shown that apart of thecoupl<strong>in</strong>gs with the cont<strong>in</strong>uum, neutron transferreactions play an important role <strong>in</strong> the <strong>in</strong>teractionof exotic, neutron-rich nuclei [17,20]. It wasshown that the large fission yield observed for6 He + 238 U below the Coulomb barrier is due totwo-neutron transfer reaction rather than fusionof these nuclei [18]. A large number of alphaparticlesdetected at backward scatter<strong>in</strong>g anglesfor 6 He + 208 Pb could also be attributed to the twoneutrontransfer reaction to unbound states of thef<strong>in</strong>al nucleus.Fig. 1. Effect of coupl<strong>in</strong>gs to the α+2n cont<strong>in</strong>uum on the 6 He +197Au elastic scatter<strong>in</strong>g at the three energies, <strong>in</strong> the vic<strong>in</strong>ity of theCoulomb barrier. The dashed curves show optical model calculations(no coupl<strong>in</strong>gs) while the solid blue curves the results of coupledchannelcalculations with these coupl<strong>in</strong>gs <strong>in</strong>cluded[21].123


[1] N. Keeley, K.Rusek, Phys. Let. B 375,9 (<strong>1996</strong>).[2] K.Rusek, P.V.Green, P.L.Kerr and K.W.Kemper, Phys. Rev. C 56, 1895 (1997).[3] N.Keeley and K.Rusek, Phys. Rev. C 56, 3421 (1997).[4] N.Keeley and K.Rusek, Phys. Let. B 427, 1 (1998).[5] K.Rusek and K.W.Kemper, Phys. Rev. C 61, 634808 (2000).[6] Dhruba Gupta, C.Samanta, A.Chatterjee, K.Rusek, Y.Hirabayashi, J. of Phys. G 26, L81 (2000).[7] N. Keeley, K.W. Kemper and K. Rusek, Phys. Rev. C 64, 031602(R) (2001).[8] K.Rusek, K.W. Kemper and R. Wolski, Phys. Rev. C 64, 044602 (2001).[9] N. Keeley, K.W. Kemper and K. Rusek, Phys. Rev. C 65, 014601 (2002).[10] N. Keeley, K.W. Kemper, K.Rusek, Phys. Rev. C 66, 044605 (2002).[11] R.S. Mack<strong>in</strong>tosh, K. Rusek, Phys. Rev. C 67, 034607 (2003).[12] K. Rusek, P.D. Cathers, E.E. Bartosz, N. Keeley, K.W. Kemper, F. Marechal, Phys. Rev. C 67,014608 (2003).[13] K. Rusek, N. Keeley, K.W. Kemper, R.Raabe, Phys. Rev. C 67, 041604(R) (2003).[14] A.Pakou, N. Alamanos, A. Gillibert, M. Kokkoris, S. Kossionides, A. Lagoyannis, N.G. Nicolis,C. Papachristodoulou, D. Patitir, D. Pierroutsakou, E.C. Pollaco, K. Rusek, Phys. Rev. Lett. 90,202701 (2003).[15] N. Keeley, J.M. Cook, K.W. Kemper, B.T. Roeder, D. We<strong>in</strong>traub, F. Marechal, K.Rusek, Phys. Rev.C 68, 054601 (2003).[16] A. Pakou and K. Rusek, Phys. Rev. C 69, 057602 (2004).[17] K. Rusek, N. Alamanos, N. Keeley, V. Lapoux, A. Pakou, Phys. Rev. C 70, 014603 (2004).[18] R. Raabe, J.L. Sida, J.L. Charvet, N. Alamanos, C. Angulo, J.M. Casandijan, S. Court<strong>in</strong>, A. Drouart,D.J. C. Durand, P. Figuera, A. Gillibert, S. He<strong>in</strong>rich, C. Jouanne, V. Lapoux, A. Lep<strong>in</strong>e-Szily,A. Musumarra, L. Nalpas, D. Pierroutsakou, M. Romoli, K. Rusek and M. Trotta, Nature 431, 823(2004).[19] A. M. Sanchez-Benitez, D. Escrig, M.A.G. Alvarez, M.V. Andres, C. Angulo, M.J.G. Borge,J. Cabrera, S. Cherub<strong>in</strong>i, J.M. Esp<strong>in</strong>o, P. Figuera, M. Freer, J.E. Garcia-Ramos, J. Gomez-Camacho,M. Gul<strong>in</strong>o, O.R. Kakuee, I. Martel, C. Metelco, A.M. Moro, J. Rahigi, K. Rusek, D. Smirnov,O. Tengblad, P. Van Duppen, V. Ziman, J. of Phys. G 31, S1953 (2005).[20] L. Giot, P. Roussel-Chomaz, C.E. Demonchy, W. Mittig, H. Savajols, N. Alamanos, F. Auger,A. Gillibert, C. Jouanne, V. Lapoux, L. Nalpas, E.C. Polacco, J.L. Sida, F. Skaza, M.D. Cort<strong>in</strong>a-Gil,J. Fernandez-Vasquez, R.S. Mack<strong>in</strong>tosh, A. Pakou, S. Pita, K. Rusek, I. Thompson, R. Wolski,Phys. Rev. C 71, 064311 (2005).[21] K. Rusek, I. Martel, J. Gomez-Camacho, A.M. Moro, R. Raabe, Phys. Rev. C 72, 037603 (2005).[22] A. Pakou, N. Alamanos, N.M. Clarke, N.J. Davis, G. Doukelis, G. Kalyva, M. Kokkoris,A. Lagoyannis, T.J. Mertzimekis, A. Musumarra, N.G. Nicolis, C. Papachristodoulou, N. Patronis,G. Perdikakis, D. Pierroutsakou, D. Roubos, K. Rusek, A. Spirou, Ch. Zakardas, Phys. Let. B 633,691 (<strong>2006</strong>).124


NEUTRON-INDUCED REACTIONSJ. Andrzejewski, M. Kaczmarczyk, L. Łasoń, J. Marganiec, P.J. SzałańskiFaculty of Physics and Applied Informatics, University of Łódź, ŁódźDur<strong>in</strong>g last years we performed someexperimental study of neutron-<strong>in</strong>duced reactionsas well as theoretical calculations of neutronresonance parameters of <strong>in</strong>terest to basic <strong>nuclear</strong><strong>physics</strong>, <strong>nuclear</strong> astro<strong>physics</strong> and <strong>nuclear</strong>technology applications.The ma<strong>in</strong> goal of our study the (n, α) reactionswas the essential improvement <strong>in</strong> determ<strong>in</strong>ationof rates for reactions <strong>in</strong>volv<strong>in</strong>g alpha particles<strong>in</strong>side the stars. The first measurements of the147 Sm (n, α) and 143 Nd (n, α) cross section <strong>in</strong> wideneutron energy <strong>in</strong>terval, to better def<strong>in</strong>e theα + nucleus optical potential, were carried out atORELA neutron spectrometer <strong>in</strong> Oak Ridge [1 - 3].For resonance neutrons the Q-values for (n, α)reactions are such that the relative energybetween the α particle and residual nucleus are <strong>in</strong>the astrophysically <strong>in</strong>terest<strong>in</strong>g range, so noextrapolation is necessary. To match differentoptical potential <strong>in</strong> statistical model of <strong>nuclear</strong>reactions and to compare calculated cross sectionswith obta<strong>in</strong>ed experimentally one can def<strong>in</strong>eoptimal potential. Its value permit to calculatewith better accuracy reaction rates for thereactions <strong>in</strong>volv<strong>in</strong>g alpha particles such as (γ, α)and (α, p), important <strong>in</strong> p-process nucleosynthesis.Two of us as the members of n_TOFCollaboration participated <strong>in</strong> experimentsperformed <strong>in</strong> CERN. The n_TOF spallationneutron source is based on proton beam of theCERN-PS. The collaboration has successfullycollected some of the world wide bestmeasurements of neutron capture and fissioncross sections of act<strong>in</strong>ides, long lived fissionfragments and other isotopes relevant for <strong>nuclear</strong>technology and/or <strong>nuclear</strong> astro<strong>physics</strong> [4 - 7].For example, the result obta<strong>in</strong>ed for is much larger than previous estimates, allbased on model calculations. The firm estimate ofcapture rate for the first time based on anexperimental value allowed to reach twoimportant conclusions with respect to the s-process nucleosynthesis <strong>in</strong> this mass region: a) theclassical model, based on a phenomenologicalstudy of the s-process fails to produce consistentresults of branch<strong>in</strong>g at 151 Sm and 147 Pm, b) the p-process contribution to the production of 152 Gdcan amount up to 30 % of the solar-systemobserved abundance [4].The effect of parity violation <strong>in</strong> lead wasmeasured on pulse neutron source IBR-2 <strong>in</strong> JINR,Dubna by means of multidetector COCOS device.This effect can be expla<strong>in</strong>ed by presence of astrong negative p-resonance near the thermalpo<strong>in</strong>t (below the neutron threshold). Energydependence of the 204 Pb(n,γ) and 207 Pb(n,γ)reaction cross section was observed by means ofthe registration of gamma-quanta, which camefrom the decay of the excited states of acompound nucleus. The deviation <strong>in</strong> the “1/vlaw” led to the conclusion that, <strong>in</strong> vic<strong>in</strong>ity of theneutron b<strong>in</strong>d<strong>in</strong>g energy, there is a strong p-waveresonance <strong>in</strong> 207 Pb isotope (the negative neutronresonance) [8].Several computational works devoted tothe subject of level density of s-wave neutronresonances were done bas<strong>in</strong>g on semi-classicaldescription. The problem was considered <strong>in</strong> threedifferent ways. The systematics of theexperimental and calculated neutron resonancelevel density has been presented as the function ofneutron number N for more than 220 nuclei.Comparison of the calculated results obta<strong>in</strong>edunder consideration the energy gap near Fermilevel is <strong>in</strong> good agreement with experimental data[9-11].We have participated <strong>in</strong> the <strong>in</strong>ternationalcollaboration with researchers from FLNP JINR,Dubna, Pek<strong>in</strong>g University and Ts<strong>in</strong>ghuaUniversity, Beij<strong>in</strong>g, Ch<strong>in</strong>a. This jo<strong>in</strong>t researchgroup has carried out the study of 39 K(n,α) 36 Cl,40 Ca(n,α) 37 Ar, 64 Zn(n,α) 61 Ni reactions at 4.0 ÷ 7.0MeV neutron energy region [12] us<strong>in</strong>g gridedionization chamber (GIC). Because of multiplebenefits of such detector i.e. simple construction,high efficiency, a good energy resolution andangular <strong>in</strong>formation of particles ejectedsimultaneously, good energy resolution, radiationstability <strong>in</strong> neutron field, GIC overcame thelimitations of the semiconductor telescopedetector [13].125


[1] Yu.M Gledenov,. P.E. Koehler, J. Andrzejewski, K.H. Guber andT. Rauscher, Phys. Rev. C 62 Rapid Communication (2000) 801[2] P. E. Koehler, Yu. M. Gledenov, J. Andrzejewski, K. H. Guber, S. Raman andT. Rauscher, Nucl. Phys. A688 (2001) 86c[3] Yu.M Gledenov,. P.E. Koehler, J. Andrzejewski, Yu.P. Popov, R.Yu. Gledenov,Journal of Nuclear Science and Technology, Supplement 2 (2002) 358[4] U.Abbondanno, ... J.Andrzejewski, J.Marganiec + n_TOF Collaboration,Phys. Rev. Letters, 93, 161103 (2004)[5] S. Marrone, ... J. Andrzejewski, J. Marganiec + n_TOF Collaboration,Phys. Rev. C 73, 034604 (<strong>2006</strong>)[6] G. Aerts, ... J. Andrzejewski, J. Marganiec + n_TOF Collaboration,Phys. Rev. C 73, 054610 (<strong>2006</strong>)[7] C. Dom<strong>in</strong>go-Pardo, ... J. Andrzejewski, J. Marganiec + n_TOF Collaboration,Phys. Rev. C74, 025807 (<strong>2006</strong>)[8] J. Andrzejewski, N.A. Gundor<strong>in</strong>, I.L. Karpikh<strong>in</strong>, L. Łason, G.A. Lobov, D.V. Matveev,L.B. Pikelner, Physics of Atomic Nuclei, v. 67, no.7, (2004) 1233, translated from Yadernaya Fizika67 (2004) 1257[9] M.Kaczmarczyk, J.Phys. G26 (2000) 253[10] M.Kaczmarczyk, J.Phys. G31 (2005) 669[11] M.Kaczmarczyk and L.Łasoń, J.Phys. G32 (<strong>2006</strong>) 417[12] Yu.M.Gledenov, M.V.Sedysheva, P.V.Sedyshev, A.Oprea, G.Khuukhenkhuu, Z.Chen, Y.Chen,Z.Yuan, G.Tang, G.Zhang, J.Andrzejewski, P.J.Szalanski, Izvestiya Akademii Nauk, SeriyaFizicheskaya, 67 No 5 (2003) 689[13] Yu.M. Gledenov, R. Machrafi, V.I. Salatski, P.V. Sedyshev, J. Andrzejewski,P.J. Szalanski, Nucl.Instrum.Meth.Phys.Res., A431 (1999) 201n_TOF Collaboration: U. Abbondanno, G. Aerts, H. Álvarez, F. Alvarez-Velarde, S. Andriamonje,J. Andrzejewski, P. Assimakopoulos, L. Audou<strong>in</strong>, G. Badurek, P. Baumann, F. Bečvář , E.Berthoumieux,F. Calviño, D. Cano-Ott, R. Capote, A. Carrillo de Albornoz, P. Cenn<strong>in</strong>i, V. Chepel,E. Chiaveri, N. Colonna, G. Cortes, A. Couture, J. Cox, M. Dahlfors, S. David, I. Dillmann, R. Dolf<strong>in</strong>i,C. Dom<strong>in</strong>go-Pardo, W. Dridi, I. Duran, C. Eleftheriadis, M. Embid-Segura, L. Ferrant, A. Ferrari,R. Ferreira-Marques, L. Fitzpatrick, H. Frais-Koelbl, K. Fujii, W. Furman, C. Guerrero, I. Goncalves,R. Gall<strong>in</strong>o, E. Gonzalez-Romero, A. Goverdovski, F. Gramegna, E. Griesmayer, F. Guns<strong>in</strong>g, B. Haas,R. Haight, M. Heil, A. Herrera-Mart<strong>in</strong>ez, M. Igashira, S. Isaev, E. Jericha, Y. Kadi, F. Käppeler,D. Karamanis, D.Karadimos, M. Kerveno, V. Ketlerov, P. Koehler, V. Konovalov, E. Kossionides,M. Krtička, C. Lamboudis, H. Leeb, A. L<strong>in</strong>dote, I. Lopes, M. Lozano, S. Lukic, L. Marques,J. Marganiec, S. Marrone, P. Mast<strong>in</strong>u, A.Mengoni, P.M. Milazzo, C. Moreau, M. Mosconi, F. Neves,H. Oberhummer, S. O'Brien, M. Oshima, J. Panc<strong>in</strong>, C. Papachristodoulou, C. Papadopoulos,C. Paradela, N. Patronis, A. Pavlik, P. Pavlopoulos, L. Perrot, R. Plag, A. Plompen, A. Plukis,A. Poch, C. Pretel, J. Quesada, T. Rauscher, R. Reifarth, M. Rosetti, C. Rubbia, G. Rudolf, P. Rullhusen,J. Salgado, L. Sarchiapone, I. Savvidis, C. Stephan, G. Tagliente, J.L. Ta<strong>in</strong>, L. Tassan-Got, L. Tavora,R. Terlizzi, G. Vann<strong>in</strong>i, P. Vaz, A. Ventura, D. Villamar<strong>in</strong>, M.C. V<strong>in</strong>cente, V. Vlachoudis, R. Vlastou, F. Voss,S. Walter, H. Wendler, M. Wiescher, and K.Wisshak126


NUCLEAR FUSION AND FISSION IN MEAN-FIELD MODELSJ. SkalskiA. Sołtan Institute for Nuclear Studies, WarszawaAlthough fusion and fission are elementary<strong>nuclear</strong> processes, even after many years ofdevelopment of the <strong>nuclear</strong> science our ability topredict fusion probabilities or fission half-lives isnot very impressive. This results from twoimportant reasons: complicated <strong>in</strong>teractions anddifficulties <strong>in</strong> solv<strong>in</strong>g many-body problems. Themean-field method of the Hartree-Fock type witheffective, density dependent <strong>in</strong>teractions isprobably the most advanced approach to thedescription of fusion and fission. The <strong>in</strong>terest <strong>in</strong>these processes is stimulated by the efforts andsuccesses <strong>in</strong> the creation of superheavy elements.In our studies we concentrate on two topics:(i) calculations of fusion and fission barriers and(ii) the <strong>in</strong>stanton approach to f<strong>in</strong>d<strong>in</strong>g fission halflives.The proper calculation of fission or fusionbarriers requires a correct energy evaluation for<strong>nuclear</strong> shapes with constriction. It seems that theexist<strong>in</strong>g calculations overestimate energies of<strong>nuclear</strong> configurations close to scission by<strong>in</strong>clud<strong>in</strong>g a spurious contribution of k<strong>in</strong>eticenergy of the fragments’ relative motion. Whenthis spurious energy is elim<strong>in</strong>ated, one can obta<strong>in</strong>fission barriers <strong>in</strong> relatively light A=70-100systems much closer to the experimental valuesthan <strong>in</strong> the standard calculations [1].The same correction is important for fusionbarriers, but, <strong>in</strong> contrast to the fission studies, itwas usually <strong>in</strong>cluded. The calculations ofadiabatic fusion barriers [2,3] show that, perhaps,one needs to ref<strong>in</strong>e the correction and remove aproper fraction of the relative k<strong>in</strong>etic energy,depend<strong>in</strong>g on whether the fragments are more orless divided. The same calculations show that thestatic fusion barriers obta<strong>in</strong>ed with the Skyrmeforces SkM* and Sly6 quite well agree with theexperimental fusion barriers for relatively lightsystems. For the heavier systems, the barriers areslightly underestimated. Beside the barriers, thesecond <strong>in</strong>gredient <strong>in</strong> typical calculations offission half-lives [4] is the mass tensor, necessaryfor the evaluation of WKB-like action. None ofthese is well def<strong>in</strong>ed and they <strong>in</strong>troduce thearbitrar<strong>in</strong>ess to the theory. On the other hand, thetime-dependent Hartree-Fock equations <strong>in</strong>imag<strong>in</strong>ary time have solutions that provide theoptimal fission paths without additionalassumptions. One only has to f<strong>in</strong>d these solutions,called <strong>in</strong>stantons.Nuclear fission problem leads to <strong>in</strong>stantonswith many s<strong>in</strong>gle particle wave functions andspecific orthogonality relations that must befulfilled [5]. We are work<strong>in</strong>g on the practicalreformulation of the problem <strong>in</strong> terms of thefunctional m<strong>in</strong>imization. For simpler systems,described by the one wave function, like a Bose-E<strong>in</strong>ste<strong>in</strong> condensate, such variational solutionsmay be obta<strong>in</strong>ed [6]. The work towards obta<strong>in</strong><strong>in</strong>gsolutions that give the fission half-lives of heavynuclei is <strong>in</strong> progress.127


[1] J. Skalski, Phys. Rev. C 74, 051601 (<strong>2006</strong>)[2] J. Skalski, Int. Journ. of Modern Phys. E 13, 315 (2004)[3] J. Skalski, submitted[4] R. Smolańczuk, J. Skalski and A. Sobiczewski, Phys. Rev. C 52, 1871 (1995)[5] J. Skalski, <strong>in</strong> Proc. Int. Workshop on „New Developments <strong>in</strong> Nuclear Self-Consistent Mean-FieldTheories”, Yukawa Institute for Theoretical Physics report series (2005),http://wwwnucl.ph.tsukuba.ac.jp/MF05/proceed<strong>in</strong>gs.html[6] J. Skalski, Phys. Rev. A 65, 033626 (2002)128


FISSION AND FUSION OF NUCLEI WITHINTHE SKYRME-HARTREE-FOCK THEORYA. Baran 1 , J. Dobaczewski 2 , W. Nazarewicz 2,3,4 , A. Staszczak 11 Institute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>2 Institute of Theoretical Physics, Warsaw University, Warszawa3 Department of Physics, University of Tennessee, Knoxville, USA4 Oak Ridge National Laboratory, Oak Ridge, USAAs has been illustrated many times <strong>in</strong> allfields of science, with an improved understand<strong>in</strong>gof microworld come applications that benefitsociety. Fusion and fission are excellent examples.Our description of these fundamental <strong>nuclear</strong>processes is still very schematic, yet, <strong>nuclear</strong>fission powers reactors that produce energy forthe nation, and fusion, which is responsible forenergy production <strong>in</strong> stars, has the promise toprovide a clean alternative source of energy. Ourgroup carries out a programmatic study of thefission process <strong>in</strong> nuclei, based on self-consistentdensity functional theory (DFT). We attack theproblem of spontaneous fission us<strong>in</strong>g moderntheoretical methods and state-of-the-artcomputational tools.Fission is a fundamental many-bodyphenomenon that possess the ultimate challengefor theory. Microscopically, this phenomenon canbe viewed as a many-body tunnel<strong>in</strong>g. Studies offission barriers are important for, e.g., thedeterm<strong>in</strong>ation of the stability of the heaviestnuclei and for understand<strong>in</strong>g of nucleosynthesis<strong>in</strong> stars. A number of theoretical calculations offission barriers of the heavy nuclei have beencarried out. These <strong>in</strong>clude calculations based onthe microscopic-macroscopic method and the selfconsistentapproach with the Gogny and Skyrmeforces, and relativistic mean-field model.Our calculations have been performedwith<strong>in</strong> the self-consistent constra<strong>in</strong>ed Skyrme-Hartree-Fock+BCS (SHF+BCS) framework. Wehave used the code HFODD [1, 2] that solves selfconsistentHF equations by us<strong>in</strong>g the Cartesianharmonic oscillator f<strong>in</strong>ite basis. This code makes itpossible to break all self-consistent symmetries ofthe <strong>nuclear</strong> mean field at the same time, <strong>in</strong>clud<strong>in</strong>gthe axial and reflection symmetry.In Refs. [3-5] the Skyrme energy densityfunctional with the SLy4 parameterization hasbeen applied to study static fission barriers ofeven-even SHE with 100 ≤ Z ≤ 110 and even-evenspherical isotones with N = 184. The effects ofreflection-asymmetric and triaxial degrees offreedom on the fission barriers have beendiscussed. The sensitivity of static fission barriers<strong>in</strong> N = 184 isotones to the choice of par<strong>in</strong>g<strong>in</strong>teraction has been studied <strong>in</strong> Ref. [6]. In theparticle-particle channel of SHF+BCS model wehave applied the seniority par<strong>in</strong>g force and threevariants of δ-<strong>in</strong>teraction (DI, DDDI, or MIX). Thecollective <strong>in</strong>ertia tensor and zero-po<strong>in</strong>tquadrupole energy correction have beencalculated <strong>in</strong> Ref. [7].A phenomenon of bimodal fission hasbeen studied <strong>in</strong> Ref. [8]. Figure below displays thepredicted static fission paths of 258 Fm along amass quadrupole moment Q 20 . Beyond the regionof the first fission barrier, at Q 20 ≈ 150 b, areflection-asymmetric path correspond<strong>in</strong>g toelongated fragments (aEF) branches away fromthe symmetric valley. At Q 20 ≈ 225 b, a reflectionsymmetricpath splits <strong>in</strong>to two branches: onecorrespond<strong>in</strong>g to a division <strong>in</strong>to nearly sphericalfragments (sCF) and the second correspond<strong>in</strong>g toelongated fragments (sEF). The sCF and sEFpaths can be associated with the higher- andlower-TKE modes of the bimodal fission,respectively. Moreover, the less favorable aEFpath may yield a small asymmetric contributionto the mass distribution of events with lowerTKEs.129


[1] J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102, 166 (1997); ibid. 102, 183 (1997);ibid. 131, 164 (2000).[2] J. Dobaczewski, P. Olbratowski, Comput. Phys. Commun. 158, 158 (2004); ibid. 167, 214 (2005);J. Dobaczewski et al., to be published <strong>in</strong> Comput. Phys. Commun.;HFODD home page http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html.[3] A. Staszczak, J. Dobaczewski, W. Nazarewicz, Int. J. Mod. Phys. E14, 395 (2005).[4] A. Staszczak, J. Dobaczewski, W. Nazarewicz, Proceed. of the 3 rd International Workshop onNuclear Fission and Fission-Product Spectroscopy, Cadarache, France 11-14 May 2005, ed. H.Goutte, H. Faust, G. Fioni, D. Goutte, AIP Conference Proceed<strong>in</strong>gs 798, 93 (2005).[5] A. Staszczak, J. Dobaczewski, W. Nazarewicz, Int. J. Mod. Phys. E15, 302 (<strong>2006</strong>).[6] A. Staszczak, J. Dobaczewski, W. Nazarewicz, accepted for publication <strong>in</strong> Int. J. Mod. Phys. E16(2007); nucl-th/0611076.[7] A. Baran, A. Staszczak, J. Dobaczewski, W. Nazarewicz, accepted for publication <strong>in</strong> Int. J. Mod.Phys. E16 (2007); nucl-th/0610092.[8] A. Staszczak, J. Dobaczewski, W. Nazarewicz, accepted for publication <strong>in</strong> Acta Phys. Polonica B,(2007);nucl-th/0612017.130


ENHANCED ELECTRON SCREENING IN DEUTERON FUSIONREACTIONSK. Czerski, N. TargoszInstitute of Physics, University of Szczec<strong>in</strong>, Szczec<strong>in</strong>Experimental facility: accelerators at the Technical University of Berl<strong>in</strong>, Humboldt University of Berl<strong>in</strong>, HahnMeitner Institute Berl<strong>in</strong>, University of Porto Alegre, BrasilNuclear reactions <strong>in</strong> dense astrophysicalplasmas preced<strong>in</strong>g at low energies, far below theCoulomb barrier are very sensitive to theelectronic properties of the medium. The electronssurround<strong>in</strong>g the react<strong>in</strong>g nuclei shield theCoulomb barrier lead<strong>in</strong>g to an <strong>in</strong>crease of thetunnel<strong>in</strong>g probability and a characteristicexponential-like enhancement of reaction crosssections for lower<strong>in</strong>g energies. The electronscreen<strong>in</strong>g effect is especially important forstrongly coupled plasmas where the k<strong>in</strong>eticenergy of constituents is smaller than the meanCoulomb repulsion energy. In such a case <strong>nuclear</strong>reaction rates can be <strong>in</strong>creased by many orders ofmagnitude, which is probably realized <strong>in</strong> Whiteand Brown Dwarfs or Giant Planets.In terrestrial laboratories, the effect of theenhanced electron screen<strong>in</strong>g was observed for thefirst time [1] <strong>in</strong> the 2 H(d,p) 3 H and 2 H(d,n) 3 Hereactions tak<strong>in</strong>g place <strong>in</strong> deuterized metallictargets that are good models for strongly coupledplasmas. The experimentally determ<strong>in</strong>edreduction of the Coulomb barrier by means of thescreen<strong>in</strong>g energy U e (see Fig.1) was found to bedependent of the target material and reachesvalues of about 300 eV for heavier metals (Fig.2),by a factor of ten larger than for gas targets and<strong>in</strong>sulat<strong>in</strong>g materials. From the theoretical po<strong>in</strong>t ofview, a charge po<strong>in</strong>t impurity embedded <strong>in</strong> ametallic environment leads to a polarization ofsurround<strong>in</strong>g degenerate valence and boundelectrons caus<strong>in</strong>g a cut off of screened Coulombfield at a characteristic distance of the <strong>in</strong>verse ofthe Fermi wave number. The theoreticalcalculations [2-4] based on the self-consistentdielectric function theory can qualitatively expla<strong>in</strong>the target material dependence of the screen<strong>in</strong>genergies, however, the absolute theoretical valuesare underestimated by a factor of two. The reasonfor this discrepancy is still unknown. Carefulexperimental and theoretical studies of the effect[5-7] could exclude any other significantcontributions result<strong>in</strong>g from the solid-statephenomenology. The first measurement of thescreen<strong>in</strong>g effect performed under ultra-highvacuum conditions [8] po<strong>in</strong>ted even to muchlarger experimental screen<strong>in</strong>g energies.Recently, some new experiments havebeen carried out to <strong>in</strong>vestigate the <strong>in</strong>fluence ofelectronic dynamics on channel<strong>in</strong>g conditions [9]and stopp<strong>in</strong>g power values [10] <strong>in</strong> a hot denseplasma. Hereby, ion tracks produced <strong>in</strong> metals byswift heavy ions have been applied.S<strong>in</strong>ce the Coulomb <strong>in</strong>teraction also playsan important role <strong>in</strong> beta and alpha radioactivedecays, the enhanced electron screen<strong>in</strong>g observedfor the deuteron fusion reactions might modifycorrespond<strong>in</strong>g transition probabilities <strong>in</strong> differentmetallic environments. Unfortunately, theoreticalcalculations and first experiments suggest that theeffects are rather small [11-13].Fig.1. Experimental yield for the 2 H(d,p) 3 H reaction <strong>in</strong> the Taenvironment normalized to the cross section for bare nuclei. Theexponential-like <strong>in</strong>crease for lower<strong>in</strong>g energies is due to electronscreen<strong>in</strong>g. Theoretical curves correspond to different screen<strong>in</strong>genergies and a channel<strong>in</strong>g contribution.Screen<strong>in</strong>g Energy (eV)350300250200150100LiAlAlZr PdPdZrexptheo50Li00 20 40 60 80 100Atomic Number ZFig.2. Experimental screen<strong>in</strong>g energies and theoretical valuesobta<strong>in</strong>ed with<strong>in</strong> the improved dielectric function theory.TaTa131


[1] K. Czerski, A. Huke, A. Biller, P. Heide, M. Hoeft, G. Ruprecht, Europhys Letters 54 (2001) 449[2] K. Czerski, A. Huke, P. Heide, Nuclear Physics. A 719 (2003) 52[3] K. Czerski, A. Huke, P. Heide, G. Ruprecht, Europhys. Lett. 68 (2004) 363[4] K. Czerski, A. Huke, P. Heide, G. Ruprecht, Eur. Phys. J. A 27 (<strong>2006</strong>) 83[5] K. Czerski, A. Huke, P. Heide and G. Schiwietz, Instr. Meth. B 193 (2002) 183[6] A. Huke, K. Czerski, P. He<strong>in</strong>e, Nucl. Phys. A 719 (2003) 279c[7] A. Huke, , K. Czerski, P. He<strong>in</strong>e, Nucl. Instr. Meth. B 256 (2007) 599[8] K Czerski, A Huke, L Mart<strong>in</strong>, N Targosz, D Blauth, A Górska, P Heide and H W<strong>in</strong>ter,J. Phys. G 35 (2008) 014012[9] R.C. Fadanelli., P.L. Grande, M. Behar, J.F. Dias, K. Czerski, G. Schiwietz, Phys. Rev. B 73 (<strong>2006</strong>)245336[10] G. Schiwietz, M. Roth, K. Czerski, F. Staufenbiel, P. L. Grande, Phys. Rev. Lett. 99 (2007) 197602[11] K. Czerski, P. Heide, A. Huke, L. Mart<strong>in</strong>, G. Ruprecht, PoS (NIC-IX <strong>2006</strong>) 044[12] G. Ruprecht, L. Buchman, D. Hutcheon, D. Ottewell, C. Ruiz, P. Walden, C. Vockenhuber,K. Czerski, PoS (NIC-IX <strong>2006</strong>) 171[13] G Ruprecht, C Vockenhuber, C Ruiz, L Buchmann, J Pearson, D Ottewell, K Czerski, A HukeJ. Phys. G 35 (2008) 014017132


EXPERIMENTAL APPROACHES TO HEAVY ION REACTIONS ATINTERMEDIATE ENERGIESJ.Cibor 1 , S.Kowalski 2 , Z.Majka 1 , P.Staszel 1 , W.Zipper 21 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 Institute of Physics, University of Silesia, KatowiceExperimental facility: Cyclotron Institute Texas A&M University, USAOne of the ma<strong>in</strong> purpose of the studyheavy ion reactions is to explore the properties of<strong>nuclear</strong> matter at various densities andtemperatures. Dur<strong>in</strong>g <strong>nuclear</strong> reactions at<strong>in</strong>termediate energies it is expected that thecomposite system of projectile and target nuclei iscompressed and excited <strong>in</strong> the early stage of thereactions, and than the hot-dense <strong>nuclear</strong> systemexpand and breaks up by multifragmetat<strong>in</strong>sprocess. Additionally, the light particle emissionsoccurs dur<strong>in</strong>g such violent collisions and carriesessential <strong>in</strong>formation on the early dynamics andon the degree of equilibrium at each stage of thereactions.The various reactions systems wereexperimentally studied by us<strong>in</strong>g the K-500superconduct<strong>in</strong>g cyclotron facility at Texas A&MUniversity and NIMROD (Neutron IonMultidetector for Reactions Oriented Dynamics)detections system [1]. NIMROD is 4π detectorwhich consists of a charge particle array <strong>in</strong>side a4π neutron calorimeter. The charge particledetector array of NIMROD <strong>in</strong>cludes 166<strong>in</strong>dividual CsI detectors arranged <strong>in</strong> 12 r<strong>in</strong>gs, eachforward r<strong>in</strong>g <strong>in</strong>cluded two “super-telescopes”composed of two Si detectors and seven Si-CsItelescopes to identity <strong>in</strong>termediate mass fragments(IMF).A detailed analysis of the central collisionevents revealed that multifragmentation with coldfragment emission is a common feature predictedfor all reactions studied reactions. A possiblemultifragmentation scenario is presented; after thepreequilibrium emission ceases <strong>in</strong> the compositesystem, cold light fragments are formed <strong>in</strong> a hottergas of nucleons and stay cold until the compositesystem underdoes multifragmentation [1].The k<strong>in</strong>etic-energy variation of emitted lightclusters has been employed as a clock to explorethe time evolution of the temperature forthermaliz<strong>in</strong>g composite systems produced <strong>in</strong> themeasured reactions systems. For each system<strong>in</strong>vestigated, the double-isotope ratio temperaturecurve exhibits a high maximum apparenttemperature, which value <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>gprojectile energy and decrease with <strong>in</strong>creas<strong>in</strong>gtarget mass [2-4].Experimental analyses of moderatetemperature <strong>nuclear</strong> gases reveal a large degree ofalpha particle cluster<strong>in</strong>g at low densities. Forthese gases, temperature and density dependentsymmetry energy coefficients have been derivedfrom isoscal<strong>in</strong>g analyses [5].Fig. 1. NIMROD - Three dimensional schematic plot.133


[1] R. Wada, T. Keutgen, K. Hagel, Y. G. Ma, J. Wang, M. Murray, L. Q<strong>in</strong>, P. Smith, J. B. Natowitz,R. Alfarro, J. Cibor, M. C<strong>in</strong>ausero, Y. El Masri, D. Fabris, E. Fioretto, A. Keksis, S. Kowalski, M.Lunardon, A. Makeev, N. Marie, E. Mart<strong>in</strong>, Z. Majka, A. Mart<strong>in</strong>ez-Davalos, A. Menchaca-Rocha,G. Nebbia, G. Prete, V. Rizzi, A. Ruangma, D. V. Shetty, G. Souliotis, P. Staszel, M. Veselsky, G.Viesti, E. M. W<strong>in</strong>chester, S. J. Yennello, W. Zipper, and A. Ono, Phys. Rev. C 69, 044610 (2004)[2] J. Wang, T. Keutgen, R. Wada, K. Hagel, Y. G. Ma, M. Murray, L. Q<strong>in</strong>, P. Smith, J. B. Natowitz, R.Alfaro, J. Cibor, A. Botv<strong>in</strong>a, M. C<strong>in</strong>ausero, Y. El Masri, D. Fabris, A. Keksis, S. Kowalski, M.Lunardon, A. Makeev, N. Marie, E. Mart<strong>in</strong>, Z. Majka, A. Mart<strong>in</strong>ez-Davalos, A. Menchaca-Rocha,G. Nebbia, S. Moretto, G. Prete, V. Rizzi, A. Ruangma, D. V. Shetty, G. Souliotis, P. Staszel, M.Veselsky, G. Viesti, E. M. W<strong>in</strong>chester, S. J. Yennello and W. Zipper, Phys. Rev. C 71, 054608 (2005)[3] J. Wang, R. Wada, T. Keutgen, K. Hagel, Y. G. Ma, M. Murray, L. Q<strong>in</strong>, A. Botv<strong>in</strong>a, S. Kowalski, T.Materna, J. B. Natowitz, R. Alfarro, J. Cibor, M. C<strong>in</strong>ausero, Y. El Masri, D. Fabris, E. Fioretto,A. Keksis, M. Lunardon, A. Makeev, N. Marie, E. Mart<strong>in</strong>, Z. Majka, A. Mart<strong>in</strong>ez-Davalos, A.Menchaca-Rocha, G. Nebbia, G. Prete, V. Rizzi, A. Ruangma, D. V. Shetty, G. Souliotis, P. Staszel,M. Veselsky, G. Viesti, E. M. W<strong>in</strong>chester, S. J. Yennello, and W. Zipper, Phys. Rev. C 72, 024603(2005)[4] J. Wang, T. Keutgen, R. Wada, K. Hagel, S. Kowalski, T. Materna, L. Q<strong>in</strong>, Z. Chen, J. B. Natowitz,Y. G. Ma, M. Murray, A. Keksis, E. Mart<strong>in</strong>, A. Ruangma, D. V. Shetty, G. Souliotis, M. Veselsky, E.M. W<strong>in</strong>chester, S. J. Yennello, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi,G. Viesti, M. C<strong>in</strong>ausero, G. Prete, J. Cibor, W. Zipper, Z. Majka, P. Staszel, Y. El Masri, R. Alfarro,A. Mart<strong>in</strong>ez-Davalos, A. Menchaca-Rocha, A. Ono, Phys. Rev. C 75, 014601 (2007)[5] S. Kowalski, J. B. Natowitz, S. Shlomo, R. Wada, K. Hagel, J. Wang, T. Materna, Z. Chen, Y. G. Ma,L. Q<strong>in</strong>, A. S. Botv<strong>in</strong>a, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti,M. C<strong>in</strong>ausero, G. Prete, T. Keutgen, Y. El Masri, Z. Majka, A. Ono, Phys. Rev. C 75, 014604 (2007)134


HEAVY ION EXPERIMENTS AT LNS CATANIA WITH 4πCHIMERA MULTIDETECTORJ.Blicharska 1 , J.Brzychczyk 2 , J.Cibor 3 , W.Gawlikowicz 2,5 , A.Grzeszczuk 1 ,S.Kowalski 1 , Z.Majka 2 , T.Paduszyński 1 , E.Piasecki 4,5 , R.Planeta 2 , K.Schmidt 1 ,K.Siwek–Wilczyńska 4 , I.Skwira 4 , A.Sochocka 2 , Ł.Świderski 4 , J.Wilczyński 6 ,W.Zipper 11 Institute of Physics, University of Silesia, Katowice2 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków3 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków4 Institute of Experimental Physics, Warsaw University, Warszawa5 Heavy Ion Laboratory, Warsaw University, Warszawa6 A. Sołtan Institute for Nuclear Studies, ŚwierkExperimental facility: CHIMERA detector at INFN-LNS Catania, ItalyAnalysis of isotopic characteristics ofproducts for the <strong>in</strong>clusive data measured <strong>in</strong> heavyion collisions at <strong>in</strong>termediate energies is one of themost <strong>in</strong>terest<strong>in</strong>g jobs <strong>in</strong> the study of the nucleiunder extreme conditions of density andtemperature.The aim is to explore the behavior of thebasic properties of the <strong>nuclear</strong> matter equation ofstate (EOS) New <strong>in</strong>ternational collaborationCHIMERA-REVERSE-ISOSPIN was established atINFN-LSN Catania <strong>in</strong> 1997. The CHIMERA(Charged Heavy Ion Mass and Energy Resolv<strong>in</strong>gArray) 4π detector was build for heavy ion studies<strong>in</strong> the <strong>in</strong>termediate regime.The CHIMERA device is made of 1192<strong>in</strong>dividual two-step telescopes arranged <strong>in</strong>cyl<strong>in</strong>drical geometry around the beam axis <strong>in</strong> 35r<strong>in</strong>gs. The detector is divide <strong>in</strong> the two parts:“forward part” cover<strong>in</strong>g the angular range (1o-30o) and consist 688 telescopes arranged <strong>in</strong> 18r<strong>in</strong>gs, “sphere” with 504 telescopes cover<strong>in</strong>g theangular range 30o-170o. The Fig. 1 shows anschematic view of the detector. Each s<strong>in</strong>gletelescope is composed of silicon (300um) planerdetector followed by a CsI sc<strong>in</strong>tillator withthickens rang<strong>in</strong>g from 3cm to 12cm. depend<strong>in</strong>g onthe detection angle. Three different identificationstechniques are simultaneously used: πE-E forcharge identifications of heavy ion, the πE-TOF(Time of Flight) for velocity measurements andPSD (Pulse Shape Discrim<strong>in</strong>ation) method foridentifications of light charge particles stopped <strong>in</strong>the CsI.At LNS Catania two campaigns wereperformed with the CHIMERA detector:REVERSE year 2000 and REVERSE /ISOSPIN year2003. The scientific program of the campaignsfollowed three different studied: isosp<strong>in</strong> degree offreedom, cluster production and dynamical fission[1-14].Fig. 1. The CHIMERA detector.135


Reverse/Isosp<strong>in</strong> collaboration. With<strong>in</strong> the reported period the obta<strong>in</strong>ed results were communicated <strong>in</strong> 21publications (6 examples are listed below)[1] F. Porto, S. Aiello, A. Anzalone, C. Cali, G. Cardella, Sl. Cavallaro, E. De Filippo, S. Fem<strong>in</strong>o, E. Geraci,F. Giustolisi, A. Grzeszczuk, P. Guazzoni, C. M.Iacono--Manno, S. Kowalski, G. Lanzano, G. Lanzalone,S. LoNigro, D. Mahboub, D. Nicotra, T. Paduszynski, A. Pagano, M. Papa, S. Pirrone, G. Politi, C. Rapicavoli,F. Rizzo, S. Sambataro, M.L. Sperduto, C.M. Sutera, S. Urso, L. Zetta, W. Zipper Acta Physica Polonica, vol. 31(2000) 1489[2] Le Ne<strong>in</strong>dre, N.; Alderighi, M.; Anzalone, A.; Barnà, R.; Bartolucci, M.; Berceanu, I.; Borderie, B.; Bougault, R.;Bruno, M.; Cardella, G.; Cavallaro, S.; D'Agost<strong>in</strong>o, M.; Dayras, R.; De Filippo, E.; De Pasquale, D.; Geraci, E.;Giustolisi, F.; Grzeszczuk, A.; Guazzoni, P.; Gu<strong>in</strong>et, D.; Iacono-Manno, M.; Italiano, A.; Kowalski, S.; Lanchais,A.; Lanzanó, G.; Lanzalone, G.; Li, S.; Lo Nigro, S.; Maiol<strong>in</strong>o, C.; Manfredi, G.; Moisa, D.; Pagano, A.; Papa, M.;Paduszynski, T.; Petrovici, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Rivet, M. F.; Rosato, E.;Russo, S.; Sambataro, S.; Sechi, G.; Simion, V.; Sperduto, M. L.; Steckmeyer, J. C.; Sutera, C.; Trifirò, A.; Tassan-Got, L.; Trimarchi, M.; Vann<strong>in</strong>i, G.; Vigilante, M.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W. Nucl.Instr. and Meth. A490 (2002) 251-262[3] A. Pagano, M. Alderighi, A. Anzalone, L. Auditore, V. Baran, R. Barnà, M. Bartolucci, I. Berceanu,J. Blicharska, A. Bonasera, B. Borderie, R. Bougault, J. Brzychczyk, M. Bruno, G. Cardella, S. Cavallaro,M.B. Chatterje. A. Chbihi, J. Cibor, M. Colonna, M. D Agost<strong>in</strong>o, R. Dayra, E. De Filippo, D. De Pasquale,M. Di Toro, W. Gawlikowicz, E. Geraci, F. Giustolisi, A. Grzeszczuk, P. Guazzoni, D. Gu<strong>in</strong>et, M. Iacono-Manno, A. Italiano, S. Kowalski, E. La Guidara, G. Lanzalone, G. Lanzano, N. LeNe<strong>in</strong>dre, S. Li , S. Lo Nigro,C. Maiol<strong>in</strong>o, Z. Majka, G. Manfredi, T. Paduszynski, M. Papa, M. Petrovici, E. Piasecki, S. Pirrone, G. Politi,A. Pop, F. Porto, M.F. Rivet, E. Rosato, S. Russo, P. Russotto, G. Sechi, V. Simion, M. L. Sperduto,J. C. Steckmeyer, A. Trifirò, M. Trimarchi, G. Vann<strong>in</strong>i, M. Vigilante, J.P. Wieleczko, J. Wilczynski, H. Wu,Z. Xiao, L. Zetta, W. Zipper Nucl..Phys. A 732 (2004) 173-201[4] E. De Filippo, A. Pagano, J. Wilczyñski, F. Amor<strong>in</strong>i, A. Anzalone, L. Auditore, V. Baran, I. Berceanu,J. Blicharska, J. Brzychczyk, A. Bonasera, B. Borderie, R. Bougault, M. Bruno, G. Cardella, S. Cavallaro,M. B. Chatterjee, A. Chbihi, J. Cibor, M. Colonna, M. D’Agost<strong>in</strong>o, R. Dayras, M. Di Toro, J. Frankland,E. Galichet, W. Gawlikowicz, E. Geraci, F. Giustolisi, A. Grzeszczuk, P. Guazzoni, D. Gu<strong>in</strong>et, M. Iacono-Manno, S. Kowalski, E. La Guidara, G. Lanzan`o, G. Lanzalone, N. Le Ne<strong>in</strong>dre, S. Li, C. Maiol<strong>in</strong>o, Z. Majka,M. Papa, M. Petrovici, E. Piasecki, S. Pirrone, R. Płaneta, G. Politi, A. Pop, F. Porto, M. F. Rivet, E. Rosato,F. Rizzo, S. Russo,P. Russotto, M. Sassi, K. Schmidt, K. Siwek-Wilczyñska, I. Skwira, M. L. Sperduto,Ł. ´Swiderski, A. Trifir`o, M. Trimarchi, G. Vann<strong>in</strong>i, M. Vigilante, J. P. Wieleczko, H. Wu, Z. Xiao, L. Zetta, andW. Zipper Phys. Rev. C 71 044602 (2005)[5] J. Wilczyński, E. De Filippo, A. Pagano, F. Amor<strong>in</strong>i, A. Anzalone, L. Auditore, V. Baran, I. Berceanu,J. Blicharska, J. Brzychczyk, A. Bonasera, B. Borderie, R. Bogault, M. Bruno, G. Gardella, S. Cavallaro,M.B. Chatterjee, A. Chbihi, J. Cibor, M. Colonna, M. D,Agost<strong>in</strong>o, R. Dayras, M. Di Toro, J. Frankland,E. Galichet, W. Gawlikowicz, E. Geraci, F. Giustolisi, A. Grzeszczuk, P. Guazzoni, D. Gu<strong>in</strong>et, M. Iacono -Manno, S. Kowalski, E. La Guidara, G. Lanzano, N. Le Ne<strong>in</strong>dre, S. Li, C. Maiol<strong>in</strong>o, Z. Majka, M. Papa,M. Petrovici, E. Piasecki, S. Pirrone, R. Planeta, G. Politi, A. Pop, F. Porto, M.F.Rivet, E. Rosato, F.Rizzo,S. Russo, P. Russotto, M. Sassi, K. Schmidt, K. Siwek - Wilczyńska, I. Skwira, M.L. Sperduto, Ł. Świderski,A. Trifiro, M. Trimarchi, G. Vann<strong>in</strong>i, M. Vigilante, J.P. Wileczko, H. Wu, Z. Xiao, L. Zetta and W. Zipper,Int. J. of Mod. Phys. E 14 (2005) 353[6] R. Planeta, F. Amor<strong>in</strong>i, A. Anzalone, L. Auditore, V. Baran, I. Berceanu, J. Blicharska, J. Brzychczyk,B. Borderie, R. Bougault, M. Bruno, G. Cardella, S. Cavallaro, M.B. Chatterjee, A. Chbihi, M. Colonna,M. D,Agost<strong>in</strong>o, E. DeFilippo, R. Dayras, M. Di Toro, J. Frankland, E. Galichet, W. Gawlikowicz, E. Geraci,F. Giustolisi, A. Grzeszczuk, P. Guazzoni, D. Gu<strong>in</strong>et, M. Iacono-Manno, S. Kowalski, E. La Guidara,G. Lanzano, G. Lanzalone, J. Lukasik, C. Maiol<strong>in</strong>o, Z. Majka, N. Le Ne<strong>in</strong>dre, N.G. Nicolis, A. Pagano, M. Papa,M. Petrovici, E. Piasecki, S. Pirrone, G. Politi, A. Pop, F. Porto, M.F. Rivet, E. Rosato, F. Rizzo, S. Russo,P. Russotto, M. Sassi, K. Schmidt, K. Siwek-Wilczynska, I. Skwira-Chalot, A. Sochocka, M.L. Sperduto,L. Swiderski, A. Trifiro, M. Trimarchi, G. Vann<strong>in</strong>i, G. Verde, M. Vigilante, J.P. Wieleczko, J. Wilczynski,L. Zetta, W. Zipper, Acta Phys. Pol. B37 (<strong>2006</strong>) 199136


HEAVY ION REACTION MECHANISMS AT FERMI ENERGY DOMAINM. Adamczyk 1 , T. Barczyk 1 , J. Brzychczyk 1 , T. Ciszek 1 , W. Gawlikowicz 1 , K. Grotowski 1 ,P. Hachaj 1 , J. Łukasik 2 , S. Micek 1 , P. Pawłowski 2 , R. Płaneta 1 , Z. Sos<strong>in</strong> 1 , A. Wieloch 11 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, KrakówExperimental facility: AMPHORA 4π detector GRENOBLE; INDRA 4π detector GANILThe Grenoble–Kraków–Lyon Cooperationwas devoted to some problems of the mechanismof the <strong>in</strong>termediate energy heavy ion reactions<strong>in</strong>clud<strong>in</strong>g their statistical (thermodynamic)properties. The 40 Ca + 40 Ca, 197 Au reactions werestudied us<strong>in</strong>g the Grenoble AMPHORA 4πdetector additionally equipped <strong>in</strong> two r<strong>in</strong>gs of 30gas ionization chambers constructed <strong>in</strong> Kraków[1]. Measurements were done at E lab = 35MeV/nucleon.The idea of our research was to studypossible departures from the b<strong>in</strong>ary reactionscenario demonstrated <strong>in</strong> multiplicities of differentcharge (mass) particles, their energy and angulardistributions [14].Multiplicity as well as event shape filterswere used to dist<strong>in</strong>guish nearly central fromperipheral collisions. For a significant portion ofevents, <strong>in</strong> co<strong>in</strong>cidence with projectile-like and withtarget-like fragments, the <strong>in</strong>termediate massfragments, IMF’s, were observed with velocitiesclose to zero <strong>in</strong> the CM reference frame. Such<strong>in</strong>termediate velocity source could be seen <strong>in</strong> thesimple BNV calculations, but not <strong>in</strong> the modifiedby us b<strong>in</strong>ary reaction Cole model. [2-7]For both 40 Ca + 40 Ca, 197 Au reactions the shapeof the velocity distributions of charged particlesprojected on the beam direction could be expla<strong>in</strong>edif emissions from the hot projectile-like and targetlikefragments were supplemented by an emissionfrom an <strong>in</strong>termediate velocity source, IVS, locatedbetween them. Such conclusion was also suggestedby a Monte Carlo code describ<strong>in</strong>g a heavy-ioncollision as a two step process [10]. Some of thenucleons which are identified as participants <strong>in</strong> thefirst step are transferred <strong>in</strong> the second step to thesef<strong>in</strong>al states, which correspond on average to themaximum value of entropy. The model allows forcompetition between mean-field effects andnucleon-nucleon <strong>in</strong>teractions <strong>in</strong> the overlap zone ofthe <strong>in</strong>teract<strong>in</strong>g nuclei.The creation of the hot Ca-like fragmentswas <strong>in</strong>vestigated <strong>in</strong> both 40 Ca + 40 Ca, 197 Aureactions. Here the primary projectile-likefragment was reconstructed and its properties(mass, charge, excitation energy, and angulardistribution) determ<strong>in</strong>ed. Both primary andsecondary distributions were compared with thepredictions of the mentioned above Monte Carlocode. The data and analysis suggest a thermalizedsource picture of the decay of the projectile-likefragment. [8-10,12]It was found that <strong>in</strong> the <strong>in</strong>vestigatedreactions the yield of particles emitted from the IVSdecreases with the <strong>in</strong>creas<strong>in</strong>g value of the particleZ. Most of these are light particles. In the moreperipheral collisions deuterons, tritons, and tolesser extend helium 3 particles are preferentiallyemitted from the IVS. [9,11]As cont<strong>in</strong>uation of the above program the58 Ni + 197 Au and 107 Ag + 58 Ni, 52 MeV/nucleon,reactions are <strong>in</strong>vestigated <strong>in</strong> cooperation with LPCand GANIL, Caen. Analysis of data isconcentrated on the reconstruction of theprojectile-like fragment and <strong>in</strong> particular on thesp<strong>in</strong> production process. For this purpose<strong>in</strong>fluence of the fragment-fragment <strong>in</strong>teractionpotential <strong>in</strong> the Monte Carlo code has been<strong>in</strong>vestigated <strong>in</strong> a separate paper [13]. Thismodified version of the code has been successfullyused <strong>in</strong> the PhD thesis of Mrs A.Buta and <strong>in</strong> papersprepared for publication.Fig. Velocity distributions (LAB) for the 40 Ca+ 197 Au systemprojected on a direction parallel to the beam; black dots:experimental data. Model predictions for IVS, PLF, and TLFsources: red, blue, and green l<strong>in</strong>es, respectively. Black l<strong>in</strong>e: totalemission.137


[1] T. Barczyk, J.Brzychczyk, P. Burzyński, W. Gawilikowicz, K.Grotowski, S.Micek, P. Pawłowski,R. Płaneta, A.J.Cole, A.Chabane, P.Desesquelles, A.Giorni, D.Heuer, A.Lleres, J.B.Viano,D.Benchekroun, B.Cheynis, A.Demeyer, E.Gerlic, D.Gu<strong>in</strong>et, P.Lautesse, L.Lebreton, E.Bisquer, M.Stern,L.Vagneron. M.Charvet, Nucl. Instr. Meth. A364, 311 (1995).[2] Z. Sos<strong>in</strong>, K. Grotowski, A. Wieloch and H.W. Wilschut, Acta Phys. Pol. B 25 (1994).[3] P. Pawłowski, J. Brzychczyk, P. Burzyński, D. Benchekroun, A. Chabane, M. Charvet, B. Cheynis,A.J. Cole, A. Demeyer, P. Desesquelles, W. Gawlikowicz, E. Gerlic, A. Giorni, K. Grotowski, D. Gu<strong>in</strong>et,D. Heuer, P. Lautesse, L. Lebreton, A. Lleres, S. Micek, R. Płaneta, Z. Sos<strong>in</strong>, M. Stern, L. Vagneron,J.B. Viano, A. Wieloch, Phys.Rev. C54, R10 (<strong>1996</strong>).[4] P.Pawłowski, D.Benchekroun, J.Brzychczyk, A.Chabane, M.Charvet, B.Cheynis, A.J.Cole, A.Demeyer,P.Desesquelles, W.Gawlikowicz, E.Gerlic, A.Giorni, K.Grotowski, D.Gu<strong>in</strong>et, D.Heuer, P.Lautesse,L.Lebreton, A.Lleres, S.Micek, R.Płaneta, Z.Sos<strong>in</strong>, M.Stern, L.Vagneron, J.B.Viano, A.Wieloch,Z.Phys. A357, 387 (1997).[5] P.Pawłowski, J.Brzychczyk, A.J.Cole, P.Desesquelles, W.Gawlikowicz, K.Grotowski, P.Hachaj,S.Micek, R.Płaneta, Z.Sos<strong>in</strong>, A.Wieloch, D.Benchekroun, E.Bisquer, A.Chabane, M.Charvet, B.Cheynis,A.Demeyer, E.Gerlic, A.Giorni, D.Gu<strong>in</strong>et, D.Heuer, P.Lautesse, L.Lebreton, A.Lleres, M.Stern,L.Vagneron, J.B.Viano, Phys.Rev. C57, 1771 (1998).[6] P.S. Hachaj, J.Brzychczyk, A.J.Cole, P.Desesquelles, W.Gawlikowicz, K.Grotowski, S.Micek,P.Pawłowski, Z.Sos<strong>in</strong>, A.Wieloch, D.Benchekroun, E.Bisquer, A.Chabane, M.Charvet, B.Cheynis,A.Demeyer, E.Gerlic, A.Giorni, D.Gu<strong>in</strong>et, D.Heuer, P.Lautesse, L.Lebreton, A.Lleres, M.Stern,L.Vagneron, J.B.Viano, Acta Phys. Pol. B29, 369 (1998).[7] R.Płaneta, W.Gawlikowicz, K.Grotowski, J.Brzychczyk, T.Ciszek, A.J.Cole,P.Desesquelles, S.Micek,P.Pawłowski, Z.Sos<strong>in</strong>, D.Benchekroun, A.Wieloch, E.Bisquer, A.Chabane, E.Gerlic, A.Giorni, D.Gu<strong>in</strong>et,D.Heuer, L. Lebreton, A.Lleres, M.Stern, L.Vagneron, J.B.Viano, Acta Phys. Pol. B31, 1479 (2000).[8] R.Płaneta, W. Gawlikowicz, A. Wieloch, J. Brzychczyk, T.Ciszek, A.J. Cole, P. Desesquelles,K. Grotowski, P. Hachaj, S. Micek, P. Pawłowski, Z. Sos<strong>in</strong>, D. Benchekroun, E. Bisquer, A. Chabane,M.Charvet, B. Cheynis, A. Demeyer, E. Gerlic, A. Giorni, D. Heuer, P. Lautesse, L. Lebreton,A. Lleres, M. Stern, L. Vagneron, and J.B. Viano, European Physical Jounal A11, 297 (2001).[9] Z. Sos<strong>in</strong>, R. Płaneta, T. Ciszek, J. Brzychczyk, W. Gawlikowicz, K. Grotowski, S. Micek,P. Pawłowski, A. Wieloch, A.J. Cole, D. Benchekroun, E. Bisquer, A. Chabane, M. Charvet,B. Cheynis, A. Demeyer, P. Desesquelles, E. Gerlic, A. Giorni, D. Heuer, P.Lautesse, L. Lebreton,A. Lleres, M. Stern, L. Vagneron, and J.B. Viano European Physical Jounal A11, 305 (2001).[10] Z. Sos<strong>in</strong>, European Physical Jounal A11, 311 (2001).[11] R.Płaneta, Z. Sos<strong>in</strong>, T. Ciszek, P. Hachaj, W.Gawlikowicz, K.Grotowski, S.Micek, P.Pawłowski,A.J.Cole, P.Desesquelles, D.Benchekroun, A.Wieloch, E.Bisquer, A.Chabane, E.Gerlic, A.Giorni,D.Gu<strong>in</strong>et, D.Heuer, L. Lebreton, A.Lleres, M.Stern, L.Vagneron, J.B.Viano, Acta Phys. Pol. B32, 3079(2001).[12] W.Gawlikowicz, R.Płaneta, K. Grotowski, J. Brzychczyk, P. Hachaj, S. Micek, P. Pawłowski,Z. Sos<strong>in</strong>, A. Wieloch, P. Desesquelles, A.J. Chabane, M.Charvet, A. Giorni, D. Heuer, A. Lleres,J.B. Viano, D. Benchekroun, E. Bisquer, B.Cheynis, A. Demeyer, E. Gerlic, D. Gu<strong>in</strong>et, P. Lautesse,L. Lebreton, M. Stern, L. Vagneron, Nuclear Physics A681, 295 (2001)[13] Z. Sos<strong>in</strong>, Acta Physica Polonica B37, 2859 (<strong>2006</strong>).[14] R. Płaneta, Int. J. of Mod. Phys. E15, 937 (<strong>2006</strong>).138


HARD PHOTONS FROM NUCLEUS-NUCLEUSAND PROTON-NUCLEUS COLLISIONST. Matulewicz, K. PiaseckiInstitute of Experimental Physics, Warsaw University, WarszawaExperimental facilities: GANIL Caen, AGOR KVI Gron<strong>in</strong>gen, SIS18 GSI DarmstadtThe properties of the hot and dense zone formed<strong>in</strong> (central) nucleus-nucleus collisions can be beststudied with the probes which do not suffer fromstrong f<strong>in</strong>al state <strong>in</strong>teractions. Bremsstrahlungphotons can provide relatively undistorted <strong>in</strong>sight<strong>in</strong>to the physical conditions of the hot zone, buttheir usage is restricted at low energies (below~20A MeV) by dramatically low production crosssection, and at higher energies (above 100A MeV),by photons stemm<strong>in</strong>g from electromagneticdecays of produced hadrons like π 0 and η mesons.The total spectrum of photons (Fig. 1) consists ofthe low energy part (below ~10 MeV) orig<strong>in</strong>at<strong>in</strong>gfrom statistical decays of excited fragments,photons from the deexcitation of the Giant DipoleResonance (around 15 to 20 MeV) and hardphotons (above 30 MeV). Hard photons comepredom<strong>in</strong>antly from the bremsstrahlung process<strong>in</strong> proton-neutron <strong>in</strong>teractions and they canwitness the early phase of the collision. Studies ofthe photon spectra were done for nucleus-nucleuscollisions <strong>in</strong> the energy range from 40A to 100AMeV us<strong>in</strong>g the TAPS spectrometer. TAPS consistsof approx. 400 BaF 2 sc<strong>in</strong>tillator modules, whichcan be arranged <strong>in</strong> various experiment-specificconfigurations. Excellent time resolution andpulse-shape analysis allows for unambiguousphoton identification and spectroscopy.undergoes photoabsorption on another nucleon,what releases also the pion rest mass and createsphotons of extreme energies.The measurements realized for 180A MeV Ar+Casystem showed a significant enhancement of thehard photon cross section with respect to theextrapolations based on lower energy data.The second-order quantum <strong>in</strong>terference effect,known as Hanbury-Brown and Twiss (HBT) effector <strong>in</strong>tensity <strong>in</strong>terferometry, allows to extract thesource size on the basis of the analysis of twobodycorrelation function. Pairs of bremsstrahlungphotons (E>25 MeV) have beenmeasured. While the <strong>in</strong>itial experiments of limitedstatistics <strong>in</strong>dicated the oscillatory character of thecorrelation function (suggest<strong>in</strong>g secondaryrecompression of the <strong>nuclear</strong> matter dur<strong>in</strong>g thecollision), higher statistics data show a flatcorrelation function. This shape can beunderstood only as a peculiar <strong>in</strong>terferencebetween photons from first-chance collisions andphotons from target or projectile-like fragments.Only <strong>in</strong> the case of central collisions (selected viacharged particles multiplicity) the <strong>in</strong>dications forthe standard HBT effect can be found.Detailed analysis of the shape of the photonenergy spectrum above the region <strong>in</strong>fluenced bythe Giant Dipole resonance revealed the presenceof a second, softer, component. Accord<strong>in</strong>g to thetransport model calculations, these photons areemitted at a later stage of the collision, when theexcited zone approaches the thermalequilibration. The extracted source temperatureagrees quite well with the caloric curve. Also, thethermalization time can be evaluated.At the high-end of the spectrum, even the fullyconstructive superposition of the Fermi motionwith the beam momentum does not allow toexpla<strong>in</strong> the orig<strong>in</strong> of most energetic photons.Accord<strong>in</strong>g to the transport model, photons abovethe Fermi-motion related k<strong>in</strong>ematical limit (190MeV for 60A MeV beam) are predom<strong>in</strong>antlyproduced by a two-step process: a pion produced<strong>in</strong> nucleon-nucleon <strong>in</strong>teraction subsequently.Fig. 1: Photon energy spectrum measured with TAPS for the Kr+Nicollisions at 60A MeV.139


[1] J.H.G.van Pol, H.W.Wilschut, H.Löhner, R.H.Siemssen, P.Lautridou, F.Lefévre, F.M.Marqués,T.Matulewicz, W.Mittig, R.W.Ostendorf, P.Roussel-Chomaz, Y.Schutz, S.Hlavác, R.Holzmann,A.Schubert, R.S.Simon, V.Wagner, M.Franke, W.Kühn, M.Notheisen, R.Novotny, F.Ballester, J.Díaz,A.Marín, G.Martínez, A.KuglerPhysical Review Letters 76(<strong>1996</strong>)1425[2] K.K.Gudima, T.Matulewicz, H.Delagrange, F.M.Marqués, G.Martínez, R.W.Ostendorf, M.Ploszajczak,Y.Schutz, V.D.Toneev, P.Bożek, S.Hlavác, R.Holzmann, A.Schubert, R.S.Simon, V.Wagner, H.Löhner,J.H.G.van Pol, R.H.Siemssen, H.W.Wilschut, J.Díaz, A.MarínPhysical Review Letters 76(<strong>1996</strong>)2412[3] F.M.Marqués, G.Martínez, T.Matulewicz, R.W.Ostendorf, Y.SchutzPhysical Review C 54(<strong>1996</strong>)2783[4] F.M.Marqués, G.Martínez, T.Matulewicz, R.W.Ostendorf, Y.SchutzPhysics Letters B394(1997)37[5] F.M.Marqués, G.Martínez, T.Matulewicz, R.W.Ostendorf, Y.SchutzPhysics Reports 284(1997)91[6] G.Martínez, L.Aphecetche, Y.Charbonnier, H.Delagrange, T.Matulewicz, Y.SchutzNuclear Instruments and Methods A391(1997)435[7] Y.Schutz, G.Martínez, F.M.Marqués, A.Marín, T.Matulewicz, R.W.Ostendorf, P.Bozek, H.Delagrange,J.Díaz, M.Franke, K.K.Gudima, S.Hlavác, R.Holzmann, P.Lautridou, F.Lefèvre, H.Löhner, W.Mittig,M.Ploszajczak, J.H.G.van~Pol, J.Québert, P.Roussel-Chomaz, A.Schubert, R.H.Siemssen, R.S.Simon,Z.Sujkowski, V.D.Toneev, V.Wagner, H.W.Wilschut, Gy.WolfNuclear Physics A622(1997)404[8] G.Martínez, L.Aphecetche, Y.Charbonnier, H.Delagrange, D.d'Enterria, T.Matulewicz, Y.Schutz,R.Turrisi, M.Appenheimer, V.Metag, R.Novotny, H.Ströher, A.R.Wolf, M.Wolf, J.Weiss, R.Averbeck,S.Hlavác, R.Holzmann, F.Lefèvre, R.S.Simon, R.Stratmann, F.Wissmann, M.Hoefman, M.J.van Goethem,H.Löhner, R.W.Ostendorf, R.H.Siemssen, P.Vogt, H.W.Wilschut, J.Díaz, A.Marín, A.Kugler, P.Tlusty,V.Wagner, A.DöppenschmidtPhysics Letters B 461 (1999) 28[9] L. Aphecetche, J. Bacelar, H. Delagrange, D. d'Enterria, M. Hoefman, H. Huisman, N. Kalantar-Nayestanaki, H. Löhner, G.Martínez, T. Matulewicz, J. Messchendorp, M.-J. Mora, R. Ostendorf, S.Schadmand, Y. Schutz, M. Seip, A. Taranenko, R. Turrisi, M.-J.Van Goethem, M. Volkerts, V. Wagner,H.W. WilschutPhysics Letters B519 (2001) 8[10] K. Piasecki, T. MatulewiczActa Physica Polonica B37 (<strong>2006</strong>) 175[11] R. Ortega, D. d'Enterria, G.Martínez, D. Baiborod<strong>in</strong>, H. Delagrange, J.Díaz, F. Fernandez, H. Löhner, T.Matulewicz , R.W. Ostendorf, S. Schadmand, Y. Schutz, P. Tlusty, R. Turrisi, V. Wagner, H.W. Wilschut,N. YahlaliEuropean Physical Journal A28 (<strong>2006</strong>) 161140


NEUTRAL MESON PRODUCTION AND BARYONIC RESONANCEEXCITATION IN SUBTHRESHOLD NUCLEUS-NUCLEUS COLLISIONST. Matulewicz, K. Piasecki, K. Tymińska (Korzecka)Institute of Experimental Physics, Warsaw University, WarszawaExperimental facilities: GANIL Caen, AGOR KVI Gron<strong>in</strong>gen, SIS18 GSI DarmstadtParticles produced at subthreshold energies (i.e.beam energy per nucleon below the free nucleonnucleonthreshold) witness the early phase of thenucleus-nucleus collisions, where the energydensity reaches maximum values. Subsequentdissipation of the relative motion strongly reducesthe production yield <strong>in</strong> the later stages of thecollision. Experiments have been carried out withthe TAPS spectrometer consist<strong>in</strong>g of approx. 400BaF 2 sc<strong>in</strong>tillator modules, which were arranged <strong>in</strong>various experiment-specific configurations. Goodposition determ<strong>in</strong>ation and excellent timeresolution supplemented by pulse-shape analysisallowed for unambigous photon identification.The two-photon decays of neutral mesons π 0 andη were observed <strong>in</strong> the <strong>in</strong>variant mass spectrum.The angular distribution of π 0 mesons, alreadyfrom the first studies of the process <strong>in</strong> the eighties,is known to show evidences of significant pionreabsorption process on the side of the heaviercollision partner. Systematic studies of the shapeof the angular distribution have been carried outat 2 beam energies at several target nuclei fromcarbon to gold. Reasonable description of the datawas obta<strong>in</strong>ed with<strong>in</strong> a geometrical model of thecollision, which also takes <strong>in</strong>to accountmomentum-dependent pion absorption length [R.Mehrem et al., Phys. Rev. C30(1984)301]. Weobserved, that the angular distribution ofprimordial pions does not show any significantenergy or mass dependence and can be describedas ~1+A 2 P 2 (cosθ), where θ denotes the emissionangle <strong>in</strong> the nucleon-nucleon center of mass. Fromthe global fit to the data we obta<strong>in</strong>ed the value ofA 2 =0.33±0.05.The production of particles at deep subthresholdenergies is very important for the studies ofparticular concentration <strong>in</strong> one hadronic channelof the energy available <strong>in</strong> the nucleus-nucleuscollision. The η meson production was studied atthe 40 Ar beam energy of 180A MeV, that is 14% ofthe free threshold energy of 1255 MeV. Themeasured η yield was significantly below thatexpected from the general scal<strong>in</strong>g based on theratio of beam energy per nucleon to the thresholdenergy. However, the data were nicelyreproduced with the transverse massm t =(m 2 +p t2 ) ½ scal<strong>in</strong>g used previously at muchhigher beam energies.Transport model calculations show, that the∆(1232) resonance plays an important role as an<strong>in</strong>termediate step <strong>in</strong> pion production processdur<strong>in</strong>g nucleus-nucleus collisions. Experimentalevidence of the ∆ + (1232) resonance excitation <strong>in</strong>nuclei was provided by the study of correlatedemission of protons and π 0 mesons (see Figure 1)<strong>in</strong> 180A MeV Ar+Ca collisions. The co<strong>in</strong>cidentevents show a clear excess above the mixedeventsbackground, <strong>in</strong>dicat<strong>in</strong>g the excitation ofthe low energy tail of the ∆(1232) resonance (dueto the low beam energy, only the low energy tailmight be effectively populated). Simultaneousdetection of ∆(1232) resonance and π 0 mesonsallowed to determ<strong>in</strong>e the ratio of the number of∆(1232) resonances to the number of pions.Assum<strong>in</strong>g isosp<strong>in</strong> symmetry, this ratio was foundto be equal to 0.79±0.30(stat)±0.2(syst). It <strong>in</strong>dicates,that most (if not all) produced π mesons orig<strong>in</strong>atefrom the decay of ∆(1232) resonances.Fig. 1. The excess of counts <strong>in</strong> the <strong>in</strong>variant mass spectrum of protonand neutral pion pairs above the comb<strong>in</strong>atorial background. The dataare from 180A MeV Ar+Ca collisions.141


[1] R.Holzmann, A.Schubert, S.Hlavác, R.Kulessa, W.Niebur, R.S.Simon, P.Lautridou, F.Lefèvre,F.M.Marqués, T.Matulewicz, W.Mittig, R.W.Ostendorf, P.Roussel-Chomaz, Y.Schutz, H.Löhner, J.H.G.vanPol, R.H.Siemssen, H.W.Wilschut, F.Ballester, J.Díaz, A.Marín, G.Martínez, V.Metag, R.Novotny,V.Wagner, J.Québert,Physics Letters B366(<strong>1996</strong>)63[2] T.Matulewicz, L.Aphecetche, Y.Charbonnier, H.Delagrange, F.M.Marqués, G.Martínez, Y.Schutz,Nuclear Instruments and Methods A378(<strong>1996</strong>)179[3] T.Matulewicz, Acta Physica Polonica B27(<strong>1996</strong>)3055[4] R.Holzmann, M.Appenheimer, R.Averbeck, Y.Charbonnier, H.Delagrange, J.Díaz, A.Döppenschmidt,V.Hejny, S.Hlavác, A.Kugler, F.Lefèvre, H.Löhner, A.Marín, G.Martínez, T.Matulewicz, V.Metag,R.Novotny, R.W.Ostendorf, R.Pleskac, Y.Schutz, R.H.Siemssen, R.S.Simon, H.Ströher, P.Tlusty, P.H.Vogt,V.Wagner, J.Weiss, H.W.Wilschut, F.Wissmann, A.R.Wolf, M.Wolf Physical Review C 56(1997)2920[5] T.Matulewicz, Acta Physica Polonica B 29 (1998) 419[6] G.Martínez, Y.Charbonnier, L.Aphecetche, H.Delagrange, K.K.Gudima, T.Matulewicz, M.Płoszajczak,Y.Schutz, V.Toneev, R.Turrisi, M.Appenheimer, V.Metag, R.Novotny, H.Ströher, A.R.Wolf, M.Wolf,J.Weiss, R.Averbeck, S.Hlavác, R.Holzmann, F.Lefèvre, R.S.Simon, R.Stratmann, F.Wissmann, M.Hoefman,M.J.van Goethem, H.Löhner, R.W.Ostendorf, R.H.Siemssen, P.Vogt, H.W.Wilschut, J.Díaz, A.Marín,A.Kugler, P.Tlusty, V.Wagner, A.Döppenschmidt, Physical Review Letters 83 (1999) 1538[7] K.Korzecka, T.Matulewicz, Nuclear Instruments and Methods A453 (2000) 606[8] T.Matulewicz, L.Aphecetche, Y.Charbonnier, H.Delagrange, K.K.Gudima, G.Martínez, M.Płoszajczak,Y.Schutz, V.D.Toneev, M.Appenheimer, R.Averbeck, J.Díaz, A.Döppenschmidt, M.J.van Goethem,S.Hlavác, M.Hoefman, R.Holzmann, F.Lefèvre, A.Kugler, H.Löhner, A.Marín, V.Metag, R.Novotny,R.W.Ostendorf, R.H.Siemssen, R.S.Simon, R.Stratmann, H.Ströher, P.Tlusty, P.Vogt, V.Wagner, J.Weiss,H.W.Wilschut, F.Wissmann, A.R.Wolf, M.Wolf, European Physical Journal A9 (2000) 69[9] K. Piasecki, K. Tymińska, T. Matulewicz, D. d'Enterria, Acta Physica Polonica B33 (2002) 973[10] K. Tymińska, T. Matulewicz, K. Piasecki , Acta Physica Polonica B33 (2002) 981[11] K. Tymińska, T. Matulewicz, K. Piasecki, Acta Physica Polonica B37 (<strong>2006</strong>) 161142


CORRELATIONS AND FLUCTUATIONS IN HEAVY ION REACTIONSAT ENERGIES BETWEEN 100 AND 2000 AMeVM.Kirejczyk, B.Sikora, K.Siwek-Wilczyńska, M.Smolarkiewicz, I.Soliwoda-Poddany,K.WiśniewskiInstitute of Experimental Physics, Warsaw University, WarszawaExperimental facility: FOPI Spectrometer, SIS-18, GSI Darmstadt, GermanyThe study of correlation and fluctuation effectshas been the subject of ongo<strong>in</strong>g research by theWarsaw branch of the FOPI Collaboration. Theimportance of such studies has grown recentlywith the establishment of modern experiments.The methods applied <strong>in</strong> those studies weredeveloped for the analysis of high multiplicity,high statistics, long runn<strong>in</strong>g, high-energy (fromabout 10AGeV upwards) experiments of heavyionand particle <strong>physics</strong>. Our results are <strong>in</strong> somecases the first attempt to use those methods <strong>in</strong> the<strong>in</strong>termediate energy range, where particlemultiplicities are much lower and draw<strong>in</strong>g theconclusions is much harder. In addition to the<strong>physics</strong> results, correlation/fluctuation studies ofFOPI data provide us with the experience toconduct such analyses for the new generation ofexperiments, like the planned CBM experiment.There are two ma<strong>in</strong> goals of correlations andfluctuations studies: the first is to establishwhether the state of thermodynamic equilibriumis reached dur<strong>in</strong>g the <strong>nuclear</strong> collision; the secondis to probe if a phase transition occurred dur<strong>in</strong>gthe collision. The results of such studies can alsobe used for test<strong>in</strong>g, whether certa<strong>in</strong> statistical andquantum aspects of the reaction are properlytaken <strong>in</strong>to account <strong>in</strong> the theoretical codesdescrib<strong>in</strong>g <strong>nuclear</strong> collisions.Two ma<strong>in</strong> methods were used <strong>in</strong> our study: theso-called Φ variable and the normalized, scaledfactorial moments (NSFMs) where the<strong>in</strong>termittency effect was looked for. In additionwe also attempted to use two other methods: theMa and “JKRW” methods.INTERMITTENCY ANALYSISThe idea of this research was proposed by Białasand Peshanski <strong>in</strong> 1986 and was applied by us <strong>in</strong>ref. [1],[2],[5], and [6]. Factorial moments of adistribution of a certa<strong>in</strong> variable split <strong>in</strong>to equalsizeb<strong>in</strong>s are calculated on an event-by-event basisfor a set of b<strong>in</strong> sizes. The <strong>in</strong>termittency signal isfound if there is a power-law dependence ofNSFMs on the b<strong>in</strong> size, and the character of thisdependence may allow to draw conclusions aboutthe reaction process. This method was applied tothe FOPI data on heavy symmetric system(Au+Au) at the energy range between 100 and800AMeV, and a clear <strong>in</strong>termittency signal wasseen for the polar emission angle (ϕ) of forwardemittedZ=1 reaction products. It could bedescribed by two <strong>in</strong>termittency exponents, forsmall and for the large b<strong>in</strong> sizes. The second onewas attributed to the anisotropy <strong>in</strong> particleemission with respect to the reaction plane(“bounce-off”) and it was reproduced with themodels.Φ ANALYSISThe Φ variable was proposed by Mrówczyńskiand Gaździcki as an equilibration measure <strong>in</strong>1992. It can be used to dist<strong>in</strong>guish between twoscenarios of <strong>nuclear</strong> reaction: superposition ofs<strong>in</strong>gle, first nucleon-nucleon collisions or fullthermodynamic equilibrium achieved dur<strong>in</strong>greaction. We applied this method to the dataobta<strong>in</strong>ed by the FOPI collaboration, for themedium-sized symmetric system (Ru+Ru) atbeam energy of 1.7AGeV, the first reported case ofus<strong>in</strong>g Φ variable <strong>in</strong> such a low energy range. Wefound a higher degree of equilibration <strong>in</strong> centralevents compared to peripheral ones [3]. It shouldbe noted, that our attempt is the first known caseof us<strong>in</strong>g Φ variable <strong>in</strong> such a low energy range.OTHER ANALYSESThe Ma method, proposed by Białas and Czyż,follow<strong>in</strong>g the ideas of Ma, allows to test, whetherthe thermal equilibrium is achieved <strong>in</strong> the <strong>nuclear</strong>reaction. The feasibility of this method for the SISenergy range and FOPI statistics was tested [4].The JKRW method, proposed by Jeon, Koch,Redlich and Wang to study the hypothesis ofchemical equilibration was applied to the K + dataobta<strong>in</strong>ed <strong>in</strong> Ni+Ni collisions at 1.9AGeV. Thelow statistics did not allow us to draw any firmconclusions so far.As a side result of this analysis it was proven,that scaled factorial moments are not <strong>in</strong>fluencedby the acceptance of the detector [7].143


[1] K.Wiśniewski, B.Sikora, K.Siwek-Wilczynska, M.Kirejczyk Acta Physica Polonica B 27 (<strong>1996</strong>) 505[2] M.M.Smolarkiewicz, M.Kirejczyk, B.Sikora, K.Siwek-Wilczynska, K.WisniewskiActa Physica Polonica B 31 (2000) 385[3] I.J.Soliwoda, M.Kirejczyk, B.Sikora, K.Siwek-Wilczynska Acta Physica Polonica B 31 (2000) 389[4] M. Kirejczyk Acta Physica Polonica B 33 (2002) 377[5] M.M. Smolarkiewicz, M. Kirejczyk, B. Sikora, K. Siwek-Wilczynska, I.J. SoliwodaActa Physica Polonica B 33 (2002) 457[6] M.M.Smolarkiewicz, M. Kirejczyk, B. Sikora, K. Siwek-Wilczynska, I.J. Soliwoda-PoddanyActa Physica Polonica B 35 (2004) 1151[7] M.Kirejczyk Acta Physica Polonica B 35 (2004) 225144


MASS AND ISOTOPIC EFFECTS IN NUCLEARMULTIFRAGMENTATIONT. Barczyk 1 , J. Brzychczyk 1 , J. Cibor 2 , B. Czech 2 , J. Łukasik 2 , Z. Majka 1 , P. Pawłowski 2 ,A. Wieloch 1 , B. Zwięgliński 31 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków3 A. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: ALADiN spectrometer at GSI DarmstadtChalleng<strong>in</strong>g motivations for isotopicstudies <strong>in</strong> <strong>nuclear</strong> multifragmentation arederived from the importance of the densitydependence of the symmetry-energy term of the<strong>nuclear</strong> equation of state for astrophysicalapplications and for effects l<strong>in</strong>ked to themanifestation of the <strong>nuclear</strong> liquid-gas phasetransition. A systematic study of isotopic effects<strong>in</strong> the break-up of projectile spectators atrelativistic energies has been performed at theGSI laboratory with<strong>in</strong> the ALADiN 2000collaboration [1]. In the S254 experimentfragments have been detected <strong>in</strong> reactions withbeams of 197 Au, 124 La, 124 Sn, and 107 Sn at theenergy of 600 AMeV. The experimental setup,which <strong>in</strong>cludes the ALADiN spectrometer withthe TP-MUSIC IV drift chamber, a time of flightdetector (TOF-wall) and the LAND neutrondetector, allowed measurement of the fragmentcharge and momentum vector for Z > 1fragments, identification of isotopes for Z < 12,and the momentum and multiplicity of neutrons.Unique experimental data were obta<strong>in</strong>ed fornuclei located far from the stability l<strong>in</strong>e, whichare characterized by a wide range of fragmentidentification.The experimental study of fragmentproduction with isotopic resolution has led to theidentification of isoscal<strong>in</strong>g, observed bycompar<strong>in</strong>g product yields from reactions whichdiffer <strong>in</strong> the isotopic composition of the projectiles[2]. Of particular <strong>in</strong>terest is a connection of theisoscal<strong>in</strong>g parameters with the symmetry-energyterm of the <strong>nuclear</strong> equation of state, E sym =γ(A-2Z) 2 /A. Prelim<strong>in</strong>ary results <strong>in</strong>dicate that thecoefficient γ is close to its normal-density value of~25 MeV for peripheral collisions but drop tolower values at the more central impactparameters. Temperature measurements us<strong>in</strong>g thedouble-isotope thermometer are currently be<strong>in</strong>g<strong>in</strong>vestigated <strong>in</strong> order to quantitatively establishthe evolution of the symmetry term.Neutrons emitted <strong>in</strong> directions close toθ lab = 0 o were detected with the Large-AreaNeutron Detector (LAND) which covers aboutone half of the solid angle required for neutronsfrom the spectator decay. An analysis of the<strong>in</strong>variant multiplicity distributions of neutronshas led to the identification of the spectatorsources of neutrons. They are characterized bytemperatures up to about 4 MeV possibly causedby large contributions from evaporation.Neutrons will be important for establish<strong>in</strong>g themass and energy balance, <strong>in</strong> particular forcalorimetry. Neutron analysis could allow to<strong>in</strong>vestigate the symmetry-energy termdependence on the excitation energy of thesystem, <strong>in</strong> a similar way as with the isoscal<strong>in</strong>ganalysis.The experimental data conta<strong>in</strong> unique<strong>in</strong>formation on the size of the largest fragmentexpected to play the role of the order parameter,which is of particular <strong>in</strong>terest <strong>in</strong> phase transitionstudies. We have studied the order parameterfluctuations <strong>in</strong> the framework of a percolationmodel to construct and verify procedures trac<strong>in</strong>gcritical behavior <strong>in</strong> fragment<strong>in</strong>g systems [3].Dimensionless cumulant ratios measur<strong>in</strong>g thefluctuations exhibit dist<strong>in</strong>ct features near thecritical and pseudocritical po<strong>in</strong>ts, provid<strong>in</strong>g amethod for their identification. The method isremarkably <strong>in</strong>sensitive to f<strong>in</strong>ite-size effects andmay be applied even for very small systems. Thepossibility of us<strong>in</strong>g various measurable quantitiesfor sort<strong>in</strong>g events makes the procedure useful <strong>in</strong>fragmentation studies. The method was appliedfor the Au + Au data show<strong>in</strong>g the percolationpattern of the fluctuations. Characteristics of thepseudocritical and critical po<strong>in</strong>ts have beendeterm<strong>in</strong>ed. The analysis will be extended toother <strong>in</strong>vestigated systems to establishdependence of the critical parameters on thesystem isosp<strong>in</strong>.145


[1] C. Sfienti, P. Adrich, T. Aumann, C.O. Bacri, T. Barczyk, R. Bass<strong>in</strong>i, C. Boiano, A.S. Botv<strong>in</strong>a, A. Boudard,J. Brzychczyk, A. Chbihi, J. Cibor, B. Czech, M. De Napoli, J.E. Ducret, H. Eml<strong>in</strong>g, J. Frankland,M. Hellstrom, D. Henzlova, K. Kezzar, G. Imme, I. Iori, H. Johansson, A. Lafriakh, A. Le Fevre,E. Le Gentil, Y. Leifels, W.G. Lynch, J. Luhn<strong>in</strong>g, J. Łukasik, U. Lynen, Z. Majka, M. Mocko, W.F.J. Muller,A. Mykulyak, H. Orth, A.N. Otte, R. Palit, A. Pullia, G. Raciti, E. Rapisarda, H. Sann, C. Schwarz, H. Simon,A. Sokolov, K. Summerer, W. Trautmann, M.B. Tsang, G. Verde, C. Volant, M. Wallace, H. Weick, J. Wiechula,A. Wieloch, B. Zwięgliński, Nucl. Phys. A749, 83c (2005).[2] C. Sfienti, P. Adrich, T. Aumann, C.O. Bacri, T. Barczyk, R. Bass<strong>in</strong>i, C. Boiano, A.S. Botv<strong>in</strong>a, A. Boudard,J. Brzychczyk, A. Chbihi, J. Cibor, B. Czech, M. De Napoli, J.-E. Ducret, H. Eml<strong>in</strong>g, J. Frankland, M. Hellstrom,D. Henzlova, K. Kezzar, G. Imme, I. Iori, H. Johansson, A. Lafriakh, A. Le Fevre, E. Le Gentil, Y. Leifels,W.G. Lynch, J. Luhn<strong>in</strong>g, J. Łukasik, U. Lynen, Z. Majka, M. Mocko, W.F.J. Muller, A. Mykulyak, H. Orth,A.N. Otte, R. Palit, P. Pawłowski, A. Pullia, G. Raciti, E. Rapisarda, H. Sann, C. Schwarz, H. Simon, K. Summerer,W. Trautmann, M.B. Tsang, C. Volant, M. Wallace, H. Weick, J. Wiechula, A. Wieloch, B. Zwięgliński, Acta Phys.Polonica B 37, 193 (<strong>2006</strong>).[3] J. Brzychczyk, Phys. Rev. C 73, 024601 (<strong>2006</strong>).146


NUCLEAR MATTER AT THE LIQUID-GAS PHASE TRANSITION ENERGYDOMAINZ. Majka, P. Staszel and J. CiborM. Smoluchowski Institute of Physics, Jagiellonian University, KrakówExperimental facility: Cyclotron Institute of Texas A&M University, USAThe <strong>nuclear</strong> liquid-gas phase transition is oneof the most <strong>in</strong>trigu<strong>in</strong>g phenomena currently be<strong>in</strong>g<strong>in</strong>vestigated by experimentalists. The thermodynamicproperties of hot nuclei are often presented <strong>in</strong> theexcitation energy – temperature diagram. The shapeof this curve for a <strong>nuclear</strong> system is predicted to havesimilarities to the well-known caloric curve of H 2 Oand the temperature as a function of the excitationenergy curve is also called the caloric curve for the<strong>nuclear</strong> system.Fig. Caloric curve for nuclei with A~110, see [6].Intermediate energy nucleus-nucleus collisionsprovide opportunities for study<strong>in</strong>g properties of<strong>nuclear</strong> matter at densities and temperatures fardifferent from those encountered <strong>in</strong> nuclei <strong>in</strong> theirground state. This provides an opportunity to probethe <strong>physics</strong> conta<strong>in</strong>ed <strong>in</strong> the equation of state for<strong>in</strong>f<strong>in</strong>ite <strong>nuclear</strong> matter. In order to approach thisfundamental problem, two crucial questionsconcern<strong>in</strong>g the formation and decay of hot <strong>nuclear</strong>systems produced <strong>in</strong> <strong>nuclear</strong> collisions have been<strong>in</strong>vestigated: i.e., what is the maximum excitationenergy which can be deposited <strong>in</strong> a <strong>nuclear</strong> systembefore complete dis<strong>in</strong>tegration, and what are thedom<strong>in</strong>ant mechanisms responsible for decay of theexcited <strong>nuclear</strong> system.In order to pursue this problems, several experimentswith dedicated detection systems (e.g. 4π chargedparticle/neutron array set ) were performed. S<strong>in</strong>celate 80’s our group is actively <strong>in</strong>volved <strong>in</strong> this researchby the construction of detection systems andparticipat<strong>in</strong>g <strong>in</strong> the <strong>in</strong>ternational experimentalprojects. Recent ten years were very fruitful <strong>in</strong>achiev<strong>in</strong>g several <strong>in</strong>terest<strong>in</strong>g results <strong>in</strong> ourcollaboration with Cyclotron Institute of Texas A&MUniversity, USA. Among them are:[1]. Study of quantum statistical thermodynamics ofhot f<strong>in</strong>ite <strong>nuclear</strong> systems - temperatures and isotopicyield ratios.[2].Study of time scale of the fission process <strong>in</strong> thereaction 50A MeV Ne + Ho as a function of massasymmetry.[3,4]. Experimental determ<strong>in</strong>ation of fragmentexcitation energies <strong>in</strong> multifragmentation events.[5]. Study of dynamic evolution and the caloric curvefor medium mass nuclei.[6-7]. Coalescence model analyses - prob<strong>in</strong>g dynamicevolution of heavy ion collisions.[8,9].Multi-fragmentation <strong>in</strong> Fermi energy heavy ionreactions[10-12] Critical behavior <strong>in</strong> the disassembly of nuclei.147


[1]. Z. Majka, P. Staszel, J. Cibor, J. B. Natowitz, K. Hagel, J. Li, N. Mdeiwayeh, R. Wada and Y. Zhao,Phys. Rev. C55 (1997) 2971.[2] N. Mdeiwayeh, R. Wada, K. Hagel, J. Li, Y. Lou, R. Tezkratt, D. Utley, B. Xiao, J. B. Natowitz, J. Cibor,Z. Majka, Nucl. Phys. A627 (1997) 137 .[3]. N. Marie, A. Chbihi, J. B. Natowitz, A. Le Fevre, S. Salou, J. P. Wieleczko, L. G<strong>in</strong>gras, M. Assenard,G. Auger, Ch. O. Bacri, F. Bocage, B. Borderie. R. Bougault, R. Brou, P. Buchet, J. L. Charvet, J. Cibor,J. Col<strong>in</strong>, D. Cussol, R. Dayras, A. Demeyer, D. Dore, D. Durand, P. Eudes, J. D. Frankland, E. Galichet,E. Genou<strong>in</strong>-Duhamel, E. Gerlic, M. Germa<strong>in</strong>, D. Gourio, D. Gu<strong>in</strong>et, K. Hagel, P. Lautesse, J. L. Laville,J. F. Lecolley, T. Lefort, R. Legra<strong>in</strong>, N. Le Ne<strong>in</strong>dre, O. Lopez, M. Louvel, Z. Majka, A. M. Maskay,L. Nalpas, A. D. Nguyen, M. Parlog, J. Peter, E. Plagnol, A. Rahmani, T. Reposeur, M. F. Rivet, E. Rosato,F. Sa<strong>in</strong>t-Laurent, J. C. Steckmeyer, M. Stern, G. Tabacaru, B. Tama<strong>in</strong>, O. Tirel, E. Vient, C. Volant,R. Wada, Phys. Rev. C58 (1998) 256.[4] P.Staszel, Z.Majka, L.G.Sobotka, D.G.Sarantites, R.J.Charity, D.W.Stracener, J.Cibor, K.Hagel, N.Marie,J.B.Natowitz, R.Wada, D.W.Stracener, G.Auger, Y.Schutz, J.P.Wieleczko, R.Dayras, E.Plagnol, J.Baretto,E.Norbeck , Phys. Rev. C63 (2001) 064610.[5]. J. Cibor, R. Wada, K. Hagel, M. Lunardon, N. Marie, R. Alfaro, W. Shen, B. Xiao, Y. Zhao, J. Li, B. A. Li,M. Murray, J. B. Natowitz, Z. Majka, P. Staszel, Phys. Lett. B473 (2000) 29.[6]. K.Hagel, R.Wada, J.Cibor, M.Lunardon, N.Marie, R.Alfaro, W.Shen, B.Xiao, Y.Zzhao, Z.Majka,P.Staszel, J.Li, B.A.Li, M.Murray, T.Keutgen, A.Bonasera, J.B.Natowitz, Phys. Rev. C62 (2000) 034607.[7]. L.B.Natowitz, J.Cibor, A.Bonasera, K.Hagel, R.Wada, M.Murray, T.Keutgen, M.Lunardon, N.Marie,R.Alfaro, W.Shen, Z.Majka and P.Staszel, Acta Phys. Pol. B31 (2000) 1449.[8].R.Wada, T. Keutgen, K.Hagel, Y.G. Ma, J.Wang, M. Murray, L. Q<strong>in</strong>, P. Smith, J.B. Natowitz, R. Alfaro,J. Cibor, M. C<strong>in</strong>ausero, Y.El. Masri, D. Fabris, E. Fioretto, A. Keksis, M. Lunardon, A. Mekeev, N. Marie,E. Mart<strong>in</strong>, A. Mart<strong>in</strong>ez – Davalos, A. Menchaca – Rocha, G. Nebbia, G. Prete, V. Rizzi, A. Ruangma,D.V. Shetty, G. Souliotis, P. Staszel, M. Veselsky, G. Viesti, E.M. W<strong>in</strong>chester, S.J. Yennello, Z. Majka,A. Ono, Phys. Rev. C69, 044610, (2004).[9].D.V.Shetty, A.Keksis, E.Mart<strong>in</strong>, A.Raungma, G.A.Souliotis, M.Veselsky, E.M.W<strong>in</strong>chester, S.J.Yennello,K.Hagel, Y.G.Ma, A.Makeev, N.Marie, M.Murray, J.B.Natowitz, L.Q<strong>in</strong>, P.Smith, R.Wada, J.Wang,M.C<strong>in</strong>ausero, E.Fioretto, G.Prete, D.Fabris, M.Lunardon, G.Nebbia, V.Rizzi, G.Viesti, J.Cibor, Z.Majka,P.Staszel, R.Alfaro, A.Mart<strong>in</strong>ez-Davalos, A.Menchaca-Rocha, Y.El Masri, T.Keitgen, Nucl. Phys. A734(2004) E100.[10].Y. G. Ma, R.Wada, K.Hagel, J.Wang, T. Keutgen, Z. Majka, M. Murray, L. Q<strong>in</strong>, P. Smith, J.B. Natowitz,R. Alfaro, J. Cibor, M. C<strong>in</strong>ausero, Y.El. Masri, D. Fabris, E. Fioretto, A. Keksis, M. Lunardon, A. Mekeev,N. Marie, A. Mart<strong>in</strong>ez – Davalos, A. Menchaca – Rocha, G. Nebbia, G. Prete, V. Rizzi, A. Ruangma, D.V.Shetty, G. Souliotis, P. Staszel, M. Veselsky, G. Viesti, E.M. W<strong>in</strong>chester, S.J. Yennello, Phys. Rev. C69(2004) 031604.[11].Y. G. Ma, J.B. Natowitz, R.Wada, K.Hagel, J.Wang, T. Keutgen, Z. Majka, M. Murray, L. Q<strong>in</strong>, P. Smith,R. Alfaro, J. Cibor, M. C<strong>in</strong>ausero, Y.El. Masri, D. Fabris, E. Fioretto, A. Keksis, M. Lunardon, A. Mekeev,N. Marie, E. Mart<strong>in</strong>, A. Mart<strong>in</strong>ez – Davalos, A. Menchaca – Rocha, G. Nebbia, G. Prete, V. Rizzi,A. Ruangma, D.V. Shetty, G. Souliotis, P. Staszel, M. Veselsky, G. Viesti, E.M. W<strong>in</strong>chester, S.J. Yennello,Nucl. Phys. A749 (2005) 106c.[12].Y. G. Ma, J.B. Natowitz, R.Wada, K.Hagel, J.Wang, T. Keutgen, Z. Majka, M. Murray, L. Q<strong>in</strong>, P. Smith,R. Alfaro, J. Cibor, M. C<strong>in</strong>ausero, Y.El. Masri, D. Fabris, E. Fioretto, A. Keksis, M. Lunardon, A. Mekeev,N. Marie, E. Mart<strong>in</strong>, A. Mart<strong>in</strong>ez – Davalos, A. Menchaca – Rocha, G. Nebbia, G. Prete, V. Rizzi,A. Ruangma, D.V. Shetty, G. Souliotis, P. Staszel, M. Veselsky, G. Viesti, E.M. W<strong>in</strong>chester, S.J. Yennello,Phys. Rev. C71 (2005) 054606.148


HEAVY-ION COLLISIONS: GEOMETRY AND DYNAMICSA. Kisiel, T. Pawlak, W. Peryt, J. PlutaFaculty of Physics, Warsaw University of Technology, WarszawaExperimental Facility: STAR Experiment at RHIC, Brookhaven National Laboratory and ALICE experiment at LHC,CERNThe ma<strong>in</strong> objective of the heavy-ionprogram at the Relativistic Heavy-Ion Collider isto discover and study the properties of the Quark-Gluon Plasma (QGP), expected to be formed atextreme temperatures and <strong>nuclear</strong> matterdensities obta<strong>in</strong>ed <strong>in</strong> the AuAu 200 GeV/nucleoncollisions. From the wealth of results produced bythe RHIC experiments a surpris<strong>in</strong>g pictureemerged – the QGP is not, as <strong>in</strong>itially thought, aweakly bound plasma of quarks and gluons.Instead it is a strongly bound system (sQGP),behav<strong>in</strong>g like a fluid with a small viscosity.One of the major arguments for suchconclusion was the observation of the prom<strong>in</strong>entcollective behavior of matter – flows, that weresuccessfully described by hydrodynamics. In thisframework the momentum part of the phasespacewas adequate and self-consistent. Howeverthe same models had significant difficultiesdescrib<strong>in</strong>g the space-time part.Heavy-ion collision is a femtoscopic process– it happens on the scale of 1fm=10 -15 m and 1fm/c=10 -23 s. Such distances cannot be measureddirectly. Instead the technique of femtoscopy (alsoreferred to as “HBT”) is applied, which relies onthe <strong>in</strong>teraction between two particles with closevelocity. It produces a two-particle correlationfunction that can be analyzed to <strong>in</strong>fer the size ofthe emitt<strong>in</strong>g system. By systematically analyz<strong>in</strong>gthe sizes as a function of the collision centrality,type of the collid<strong>in</strong>g nuclei, pair momentum,particle species etc. ones is also able to drawconclusions about the dynamics, or the correlationbetween space-time and momentumcharacteristics of the emission process.Femtoscopy is traditionally done withidentical particles to exploit the two-particlecorrelations com<strong>in</strong>g ma<strong>in</strong>ly from quantumstatistics. For non-identical particles the effectcomes from Coulomb and strong f<strong>in</strong>al state<strong>in</strong>teractions only. However it enables to access thenew observable – the difference <strong>in</strong> the meanemission po<strong>in</strong>ts of various particle species.Hydrodynamics predicts such difference andshows that it is a necessary consequence of thecollective behavior of the system. Observation ofsuch asymmetry is a key pieces of evidence,necessary for the claim of the discovery of theQGP.In the STAR experiment we have observedsuch asymmetry shown <strong>in</strong> Fig. 1. The departure ofthe so-called double ratio <strong>in</strong> the outwardsdirection (along the direction of the pairmomentum) is a direct experimental proof thatpions are emitted closer to the center of thesystem and/or later than kaons, exactly asexpected <strong>in</strong> the case of the collective behavior ofmatter called radial flowFig. 1. The out “double ratios” deviat<strong>in</strong>g from unity are evidence ofasymmetry between pions and kaons.149


[1] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. Lett. 87 (2001) 082301[2] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. Lett. 91 (2003) 262301[3] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. Lett. 91 262302 (2003)[4] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. Lett. 93 (2004) 012301[5] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. C 71 (2005) 044906[6] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. C 74 (<strong>2006</strong>) 064906[7] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. C 74 (<strong>2006</strong>) 054902[8] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. Lett. 86 (2001) 402[9] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. Lett. 87 (2001) 182301[10] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. Lett. 89 (2002) 132301[11] A. Kisiel, T.Pawlak, W.Peryt, J.Pluta, et al. (STAR Collaboration) *) Phys. Rev. Lett. 92 (2004) 052302*) Full list of STAR Collaboration authors is available at www.star.bnl.gov or <strong>in</strong> the text of any of thepublications marked with this sign150


MULTIFRAGMENTATION IN HEAVY-ION COLLISIONS ATRELATIVISTIC ENERGIES – THE SOURCE OF INFORMATION ONTHERMODYNAMICS OF NUCLEAR MATTERA. Mykulyak 1 , B. Zwiegl<strong>in</strong>ski 1 , A. Trzciński 1 , A. Tucholski 1 , and J. Lukasik 21 A. Sołtan Institute for Nuclear Studies, Warszawa2 H. Niewodniczański Institute of Nuclear Physics PAN, KrakówExperimental facility: ALADiN spectrometer at GSI-DarmstadtNucleus-nucleus collisions at relativistic energiespresent an opportunity to study a transition fromthe state of a Fermi liquid, which is the state ofnuclei close to their ground state to the state of<strong>nuclear</strong> vapor, <strong>in</strong> which <strong>nuclear</strong> droplets(fragments with Z≥3) are immersed <strong>in</strong> nucleongas (light particles with Z≤2). The unique featureof these multifragmentation reactions is a nearly<strong>in</strong>stantaneous <strong>in</strong>jection of fast nucleons from theregion of overlap of the collid<strong>in</strong>g nuclei <strong>in</strong>to thespectators which causes their heat<strong>in</strong>g <strong>in</strong> thecourse of a nucleon-nucleon cascade.The ALADiN Collaboration at GSI-Darmstadtstudies this transient state with the aid of A LArgeDipole magNet equipped with a sophisticateddetection system, permitt<strong>in</strong>g to identifysimultaneously all fragmentation products <strong>in</strong> Zand A and measure their momenta. The pastexperimental activities had several stageshighlighted with the follow<strong>in</strong>g discoveries:1) "The rise and fall of multifragmentation"as a function of the decreas<strong>in</strong>g impact parameter<strong>in</strong> Au+Au collisions at 600 MeV/u [1]. The <strong>in</strong>tialrise <strong>in</strong> the multiplicity of <strong>in</strong>termediade-massfragments is <strong>in</strong>terpreted as due to <strong>in</strong>creas<strong>in</strong>gexcitation energy <strong>in</strong> the multifragment<strong>in</strong>g residue,while the fall is an effect of the decreas<strong>in</strong>g residuesize and its conversion <strong>in</strong>to "gas" of nucleons andlight particles with further <strong>in</strong>crease of theexcitation energy. An <strong>in</strong>dependence of thispattern of the target size (other nuclei besides Auhave also been used) <strong>in</strong>dicated a high degree ofequilibration and applicability of thermodynamicconcepts to the decay of highly excited Auprojectile residues.2) "The optimum energy for multifragmentation"<strong>in</strong> central collisions of heavynuclei [2] at <strong>in</strong>termediate energies. In thesecollisions a system consist<strong>in</strong>g of ~400 nucleons isformed, whose excitation energy <strong>in</strong>creases withthe <strong>in</strong>creas<strong>in</strong>g bombard<strong>in</strong>g energy. In the case ofcentral collisions the <strong>in</strong>itial compres-sional energyis converted <strong>in</strong>to thermal one <strong>in</strong> relaxationmediated by nucleon-nucleon collisions. Themaximum number of about 10 <strong>in</strong>termediate-massfragments is observed <strong>in</strong> central Au+Au collisionsat ~100MeV/nucleon.3) Establish<strong>in</strong>g that the <strong>nuclear</strong> liquid-gasphase transition is probably of first order bymeasur<strong>in</strong>g the <strong>nuclear</strong> "caloric-curve" [3]. The"caloric-curve" is temperature vs. the excitationenergy dependence, demonstrat<strong>in</strong>g a sort ofplateau at T~5 MeV, which might be consideredthe boil<strong>in</strong>g temperature of nucleon liquid. Thisresult excited a widespread debate.4) The process of fragment formation is anillustration of the concept of "self-organization" asapplied to a femtoscopic system, the atomicnucleus [4,5]. The concept has been <strong>in</strong>itiallyformulated by the 1977 Nobel price w<strong>in</strong>ner <strong>in</strong>Chemistry Ilya Prigog<strong>in</strong>e for classical complexsystems [G. Nicolis and I. Prigog<strong>in</strong>e, Selforganization<strong>in</strong> Nonequilibrium Systems, fromDissipative Structures to Order through Fluctuations,Wiley, New York, 1977]. Later on it has been cast<strong>in</strong>to a formalism able to <strong>in</strong>terprete e.g. the actionof a laser [H. Haken, Advanced Synergetics;Instability Hierarchies of Self-Organiz<strong>in</strong>g Systems andDevices, Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1983] as a phase transition<strong>in</strong> the system of atoms and field <strong>in</strong> a cavity. Asimilar formalism for the <strong>nuclear</strong> liquid-gas phasetransitions still awaits formulation.5) Establish<strong>in</strong>g that the coefficient ofsymmetry energy <strong>in</strong> the Bethe-Weizsaeckerb<strong>in</strong>d<strong>in</strong>g energy formula is a decreas<strong>in</strong>g functionof the <strong>nuclear</strong> excitation energy [6, 7]. This hasnon-trivial consequences for astrophysicalapplications, e.g. supernova simulations orneutron star models.6) The recent experiments (see e.g. [8]) havebeen performed with the INDRA multidetector,demonstrat<strong>in</strong>g some universal features offluctuations <strong>in</strong> the multifragmen-tationobservables. These may be <strong>in</strong>terpreted, us<strong>in</strong>gmicrocanonical thermostatics, as an <strong>in</strong>dependentproof of a phase-transition occur<strong>in</strong>g <strong>in</strong> nuclei <strong>in</strong>the <strong>in</strong>vestigated energy range. A systematic studyof directed and elliptic flow [9] <strong>in</strong> Au+Aucollisions at <strong>in</strong>termediate energies is anotherimportant result of the INDRA experiment at GSI.151


[1] C. Ogilvie, J.C. Adloff, M. Begemann-Blaich, P. Bouissou, J. Hubele, G. Imme, I. Iori, G.J. Kunde,P. Kreutz, S. Leray, V. L<strong>in</strong>denstruth, Z. Liu, U. Lynen, R.J. Meijer, U. Milkau, A. Moroni, W.F.J. Müller,C. Ngo, J. Pochodzalla, G. Raciti, G. Rudolf, H. Sann, A. Schüttauf, W. Seidel, L. Stuttge, W. Trautmann,A. Tucholski, Phys. Rev. Lett. 67, 1214 (1991).[2] M.B. Tsang, W.C. Hsi, W.G. Lynch, D.R. Bowman, C.K. Gelbke, M.A. Lisa, G.F. Peaslee, G.J. Kunde,M.L. Begemann-Blaich, T. Hoffman, J. Hubele, J. Kempter, P. Kreutz, W.D. Kunze, V. L<strong>in</strong>denstruth,U. Lynen, M. Mang, W.F.J. Müller, M. Neumann, B. Ocker, C. Ogilvie, J. Pochodzalla, F. Rosenberger,H. Sann, A. Schüttauf, V. Serfl<strong>in</strong>g, J. Stroth, W. Trautmann, A. Tucholski, A. Wörner, E. Zude,B. Zwiegl<strong>in</strong>ski, S. Aiello, G. Imme, V. Pappalardo, G. Raciti, R.J. Charity, L.G. Sobotka, I. Iori,A. Moroni, R. Scardoni, A. Ferrero, W. Seidel, Th. Blaich, L. Stuttge, A. Cosmo, W.A. Friedman,G. Peilert, Phys. Rev. Lett. 71, 1502 (1993).[3] J. Pochodzalla, T. Möhlenkamp, T. Rubehn, A. Schüttauf, A. Wörner, E. Zude, M.L. Begemann-Blaich,Th. Blaich, C. Gross, H. Eml<strong>in</strong>g, A. Ferrero, G. Imme, I. Iori, G.J. Kunde, W.D. Kunze, V. L<strong>in</strong>denstruth,U. Lynen, A. Moroni, W.F.J. Müller, B. Ocker, G. Raciti, H. Sann, C. Schwarz, W. Seidel, V. Serfl<strong>in</strong>g,J. Stroth, W. Trautmann, A. Trzciński, A. Tucholski, G. Verde, B. Zwiegl<strong>in</strong>ski, Phys. Rev. Lett. 75, 1040(1995).[4] B. Zwiegl<strong>in</strong>ski for the ALADIN Collaboration, Nucl. Phys. A681, 275c (2001).[5] B. Zwiegl<strong>in</strong>ski for the ALADIN Collaboration, Acta Phys. Pol. B33, 141 (2002).[6] A. LeFevre, G. Auger, M.L. Begemann-Blaich, N. Bellaize, R. Bittiger, F. Bocage, B. Borderie,R. Bougault, B. Bouriquet, J.L. Charvet, A. Chbihi, R, Dayras, D. Durand, J.D. Frankland, E. Galichet,D. Gourio, D. Gu<strong>in</strong>et, S. Hudan, G. Imme, P. Lautesse, F. Lavaud, R. Legra<strong>in</strong>, O. Lopez, J. Lukasik,U. Lynen, W.F.J. Mueller, L. Nalpas, H. Orth, E. Plagnol, G. Raciti, E. Rosato, A. Saija, C. Schwarz,W. Seidel, C. Sfienti, B. Tama<strong>in</strong>, W. Trautmann, A. Trzciński, K. Turzo, E. Vient, M. Vigilante, C. Volant,B. Zwiegl<strong>in</strong>ski, A. Botv<strong>in</strong>a, Phys. Rev. Lett. 94, 162701 (2005).[7] C.Sfienti, J. Lühn<strong>in</strong>g, U. Lynen, W.F.J. Müller, A.Mykulyak, T. Barczyk, J. Brzychczyk, R. Bass<strong>in</strong>i,C. Boiano, J. Cibor, A. Le Fevre, K. Kezzar, G. Imme, I. Iori, J. Lukasik, H. Orth, N. Otte, A. Pullia,G. Raciti, C. Schwarz, A. Sokolov, W. Trautmann, K. Turzo , B. Zwiegl<strong>in</strong>ski , Nucl. Phys. A749, 83(2005)[8] A. Trzciński, J. Lukasik, W.F.J. Müller, W. Trautmann, B. Zwiegl<strong>in</strong>ski, G. Auger, Ch.O. Bacri,M.L. Begemann-Blaich, N. Bellaize, R. Bittiger, F. Bocage, B. Borderie, R. Bougault, B. Bouriquet,Ph. Buchet, J.L. Charvet, A. Chbihi, R, Dayras, D. Dore, D. Durand, J.D. Frankland, E. Galichet,D. Gourio, D. Gu<strong>in</strong>et, S. Hudan, B. Hurst, P. Lautesse, F. Lavaud, J.L. Laville, C. Leduc, A. Le Fevre,R. Legra<strong>in</strong>, O. Lopez, U. Lynen, L. Nalpas, H. Orth, E. Plagnol, E. Rosato, A. Saija, C. Schwarz, C. Sfienti,J.C. Steckmeyer, G. Tabacaru, B. Tama<strong>in</strong>, K. Turzo, E. Vient, M. Vigilante, C. Volant, Nucl. Instr. andMeth. A501, 367 (2003).[9] J. Lukasik, G. Auger, M.L. Begemann-Blaich, N. Bellaize, R. Bittiger, F. Bocage, B. Borderie, R. Bougault,B. Bouriquet, J.L. Charvet, A. Chbihi, R, Dayras, D. Durand, J.D. Frankland, E. Galichet, D. Gourio,D. Gu<strong>in</strong>et, S. Hudan, P. Lautesse, F. Lavaud, A. Le Fevre, R. Legra<strong>in</strong>, O. Lopez, U. Lynen, W.F.J. Müller,L. Nalpas, H. Orth, E. Plagnol, E. Rosato, A. Saija, C. Schwarz, C. Sfienti, B. Tama<strong>in</strong>, W. Trautmann,A. Trzciński, K. Turzo, E. Vient, M. Vigilante, C. Volant, B. Zwiegl<strong>in</strong>ski, Phys. Lett. B608, 223 (2005)152


ULTRA-RELATIVISTIC REACTIONS BETWEEN HEAVY IONS ANDNUCLEONSZ. Majka 1 , P. Staszel 1 , M. Adamczyk 1 , J. Brzychczyk 1 , J. Cibor 2 , L. Dutka 1 ,K. Grotowski 1 , R. Karabowicz 1 , N.Katryńska 1 , E. Kotula 1 , T. Kozik 1 , R. Płaneta 1 ,Z. Sos<strong>in</strong> 1 and A. Wieloch 11 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, KrakówExperimental facility: Brookhaven National Laboratory, USAThe Relativistic Heavy Ion Collider(RHIC) at Brookhaven National Laboratory [1] isdesigned to extend frontiers of modern <strong>physics</strong>,provid<strong>in</strong>g access to the new form of matter calledQuark-Gluon Plasma (QGP) composed ofprimordial elements – quarks and gluons. Bycollid<strong>in</strong>g the atomic nuclei with the energy of 200GeV per pair of nucleons, RHIC produces hot anddense matter at the <strong>in</strong>itial energy density wellabove the value of the critical energy density forQGP formation that is predicted by the latticequantum chromo-dynamical (QCD) calculations[2,3]. RHIC provides the first chance for arigorous test of the most basic predictions of whatis thought to be understood about the structure ofQCD matter at high energy, namely the colorglass condensate (CGC). CGC is considered as anuniversal form of QCD matter which describeshigh energy strongly <strong>in</strong>teract<strong>in</strong>g particles andnuclei. While QGP is the <strong>in</strong>coherent thermal limitof QCD matter at high temperature, CGC is thecoherent limit of QCD matter at high energies.The Jagiellonian University group has beenparticipat<strong>in</strong>g <strong>in</strong> BRAHMS project s<strong>in</strong>ce 1995. Our<strong>in</strong>itial task with<strong>in</strong> the collaboration was to designand construct a set of three drift chambers for theBRAHMS experiment. Figure displays one ofthem <strong>in</strong>stalled on the BRAHMS Back ForwardSpectrometer platform [4]. The BRAHMScollaboration began it's research program <strong>in</strong> 2000and with<strong>in</strong> the period of 6 years has collectedlarge data sets on four react<strong>in</strong>g systems (p+p,Au+Au, d+Au, Cu+Cu) at two collision energies:√s NN = 200 GeV and 62.4 GeV. First strik<strong>in</strong>gfeature observed by BRAHMS is that the netbaryonrapidity distributions around centralregion (y cm ~0) are significantly smaller, ascompared to AGS and SPS. We estimated theaverage rapidity loss to be equal 2.0±0.4. Thisvalue is well below prediction from the empiricall<strong>in</strong>ear scal<strong>in</strong>g of lower AGS and SPS energyresults. Nevertheless, the absolute energy loss<strong>in</strong>creases appreciably from SPS to RHIC reach<strong>in</strong>gthe value of about 72 GeV per participant [5].Several observables has been proposed for RHICand SPS energies as possible signals for theformation of QGP. One of most important is a jetquench<strong>in</strong>g seen directly as a suppression of hightransverse momentum hadrons (p T > 2 GeV/c)produced <strong>in</strong> heavy ion collisions as compared tonucleon-nucleon reactions. This effect can bequantified by the <strong>nuclear</strong> modification factor R AA[7]. The apparent high p T suppression observed <strong>in</strong>central collisions has been <strong>in</strong>terpreted as aconsequence of bremsstrahlung losses of high p Tpartons travers<strong>in</strong>g deconf<strong>in</strong>ed medium created <strong>in</strong>heavy ion collisions [8]. The effect is expected to<strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g collision energy andcentrality, as observed <strong>in</strong> the experiment [9].Unique feature of the BRAHMS spectrometer is alarge acceptance at forward regions accompaniedby excellent particle identification. Surpris<strong>in</strong>gly,large R AA suppression at forward region isobserved both for Au+Au and d+Au collid<strong>in</strong>gsystems [10]. For Au+Au the forward suppressionreveals the same scheme for baryons and mesonsas this observed at mid-rapidity [11] which led tosuggestion that the suppress<strong>in</strong>g medium extendsalso <strong>in</strong> the longitud<strong>in</strong>al direction [12]. However,for d+Au the suppression has been attributed tothe <strong>in</strong>itial conditions of the collid<strong>in</strong>g Au nucleus,<strong>in</strong> particular, to the possible existence of CGC - anew form of <strong>nuclear</strong> matter [13].153


[1] http://www.bnl.gov/RHIC[2] P. Staszel, R.Karabowicz, T. Kozik, Z. Majka, P. Płaneta, [BRAHMS collaboration], Int. Journ. ofModern. Phys. A 20, 4369 (2005)[3] F. Karsh, Nucl. Phys. A698, 199 (2002)[4] M. Adamczyk, J. Brzychczyk, J.Cibor, L. Dutka, K. Grotowski, E. Kotula, T. Kozik, Z. Majka, P. PłanetaZ. Sos<strong>in</strong>, P. Staszel, A. Wieloch, [BRAHMS collaboration], Nucl. Instr. Meth. A499, 437 (2003).[5] I. G. BeardenJ. Cibor, R.Karabowicz, T. Kozik, Z. Majka, P. Płaneta, P. Staszel, [BRAHMScollaboration], Phys. Rev. Lett. 93, 102301.[6] I.G. Bearden J. Cibor, R.Karabowicz, T. Kozik, Z. Majka, P. Płaneta, P. Staszel, A. Wieloch, [BRAHMScollaboration], Phys. Rev. Lett. 90, 102301 (2003).[7] I. Arsene J. Cibor, R.Karabowicz, T. Kozik, Z. Majka, P. Płaneta, P. Staszel, [BRAHMS collaboration],Phys. Rev. Lett. 91, 072305 (2003).[8] M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B594 (2001) 371.[9] T.M. Larsen R.Karabowicz, Z. Majka, P. Płaneta, P. Staszel, [BRAHMS collaboration], Nucl. Phys. A774,541 (<strong>2006</strong>) .[10] I. Arsene J. Cibor, R.Karabowicz, T. Kozik Z. Majka, P. Płaneta, P. Staszel, [BRAHMS collaboration]Phys. Rev. Lett. 93 (2004) 242303.[11] R. Karabowicz , Z. Majka, P. Płaneta, P. Staszel, [BRAHMS collaboration], Nucl. Phys. A774, 477 (<strong>2006</strong>)P. Staszel R.Karabowicz, Z. Majka, P. Płaneta, [BRAHMS collaboration], Nucl. Phys. A774, 77 (<strong>2006</strong>) .[12] G. G. Barnaföldi, P. Lévai, G. Papp, and G. Fai, hep-ph/0609023, and references there<strong>in</strong>.[13] D. Kharzeev, E. Lev<strong>in</strong> and L. McLerran, Phys. Lett. B 561 (2003) 93.[14] I. Arsene J. Cibor, R.Karabowicz, T. Kozik Z. Majka, P. Płaneta, P. Staszel, [BRAHMS collaboration],Nucl. Phys. A757, 1 (2005) .[15] I. Arsene J. Cibor, R.Karabowicz, T. Kozik Z. Majka, P. Płaneta, P. Staszel, [BRAHMS collaboration],Phys. Rev. C 72, 014908 (2005).[16] I. Arsene J. Cibor, R.Karabowicz, T. Kozik Z. Majka, P. Płaneta, P. Staszel, [BRAHMS collaboration],Phys. Rev. Lett. 94, 162301 (2005).[17] I. G. Bearden J. Cibor, R.Karabowicz, T. Kozik Z. Majka, P. Płaneta, P. Staszel, A. Wieloch, [BRAHMScollaboration], Phys. Lett. B 607, 42 (2005).[18] I. Arsene J. Cibor, R.Karabowicz, T. Kozik Z. Majka, P. Płaneta, P. Staszel, [BRAHMS collaboration],Phys. Rev. Lett. 94, 032301 (2005).[19] I. G. Bearden J. Cibor, R.Karabowicz, T. Kozik Z. Majka, P. Płaneta, P. Staszel, A. Wieloch [BRAHMScollaboration], Phys. Rev. Lett. 88, 202301 (2002).[20] I. G. Bearden J. Brzychczyk, J. Cibor, K. Grotowski, T. Kozik Z. Majka, P. Płaneta, Z. Sos<strong>in</strong>, P. Staszel,A. Wieloch [BRAHMS collaboration], Phys. Lett. B 523, 237 (2001).[21] I. G. Bearden J. Brzychczyk, J. Cibor, K. Grotowski, T. Kozik Z. Majka, P. Płaneta, Z. Sos<strong>in</strong>, P. Staszel,A. Wieloch [BRAHMS collaboration], Phys. Rev. Lett. 87, 112305 (2001).BRAHMS CollaborationI. Arsene, I.G. Bearden, D. Beavis, S. Bekele, C. Besliu, Y. Blyakhman, J.Brzychczyk, B. Budick, H. Bøggild,C. Chasman, C. H. Christensen, P. Christiansen, J.Cibor, R.Debbe, J. J. Gaardhøje, M. Germ<strong>in</strong>ario, K.Grotowski, K. Hagel, O. Hansen, A.K. Holme, H. Ito, E. Jacobsen, A. Jipa, J. I. Jordre, F. Jundt, C. E.Jørgensen, T. Keutgen, R. Karabowicz, N. Katryńska, E. J. Kim, T. Kozik, T.M.Larsen, J. H. Lee, Y. K.Lee, S.L<strong>in</strong>dahl, G. Løvhøjden, Z. Majka, A. Makeev, B. McBreen, M. Murray, J. Natowitz, B.S.Nielsen, K. Olchanski,D. Ouerdane, R.Planeta, F. Rami, D. Roehrich, B. H. Samset, S. J. Sanders, I. S. Sgura, R.A.Sheetz, Z.Sos<strong>in</strong>, P.Staszel, T.S. Tveter, F.Videbæk, R. Wada, A.Wieloch, H. Yang, Z. Y<strong>in</strong>, I.S. Zgura.154


INVESTIGATION OF HADRON PROPERTIES IN NUCLEAR MATTERWITH PROTON-NUCLEUS, ANTIPROTON-NUCLEUS AND NUCLEUS-NUCLEUS REACTIONSA. Bałanda 1,2 , A. Dybczak 1 , A. Kożuch 1,2 , R.Kulessa 1 ,B. Michalska-Trębacz 1 , J. Otw<strong>in</strong>owski 1 , W. Przygoda 1,2 , P. Salabura 1 , R. Trębacz 1 , W. Waluś 1 ,M. Wiśniowski 11 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 Państwowa Wyższa Szkoła Zawodowa, Nowy SączExperimental facility: accelerator SIS18, GSI DarmstadtHADES (High Acceptance Di-ElectronSpectrometer) [1] <strong>in</strong>stalled at SIS18 (GSIDarmstadt), has been designed to measure<strong>in</strong>variant mass of di-electrons with a high massresolution (~1%) <strong>in</strong> pp, πp, pA, πA and AAcollisions at 1-2 AGeV. The spectrometer consistsof 6 sectors, cover<strong>in</strong>g full azimuthal angle, polarangles from 18° to 85° and rapidity 0 < y < 2(acceptance for e + e - pair from a direct vectormeson decay ~35%). Each sector works<strong>in</strong>dependently and conta<strong>in</strong>s a set of fast particledetectors (RICH, TOF/TOF<strong>in</strong>o, Pre-SHOWER)and a track<strong>in</strong>g system (MDC I-IV and magnet).The detector went <strong>in</strong>to operational <strong>in</strong> 2002 andcollected data from 12 C+ 12 C collisions at 2 AGeV(2002) and 1 AGeV (2004), 40 Ar+KCl at 1.757AGeV (2005) and proton-proton reactions at 2.2GeV (2004) and 1.25 GeV (<strong>2006</strong>).The <strong>in</strong>variant-mass spectrum of e + e - pairsproduced <strong>in</strong> 12 C+ 12 C collisions at an <strong>in</strong>cidentenergy of 2 GeV per nucleon (see Fig) has beenmeasured for the first time [2]. At low masses, i.e.M ee 9+ e∆ωηρ 0EXPRQMDURQMDHSDcocktail BAa)200 400 600 800 10000 0.2 0.4 0.6 0.8 12[GeV/c ]M eeBb)155


[1] P. Salabura et al., (HADES Collaboration), Nucl. Phys. A749 150c (2005);P. Salabura et al., (HADES Collaboration), Acta Phys. Pol. B Vol.35 1119 (2004)W. Przygoda et al., HADES collaboration Nuclear Physics A783 (2007)583cS.Spataro et al., (HADES collaboration) International Journal of Modern Physics A vol. 22 (2007)533J.Pietraszko et al., (HADES collaboration) International Journal of Modern Physics A vol. 22 (2007)38T.Christ et al., (HADES collaboration) International Journal of Modern Physics A vol. 22 (2007)600[2] G. Agakichiev et al. (HADES Collaboration), Phys. Rev. Lett. 98 (2007) 052302list of HADES collaboration authors is available at www.hades.gsi.de156


SPALLATION AND FRAGMENTATION OF ATOMIC NUCLEI WITHPROTONSA. Bubak 1 , A. Budzanowski 2 , A. Heczko 3 , L. Jarczyk 3 , B. Kamys 3 , M. Kistryn 2 ,St.Kistryn 3 , St. Kliczewski 2 , A. Kowalczyk 3 , E. Kozik 2 , P. Kulessa 2 , A. Magiera 3 ,J. Majewski 3 , W. Migdał 3 , B.Piskor-Ignatowicz 3 , M. Puchała 3 , K. Pysz 2 , Z. Rudy 3 ,R. Siudak 2 , M.Wojciechowski 31 Institute of Physics, University of Silesia, Katowice2 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków3 M. Smoluchowski Institute of Physics, Jagiellonian University, KrakówExperimental facility: Cooler Synchrotron COSY, Forschungszentrum JuelichKnowledge of the reaction mechanism ofmedium energy protons <strong>in</strong>teract<strong>in</strong>g with atomicnuclei is of importance by itself, hav<strong>in</strong>gsimultaneously very broad range of applicationsfrom e.g. model calculations of the production ofcosmogenic nuclides <strong>in</strong> extraterrestrial matter bysolar and galactic cosmic ray protons, medic<strong>in</strong>e(radionuclide production, radiation therapy),accelerator technology (activation of detectors,radiation protection, on-l<strong>in</strong>e mass separation) toaccelerator-based <strong>nuclear</strong> waste transmutationand energy amplification.In the last years we have performedmeasurements of double differential crosssections (d 2 σ/dEdΩ) with isotopic identificationof the light charged reaction products from proton<strong>in</strong>duced reactions on several target nuclei (Al, Ni,Ag, and Au) at various energies (0.175, 1.2, 1.9and 2.5 GeV). The experiments were performed atthe <strong>in</strong>ternal beam of COSY accelerator us<strong>in</strong>g th<strong>in</strong>,self support<strong>in</strong>g targets (of about 300 µg/cm 2thickness) what resulted <strong>in</strong> negligible distortion ofthe reaction product spectra by <strong>in</strong>teraction of theemitted particles with the target. Us<strong>in</strong>g of the<strong>in</strong>ternal beam enabled to obta<strong>in</strong>, due to multiplepass<strong>in</strong>g of the beam through the target, statisticsof spectra comparable with that which can bereached only with very <strong>in</strong>tense external beams.The particles were detected us<strong>in</strong>g n<strong>in</strong>e<strong>in</strong>dependent detection arms compris<strong>in</strong>g variousk<strong>in</strong>ds of detectors. Two of these arms (placed at15 0 and 120 0 with respect to the beam direction)were equipped with the Bragg curve detectors(BCD), which permitted the Z-identification of thereaction products and determ<strong>in</strong>ation of theirk<strong>in</strong>etic energies with low energy threshold (ofabout 1 MeV / nucleon). The telescopes consistedof silicon detectors supplied with additionalsc<strong>in</strong>tillat<strong>in</strong>g (CsI) detectors, 7.5 cm thick, wereused to measure broad energy range spectra ofthe light charged particles (p,d,t, 3 He, and 4 He).The silicon detector telescopes enabled us also tomeasure spectra of <strong>in</strong>termediate mass fragments(from Li to B) with isotopic identification andheavier fragments (from C to Al) with elementalidentification. It was found that the spectra cannotbe reproduced assum<strong>in</strong>g the most popularscenario of the reaction mechanism, i.e.<strong>in</strong>tra<strong>nuclear</strong> nucleon-nucleon cascade plusevaporation of fragments from the equilibratedremnant of the cascade. For all identified ejectilesa high energy tail of the spectra, vary<strong>in</strong>g quicklywith the scatter<strong>in</strong>g angle was observed besidesthe evaporation spectrum.. This high energy partof the spectra may be reproduced assum<strong>in</strong>gisotropic emission from the source mov<strong>in</strong>g <strong>in</strong>forward direction, i.e. parallel to the beamdirection, with velocity larger than that of protontargetnucleus center of mass.Fig.1. Symbols present the data obta<strong>in</strong>ed at 35 0 lab for Au(p, 7 Li)reaction at T p =2.5 GeV , dotted l<strong>in</strong>e presents evaporationcontribution, dashed l<strong>in</strong>e - the contribution from the fast mov<strong>in</strong>gsource, solid l<strong>in</strong>e – the sum of both contributions.157


[1] A. Bubak, B. Kamys, M. Kistryn, and B. Piskor-Ignatowicz, Nucl. Instr. and Meth. <strong>in</strong> Phys. ResearchB 204, 507 (2004)[2] R. Barna, V. Boll<strong>in</strong>i, A. Bubak, A. Budzanowski, D. D. Pasquale, D. Filges, S. V. Foertsch, F. Goldenbaum,A. Heczko, H. Hodde, A. Italiano, L. Jarczyk, B. Kamys, J. Kisiel, M. Kistryn , St. Kistryn,St. Kliczewski, A. Kowalczyk, P. Kulessa, H. Machner, A. Magiera, J.Majewski, W. Migdał, H. Ohm,N. Paul, B. Piskor-Ignatowicz, K. Pysz, Z. Rudy, H. Schaal, R. Siudak, E. Stephan, G.F. S teyn,R. Sworst, T. Thovhogi, M.Wojciechowski, W. Zipper,Nucl. Instr. Meth. <strong>in</strong> Phys. Research A 519, 610 (2004).[3] A.Bubak, PhD-thesis Katowice (2004)[4] V. Boll<strong>in</strong>i, A. Bubak, A. Budzanowski, J. Cugnon, D.Filges, F. Goldenbaum, A. Heczko, H. Hodde,L. Jarczyk, B. Kamys, M. Kistryn, St. Kistryn, St. Kliczewski, A. Kowalczyk, P. Kulessa,H. Machner, A. Magiera, W. Migdał, K. Nuenighoff, N. Paul, B. Piskor-Ignatowicz, K. Pysz, Z. Rudy,R. Siudak, M. Wojciechowski, E.Kozik,Nucl. Instr. Meth. <strong>in</strong> Phys. Research A 562, 73 (<strong>2006</strong>)[5] A. Bubak, A. Budzanowski, D. Filges, F. Goldenbaum, A. Heczko, H. Hodde, L. Jarczyk, B. Kamys,M. Kistryn, St. Kistryn, St. Kliczewski, A. Kowalczyk, E.Kozik, P. Kulessa, H. Machner, A. Magiera,W. Migdał, N. Paul, B. Piskor-Ignatowicz, M. Puchała, K. Pysz, Z. Rudy, R. Siudak,M. Wojciechowski, and P. Wuestner, sent for publication <strong>in</strong> Physical Review C (<strong>2006</strong>)158


STRANGE-PARTICLE PRODUCTION IN NUCLEUS-NUCLEUS ANDPION-NUCLEUS COLLISIONS AT NEAR-THRESHOLD ENERGIESM. Kirejczyk, M. Rogowska, B. Sikora, K. Siwek-Wilczyńska, K. WiśniewskiInstitute of Experimental Physics, Warsaw University, WarszawaExperimental facility: SIS18 at GSI-DarmstadtAt beam energies below 2 GeV pernucleon, particles that carry strangeness areproduced <strong>in</strong> early stages of nucleus-nucleuscollisions. The production rate of ss-quark pairs<strong>in</strong> such collisions is primarily determ<strong>in</strong>ed by theavailable energy density and, therefore, reflectsthe properties of the equation of state of the<strong>nuclear</strong> matter. It may also be affected by theanticipated <strong>in</strong>-medium changes of hadrons'properties, which, furthermore, should <strong>in</strong>fluencethe subsequent propagation of strange particles <strong>in</strong>the <strong>nuclear</strong> medium as well. In order to learnmore about these phenomena, the FOPIcollaboration has measured production of K- andΦ-mesons as well as strange hyperons <strong>in</strong>collisions of medium- and heavy-nuclei at beamenergies between 1.5 and 1.9 GeV per nucleon.The FOPI spectrometer is a modularsystem used for fixed-target experiments on theSIS beam-l<strong>in</strong>e <strong>in</strong> GSI. It allows for simultaneousmeasurements of a large fraction of chargedreaction products <strong>in</strong> the close-to-4π geometry.Depend<strong>in</strong>g on the emission angle, theidentification of particles is accomplished bymeasur<strong>in</strong>g the specific energy loss, the curvatureof particle's trajectory <strong>in</strong> the magnetic field or thetime of flight of a particle. In addition, short-liv<strong>in</strong>gneutral reaction products are identified via theirdecays <strong>in</strong>to charged hadrons and the <strong>in</strong>variantmass reconstruction.The K - /K + yields ratios (Fig. 1) as well asthe K + sidewards flow were measured <strong>in</strong> Ru+Rucollisions at 1.7 AGeV beam energy and <strong>in</strong> Ni+Nicollisions at 1.9 AGeV beam energy. Comparisonof the experimental results to predictions of BUUtransport-model calculations revealed additionalrepulsion of the K + -nucleon potential andadditional attraction of the K - -nucleon potentialwith respect to the correspond<strong>in</strong>g <strong>in</strong>teractions <strong>in</strong>vacuum.In Ni+Ni collisions at 1.9 AGeV beamenergy, the production probability of Φ-mesonswas measured, and the Φ/K - yields ratio wasdeterm<strong>in</strong>ed. It showed that the substantialfraction of the measured K - mesons yield steamsfrom Φ mesons decays, and that both processesneed to be studied simultaneously.In nucleus-nucleus collisions a largenumber of K mesons are produced <strong>in</strong> two stepprocesses, <strong>in</strong> which <strong>in</strong> the first step the necessaryenergy is temporarily accumulated <strong>in</strong> a pion or <strong>in</strong>a delta-resonance. However, the cross-sections ofπN→KY reactions (Y stands for the appropriatehyperon), <strong>in</strong> which the strangeness should beactually produced, are not known at <strong>nuclear</strong>densities. First experiments with a π – beam of 1.15GeV/c momentum on various light-, mediumandheavy-targets, showed a surface-like scal<strong>in</strong>gof the K 0 and Λ production with the mass of thetarget and suggested that <strong>in</strong> π – -nucleus collisionsthe cross-sections of the underly<strong>in</strong>g elementaryprocesses are modified with respect to thereactions <strong>in</strong> vacuum.Fig. 1. The K - /K + yields ratio as a function of E k<strong>in</strong> cm <strong>in</strong> the Ru+Ru(left) and Ni+Ni (right) experiments. The data are extracted <strong>in</strong> thepolar-angle range 150 o


[1] D. Best, N. Herrmann, B. Hong, M. Kirejczyk, J. Ritman, K. Wisniewski, A. Zhil<strong>in</strong>, A. Gobbi, K.D.Hildenbrand, Y. Leifels, C. P<strong>in</strong>kenburg, W. Reisdorf, D. Schull, U. Sodan, G.S. Wang, T. Wienold, J.P.Alard, V. Amouroux, N. Bastid, I. Belyaev, G. Berek, J. Biegansky, R. Cherbachev, J.P. Coff<strong>in</strong>, P. Crochet,P. Dupieux, Z. Fodor, A. Genoux-Luba<strong>in</strong>, G. Goebels, G. Guillaume, E. Hafele, F. Jundt, J. Kecskemeti, Y.Korchag<strong>in</strong>, R. Kotte, C. Kuhn, A. Lebedev, A. Lebedev, I. Legrand, C. Maazouzi, V. Manko, J. Mosner, S.Mohren, D. Moisa, W. Neubert, D. Pelte, M. Petrovici, P. Pras, F. Rami, C. Roy, Z. Seres, B. Sikora, V.Simion, K. Siwek-Wilczynska, V. Smolyank<strong>in</strong>, A. Somov, L. Tizniti, M. Trzaska, M.A. Vasilev, P. Wagner,D. Wohlfarth, I. Yushmanov, Nucl. Phys. A625, 307 (1997).[2] K. Wisniewski, Acta Phys. Polon. B31, 399 (2000).[3] P. Crochet, N. Herrmann, K. Wisniewski, Y. Leifels, A. Andronic, R. Averbeck, A. Devismes, C. F<strong>in</strong>ck, A.Gobbi, O. Hartmann, K.D. Hildenbrand, P. Koczon, T. Kress, R. Kutsche, W. Reisdorf, D. Schull, J.P.Alard, V. Barret, Z. Basrak, N. Bastid, I. Belyaev, A. Bendarag, G. Berek, R. Caplar, N. C<strong>in</strong>dro, P. Dupieux,M. Dzelalija, M. Eskef, Z. Fodor, Y. Grishk<strong>in</strong>, B. Hong, J. Kecskemeti, Y.J. Kim, M. Kirejczyk, M. Korolija,R. Kotte, M. Kowalczyk, A. Lebedev, K.S. Lee, V. Manko, H. Merlitz, S. Mohren, D. Moisa, W. Neubert, A.Nian<strong>in</strong>e, D. Pelte, M. Petrovici, C. Plettner, F. Rami, B. de Schauenburg, Z. Seres, B. Sikora, K.S. Sim, V.Simion, K. Siwek-Wilczynska, V. Smolyank<strong>in</strong>, A. Somov, M. Stockmeier, G. Stoicea, M. Vasiliev, P.Wagner, D. Wohlfarth, J.T. Yang, I. Yushmanov, A. Zhil<strong>in</strong>, Phys. Lett. B486, 6 (2000).[4] K. Wisniewski, P. Crochet, N. Herrmann, A. Andronic, R. Averbeck, A. Devismes, C. F<strong>in</strong>ck, A. Gobbi, O.Hartmann, K.D. Hildenbrand, P. Koczon, T. Kress, R. Kutsche, Y. Leifels, W. Reisdorf, D. Schull, J.P.Alard, V. Barret, Z. Basrak, N. Bastid, I. Belyaev, A. Bendarag, G. Berek, R. Caplar, N. C<strong>in</strong>dro, P. Dupieux,M. Dzelalija, M. Eskef, Z. Fodor, Y. Grishk<strong>in</strong>, B. Hong, J. Kecskemeti, Y.J. Kim, M. Kirejczyk, M. Korolija,R. Kotte, M. Kowalczyk, A. Lebedev, K.S. Lee, V. Manko, H. Merlitz, S. Mohren, D. Moisa, W. Neubert, A.Nian<strong>in</strong>e, D. Pelte, M. Petrovici, C. Plettner, F. Rami, B. de Schauenburg, Z. Seres, B. Sikora, K.S. Sim, V.Simion, K. Siwek-Wilczynska, V. Smolyank<strong>in</strong>, A. Somov, M. Stockmeier, G. Stoicea, M. Vasilev, P.Wagner, D. Wohlfarth, J.T. Yang, I. Yushmanov, A. Zhil<strong>in</strong>, Eur. Phys. J. A9, 515 (2000).[5] A. Mangiarotti, N. Herrmann, P.R. Maurenzig, A. Gobbi, R. Kotte, J. Kecskemeti, Y. Leifels, J.P. Alard, A.Andronic, R. Averbeck, V. Barret, Z. Basrak, N. Bastid, I. Belyaev, A. Bendarag, G. Berek, R. Caplar, P.Crochet, A. Devismes, P. Dupieux, M. Dzelalija, C. F<strong>in</strong>ck, Z. Fodor, Yu. Grishk<strong>in</strong>, O. Hartmann, K.D.Hildenbrand, B. Hong, Y.J. Kim, M. Kirejczyk, P. Koczon, M. Korolija, T. Kress, R. Kutsche, A. Lebedev,V. Manko, M. Merschmeyer, D. Moisa, A. Nian<strong>in</strong>e, W. Neubert, D. Pelte, M. Petrovici, C. Plettner, F. Rami,W. Reisdorf, B. de Schauenburg, D. Schull, Z. Seres, B. Sikora, K.S. Sim, V. Simion, K. Siwek-Wilczynska,V. Smolyank<strong>in</strong>, M. Stockmeier, G. Stoicea, M. Vasilev, P. Wagner, K. Wisniewski, D. Wohlfarth, I.Yushmanov, A. Zhil<strong>in</strong>, Nucl. Phys. A714, 89 (2003).[6] N. Herrmann, K. Wisniewski, Acta Phys. Polon. B35, 1091 (2004).160


PHASE TRANSITIONS IN HIGHLY EXCITED NUCLEAR MATTERA. Budzanowski, W. Karcz, I. SkwirczyńskaH. Niewodniczański Institute of Nuclear Physics PAN, KrakówIntroductionStates of <strong>nuclear</strong> matter <strong>in</strong> the Universe after theBig Bang are subject to different phase transitionsfrom gas to liquid drops. It is impossible to create<strong>in</strong> the laboratory conditions to study this processesdirectly <strong>in</strong> a slow non explosive way. So we areleft with the problem of a reversed study of theliquid to gas phase processes. The availability ofvarious charged particles beams allows us tocreate nuclei at various excitation energies, sp<strong>in</strong>s,izosp<strong>in</strong>s, compressions and shape deformations.There is a great challenge to theorists todisentangle all these quantities and to f<strong>in</strong>d clearevidence of the phase transition and its order.Microcanonical ensemblesThe nucleus is an <strong>in</strong>homogeneous non-extensiveobject composed of a limited number of nucleonsnot exceed<strong>in</strong>g 300. Non-extensive means that S ≠S 1 + S 2 and E ≠ E 1 + E 2 where S and E <strong>in</strong>dicate thetotal entropy and total energy of the nucleus andS 1 , S 2 , E 1 and E 2 are entropies and energies of itsparts. Forces between the constituent particles areof comparable or longer (Coulomb potential)range than the size of the object. Good examplesare the follow<strong>in</strong>g objects: nuclei, stars, chargedliquid droplets. Therefore, the microcanonicalthermodynamics seems to be the proper one todescribe nuclei.Multifragmentation of highly excited nuclei.At the excitation energies of 3-10 AMeV acopious emission of <strong>in</strong>termediate mass fragmentsi.e. light nuclei with 2


[1] V.A. Karnaukhov, S.P. Avdeyev, W.D. Kuznetsov, L.A. Petrov, V.K. Rodionov, A.S. Zubkevich,H. Oeschler, O.V. Bochkarev, L.V. Chulkov, E.A. Kuzm<strong>in</strong>, A. Budzanowski, W. Karcz, M. Janicki,E. Norbeck, A.S. Botv<strong>in</strong>a. Yad. Fizika ,No.2, 62, 272 (1999). Phys. At. Nucl. 62, 237 (1999).[2] V.A. Karnaukhov, H. Oeschler, S.P. Avdeyev, E.V. Dug<strong>in</strong>ova, V.K. Rodionov, A.Budzanowski,W. Karcz, O.V. Bochkarev, L.V. Chulkov, E.A. Kuzm<strong>in</strong>, E. Norbeck, A.S.Botv<strong>in</strong>a, Phys. Rev., C67,0011601(R)1 (2003).[3] V.A. Karnaukhov, H. Oeschler, S.P. Avdeyev, V.K. Rodionov, A.Budzanowski, W. Karcz,I. Skwirczyńska, O.V. Bochkarev, L.V. Chulkov, E.A. Kuzm<strong>in</strong>, E. Norbeck, A.S.Botv<strong>in</strong>a. Nucl.Phys.A734, 520(2004).[4] V.A. Karnaukhov, H. Oeschler, S.P. Avdeyev, V.K. Rodionov, A.Budzanowski, W. Karcz,I.Skwirczyńska, O.V. Bochkarev, L.V. Chulkov, E.A. Kuzm<strong>in</strong>, E. Norbeck, A.S.Botv<strong>in</strong>a.Phys. Rev.C70, 041601(R) (2004).[5] Budzanowski, V.A. Karnaukhov , H. Oeschler, S.P. Avdeyev,V.K. Rodionov, V.V. Kirakosyan,A.V. Simonenko, P.A. Rukoyatk<strong>in</strong>, W. Karcz, I. Skwirczyńska, E.A. Kuzm<strong>in</strong>, L.V. Chulkov, E. Norbeckand A.S. Botv<strong>in</strong>a, Acta Phys. Polon. B36, 1203 (2005).162


NUCLEAR SINGLE PARTICLE SUM RULES IN THE EMC EFFECTJ.Rożynek and G.WilkA. Sołtan Institute for Nuclear Studies, WarszawaThe <strong>nuclear</strong> EMC effect, quite strong aswitnessed by Fig. 1 (where it is shown for massnumber A = 56), is reflection of the <strong>in</strong>fluencewhich <strong>nuclear</strong> field exerts on the partonic structureof nucleons.Us<strong>in</strong>g the extended Relativistic MeanField model (RMF) [1] we have <strong>in</strong>vestigated thiseffect and calculated parton distributions <strong>in</strong> nuclei(Phys. Lett. B 432, 402 (1998)) for Bjorken variable0


[1] J. Rożynek, Int. J. Phys. E 9, 195 (2000).[2] J. Rożynek, G.Wilk, Phys. Lett. B473, 167 (2000).[3] J. Rożynek, G.Wilk, Acta Phys. Pol. B35, 2303 (2004).[4] J. Rożynek, Nucl. Phys. A755, 357c (2004).[5] J. Rożynek, G.Wilk, Phys. Rev. C 71, 068202 (2005).[6] J. Rożynek, Acta Phys. Pol. B37, 95 (<strong>2006</strong>).[7] J. Rożynek, Int. J. Phys. E 16, 608 (2007).164


FLUCTUATIONS AND SEARCH FOR THE CRITICAL POINT AT SPSENERGIESM. Gaździcki 1 , K. Grebieszkow 2,3 , St. Mrówczyński 1,4 , P. Seyboth 1 , E. Skrzypczak 31 Institute of Physics, Świętokrzyska Academy, Kielce2 Faculty of Physics, Warsaw University of Technology, Warszawa3 Institute of Experimental Physics, Warsaw University, Warszawa4 A. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: NA49 experiment at CERN SPSOne of the ma<strong>in</strong> objectives of study<strong>in</strong>gheavy ion collisions at relativistic energies is tounderstand the properties of quark-gluon plasma(QGP) – a new state of matter that is expected toappear when the system is sufficiently hot anddense [Phys. Rev. Lett. 34, 1353 (1975)]. If theenergy density is much higher than a typicalenergy density <strong>in</strong>side a nucleus, the matter canform a gas of subhadronic degrees of freedom.The quarks and gluons are not conf<strong>in</strong>ed <strong>in</strong>sidehadrons but they can move freely <strong>in</strong> the wholevolume of QGP. It is also believed that QGP wascreated dur<strong>in</strong>g the evolution of the early Universe[Phys. Rept. 201, 335 (1991)].The theoretical predictions with<strong>in</strong> theStatistical Model of the Early Stage suggested thatthe energy threshold for deconf<strong>in</strong>ement islocalized between AGS and top SPS energies [1].Indeed, the latest NA49 results [2, 3, 4] ondependencies of various quantities on thecollision energy seem to confirm that the onset ofdeconf<strong>in</strong>ement sets <strong>in</strong> at lower SPS energies.The phase diagram of strongly <strong>in</strong>teract<strong>in</strong>gmatter is most often presented as a (T, µB) plot,where T is the temperature and µB is abaryochemical potential. For large values of µBone expects the first order phase transitionbetween hadron gas and QGP, which term<strong>in</strong>ates<strong>in</strong> a critical po<strong>in</strong>t, and for smaller values of µBturns <strong>in</strong>to a so-called crossover. The recent latticeQCD calculations suggest that the end-po<strong>in</strong>t ofthe first-order phase transition is a critical po<strong>in</strong>t ofthe second-order and may be located at abaryochemical potential characteristic of theCERN SPS energy range [JHEP 0404, 050 (2004)].Dynamical (non-statistical) fluctuationsare considered to be important observables <strong>in</strong> thestudy of the phase diagram of strongly <strong>in</strong>teract<strong>in</strong>gmatter. Significant transverse momentum andmultiplicity fluctuations are expected for systemsthat hadronize from QGP near the second-ordercritical QCD end-po<strong>in</strong>t [Phys. Rev. D60, 114028(1999)]. The phase diagram can be scanned byvary<strong>in</strong>g both the energy and size of the collid<strong>in</strong>gnuclei and an observed enhancement ofdynamical (pT and multiplicity) fluctuations mayprovide evidence for the QCD critical end-po<strong>in</strong>t.The NA49 experiment used the ΦpTmeasure [5] to quantify dynamical event-by-eventpT fluctuations. Fig.1 shows a significant nonmonotonicevolution with the system size of ΦpTfor all charged particles registered <strong>in</strong> the forwardrapidity region <strong>in</strong> A+A collisions at top SPSenergy (158A GeV) – see [6] for details. Moreover,an <strong>in</strong>crease of multiplicity fluctuations forperipheral Pb+Pb <strong>in</strong>teractions (when compared top+p and central Pb+Pb collisions) was measuredby NA49 [7]. Both observations might be the first<strong>in</strong>dication of the critical po<strong>in</strong>t.The above results provided powerfularguments for a new experiment at CERN – NA61[8, 9], which plans to study collisions of light and<strong>in</strong>termediate mass nuclei <strong>in</strong> order to cover a broadrange of the (T, µB) plane. The results may help toconfirm, discover or rule out the existence of thecritical po<strong>in</strong>t <strong>in</strong> the SPS doma<strong>in</strong>.Fig. 1. Event-by-event transverse momentum fluctuations versusnumber of wounded nucleons (measure of the system size) obta<strong>in</strong>edfor all charged particles produced <strong>in</strong> A+A collisions at top SPSenergy.165


[1] M. Gaździcki and M. I. Gorenste<strong>in</strong>, Acta Phys. Polon. B30, 2705 (1999).[2] M. Mitrovski, M. Gaździcki, K. Grebieszkow, S. Mrówczyński, P. Seyboth, E. Skrzypczak et al. [NA49Coll.], J. Phys. G32, S43 (<strong>2006</strong>).[3] P. Seyboth, M. Gaździcki, K. Grebieszkow, S. Mrówczyński, E. Skrzypczak et al. [NA49 Coll.], ActaPhys. Polon. B36, 565 (2005).[4] S. V. Avanasiev, M. Gaździcki, K. Grebieszkow (Perl), P. Seyboth, E. Skrzypczak et al. [NA49 Coll.],Phys. Rev. C66, 054902 (2002).[5] M. Gaździcki, S. Mrówczyński, Z. Phys. C54, 127 (1992).[6] T. Anticic, M. Gaździcki, K. Grebieszkow, S. Mrówczyński, P. Seyboth, E. Skrzypczak et al. [NA49Coll.], Phys. Rev. C70, 034902 (2004).[7] C. Alt, M. Gaździcki, K. Grebieszkow, S. Mrówczyński, M. Rybczyński, P. Seyboth, E. Skrzypczak etal. [NA49 Coll.], Phys. Rev. C75, 064904 (2007).[8] M. Gaździcki, nucl-ex/0512034, published <strong>in</strong> Jalta 2005, New trends <strong>in</strong> high-energy <strong>physics</strong> 131-138[9] N. Antoniou, M. Gaździcki, K. Grebieszkow, S. Mrówczyński, P. Seyboth, E. Skrzypczak et al. [NA49-future Coll.], CERN-SPSC-<strong>2006</strong>-001 and SPSC-P-329 (<strong>2006</strong>).NA49 Collaboration (III.2007):C. Alt, T. Anticic, B. Baatar, D. Barna, J. Bartke, L. Betev, H. Białkowska, C. Blume, B. Boimska, M. Botje,J. Brac<strong>in</strong>ik, R. Bramm, P. Buncic, V. Cerny, P. Christakoglou, P. Chung, O. Chvala, J.G. Cramer, P. Csató,P. D<strong>in</strong>kelaker, V. Eckardt, D. Flierl, Z. Fodor, P. Foka, V. Friese, J. Gál, M. Gaździcki, V. Genchev,G. Georgopoulos, E. Gładysz, K. Grebieszkow, S. Hegyi, C. Höhne, K. Kadija, A. Karev, D. Kikoła,M. Kliemant, S. Kniege, V.I. Kolesnikov, E. Kornaś, R. Korus, M. Kowalski, I. Kraus, M. Kreps, A. Laszlo,R. Lacey, M. van Leeuwen, P. Lévai, L. Litov, B. Lungwitz, M. Makariev, A.I. Malakhov, M. Mateev,G.L. Melkumov, A. Mischke, M. Mitrovski, J. Molnár, St. Mrówczyński, V. Nicolic, G. Pálla,A.D. Panagiotou, D. Panayotov, A. Petridis, W. Peryt, M. Pikna, J. Pluta, D. Pr<strong>in</strong>dle, F. Pühlhofer,R. Renfordt, C. Roland, G. Roland, M. Rybczyński, A. Rybicki, A. Sandoval, N. Schmitz, T. Schuster,P. Seyboth, F. Siklér, B. Sitar, E. Skrzypczak, M. Słodkowski, G. Stefanek, R. Stock, C. Strabel, H. Ströbele,T. Susa, I. Szentpétery, J. Sziklai, M. Szuba, P. Szymański, V. Trubnikov, D. Varga, M. Vassiliou, G.I. Veres,G. Vesztergombi, D. Vranic, A. Wetzler, Z. Włodarczyk, A. Wojtaszek, I.K. Yoo, J. ZimányiNA49-future (NA61) Collaboration (III.2007):N. Antoniou, P. Christakoglou, F. Diakonos, A. D. Panagiotou, A. Petridis, M. Vassiliou, F. Cafagna,M. G. Catanesi, T. Montaruli, E. Radicioni, D. Röhrich, L. Boldizsar, Z. Fodor, A. Laszlo, G. Palla,I. Szentpetery, G. Vesztergombi, J. Cleymans, J. Brzychczyk, N. Katryńska, R. Karabowicz, Z. MajkaR. Planeta, P. Staszel, B. Baatar, V. I. Kolesnikov, A. I. Malakhov, G. L. Melkumov, A. N. Sissakian,A. S. Sor<strong>in</strong>, W. Rauch, M. Gaździcki, B. Lungwitz, M. Mitrovski, R. Renfordt, T. Schuster, C. Strabel,H. Stroebele, A. Blondel, A. Bravar, M. Di Marco, J. Blumer, R. Engel, A. Haungs, C. Meurer, M. Roth,M. Gaździcki, R. Korus, St. Mrówczyński, M. Rybczyński, P. Seyboth, G. Stefanek, Z. Włodarczyk,A. Wojtaszek, F. Guber, A. Kurep<strong>in</strong>, A. Ivashk<strong>in</strong>, A. Maevskaya, B. Andrieu, J. Dumarchez, K.-U. Choi,J.-H. Kim, J.-G. Yi, I.-K. Yoo, D. Kolev, R. Tsenov, A. G. Asryan, D. A. Derkach, G. A. Feofilov, S. Igolk<strong>in</strong>,A. S. Ivanov, R. S. Kolevatov, V. P. Kondratiev, P. A. Naumenko, V. V. Vechern<strong>in</strong>, P. Chung, R. Lacey,A. Taranenko, T. Kobayashi, T. Nakadaira, K. Sakashita, T. Sekiguchi, K. Grebieszkow, D. Kikoła, W. Peryt,J. Pluta, M. Słodkowski, M. Szuba, T. Anticic, K. Kadija, V. Nikolic, T. Susa166


BETWEEN NUCLEAR AND ELEMENTARY INTERACTIONS:RELATIVISTIC ION COLLISIONSH. BiałkowskaA. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: SPS accelerator at CERN, RHIC accelerator at BNLThe last decade has witnessed anunprecedented development of a new branch ofhigh energy and <strong>nuclear</strong> <strong>physics</strong> - the <strong>physics</strong> ofrelativistic ion collisions, RI. The ma<strong>in</strong> motivationbeyond large experimental and theoretical effortis the search for a hypothetical transition to a newstate of matter, the quark-gluon plasma, QGP.This state is predicted by the QuantumChromodynamics - the theory of strong<strong>in</strong>teractions. Several polish groups have jo<strong>in</strong>edexperiments on RI.At CERN the NA49 experiment hasstudied charged hadron production <strong>in</strong> hadronhadron,hadron - nucleus and nucleus - nucleuscollisions <strong>in</strong> a wide energy range (from 20 to 158GeV/N) and for several <strong>nuclear</strong> beams, up tolead. The data tak<strong>in</strong>g stopped <strong>in</strong> 2002, but theanalysis cont<strong>in</strong>ues.Fig.2. Transverse mass spectra of neutral pions <strong>in</strong> central PbPbcollisions at 158 GeV/c/N.Fig.1. The phase diagram of strongly <strong>in</strong>teract<strong>in</strong>g matter. The po<strong>in</strong>tsare the chemical freeze-out po<strong>in</strong>ts derived from a fit with a statisticalhadron gas model.The ma<strong>in</strong> <strong>physics</strong> results on <strong>nuclear</strong>collisions are summarized <strong>in</strong> several reviewpapers, recent - [1], [2]. At top SPS energystrongly <strong>in</strong>teract<strong>in</strong>g matter of high energy densityis created <strong>in</strong> central Pb-Pb collisions and thehadrochemical freezeout occurs close to thepredicted phase boundary, as illustrated <strong>in</strong> Fig.1(from [1]). An extensive study of particleproduction <strong>in</strong> elementary collisions, measuredwith<strong>in</strong> unprecedented phase space coverage [3] at158 GeV/c offers a necessary background for all<strong>nuclear</strong> collisions at this energy range.The WA98 experiment, also study<strong>in</strong>g PbPb collisions at 158 GeV/N, specialized <strong>in</strong> theneutral pion production measurements. Of themany important results, Fig.2 (from [4]) illustratesthe transverse mass spectra of neutral pions,measured over several orders of magnitude ofcross section, compared with model predictions.Several polish physicists activelyparticipate <strong>in</strong> 3 (out of 4) large RHIC experimentson <strong>nuclear</strong> collisions at 200 GeV/N (<strong>in</strong> a collidermode). A comprehensive summary is given by allexperiments <strong>in</strong> a so called White Papers[5](BRAHMS experiment), [6] (PHOBOS), [7](STAR).167


Fig.3. Nuclear modification factors for central Au Au collisions andm<strong>in</strong>imum bias d Au collisions at sqrt(s) 200GeV, evidenc<strong>in</strong>g thehigh p t suppression <strong>in</strong> central Au Au.The most important f<strong>in</strong>d<strong>in</strong>gs of the RHICexperiments concern the properties of the hot anddense matter created <strong>in</strong> central collisions of highenergy heavy nuclei. Contrary to previousexpectations, this matter does not resemble a gasof free quarks and gluons, but shows thecharacteristics of a near perfect fluid. Theseconclusions follow from the observation of the socalled jet quench<strong>in</strong>g, or the suppression of hightransverse momentum particles <strong>in</strong> Au-Aucollisions (<strong>in</strong> comparison to the production ofsuch particles <strong>in</strong> d-Au collisions), and thebehaviour of the flow of all particles produced.The effect of jet quench<strong>in</strong>g is illustrated <strong>in</strong> Fig.3(from [5]).This behaviour is supposedly due to high densityof gluons <strong>in</strong> the matter created after the collision,slow<strong>in</strong>g down or `quench<strong>in</strong>g' the jets, from whichhigh transverse momentum particles orig<strong>in</strong>ate.Such effects notwithstand<strong>in</strong>g, the bulk of globalparticle characteristics is - to a surpris<strong>in</strong>g detail -governed by the geometry of collid<strong>in</strong>g objects.The PHOBOS experiment (with a substantialcontribution from polish participants) hasdemonstrated, that from low (19.6 GeV/N) tohigh energy 200 GeV/N (these are the center ofmass energies) and for several centralities(measured by the number of participat<strong>in</strong>gnucleons) the total charged particle multiplicity,per participat<strong>in</strong>g nucleon -scales with the mumberof participants. This is illustrated <strong>in</strong> Fig.4 (from[6]).Polish experimental groups are nowprepar<strong>in</strong>g for the excit<strong>in</strong>g perspective of heavyions from the LHC accelerator. The dedicatedALICE experiment, and the sub-groups fromother, ATLAS and CMS experiments, hope to seethe first ion beams <strong>in</strong> 2009.Fig.4. Total charged particle multiplicity per participant pair as afunction of number of participant.[1] C.Blume et al., (J.Bartke, H.Białkowska, B.Boimska, E.Gładysz, K.Grebieszkow, E.Kornas, R.Korus,M.Kowalski, S.Mrówczynski, M.Rybczyński, A.Rybicki, E.Skrzypczak,G.Stefanek, P.Szymański,V.Trubnikov, Z.Włodarczyk) J.Phys.G31:S685-S692,2005.[2] C. Hohne et al, (J.Bartke, H.Białkowska, B.Boimska, E.Gładysz, K.Grebieszkow, E.Kornas, R.Korus,M.Kowalski, S.Mrówczynski, M.Rybczyński, A.Rybicki, E.Skrzypczak,G.Stefanek, P.Szymański,V.Trubnikov, Z.Włodarczyk) Nucl. Phys. A774:35,<strong>2006</strong>.[3] C. Alt et al., (J.Bartke, H.Białkowska, B.Boimska, E.Gładysz, K.Grebieszkow, E.Kornas, R.Korus,M.Kowalski, S.Mrówczynski, M.Rybczyński, A.Rybicki, E.Skrzypczak,G.Stefanek, P.Szymański,V.Trubnikov, Z.Włodarczyk) Eur. Phys. J. C45,343,<strong>2006</strong>.[4] M.Aggarval et al., (K.Karpio, T.Siemiarczuk, G.Stefanek, L.Tykarski) Phys.Rev.Letters 81, 4087, 1998.[5] I.Arsene et al., (R.Karabowicz, T.Kozik, Z.Majka, R.Planeta) Nucl.Phys.A757, 1, 2005[6] B.B.Back et al., (A.Budzanowski, T.Gburek, R.Holyński, A.Olszewski, P.Sawicki, A.Trzupek,B.Wosiek, K.Woźniak) Nucl.Phys.A757, 28, 2005[7] J.Adams et al., (M.Jedynak, A.Kisiel, T.Pawlak, W.Peryt, J.Pluta) Nucl.Phys.A757, 102, 2005168


INVESTIGATION OF CHARGE AND ISOSPIN SYMMETRY BREAKINGP. Hawranek 1 , St. Kistryn 1 , S. Kliczewski 2 , A. Magiera 1 , R. Siudak 2 , J. Smyrski 1 ,A. Wrońska 11 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, KrakówExperimental facility: Cooler Synchrotron (COSY) at Forschungszentrum JülichSoon after the discovery of proton andneutron it was realized that they behave verymuch alike. Those observed experimentallysymmetries led Heisenberg to <strong>in</strong>troduce isosp<strong>in</strong>,a new quantum number, which allows treat<strong>in</strong>gneutron and proton as two charge states of oneparticle – the nucleon. Direct consequences of thisconcept are the isosp<strong>in</strong> symmetry (IS) and chargesymmetry (CS). S<strong>in</strong>ce the masses and <strong>in</strong>teractionsof different nucleons are not the same, the IS andCS are not exact and until discovery of quarkswere considered as accidental. On the quark levelthese symmetries are broken due to up and downquark mass difference and to their electromagnetic<strong>in</strong>teraction. S<strong>in</strong>ce the quark masses cannotbe measured directly the observation of isosp<strong>in</strong>or/and charge symmetry violation for hadronsopens a unique w<strong>in</strong>dow to study the quark massterm of the Quantum Chromo Dynamics.We have conducted a study of the isosp<strong>in</strong>and charge symmetry violation <strong>in</strong> low energypion production reactions [1]. The expectedsymmetry break<strong>in</strong>g effects are very small.Therefore it was necessary to apply speciallydeveloped detection methods and techniques,which allowed for a strong suppression ofsystematic uncerta<strong>in</strong>ties [2,3].In the first stage of our <strong>in</strong>vestigations theratio of cross sections for pd→ 3 Hπ + / 3 Heπ 0reactions was measured at the beam momentaclose to the excitation of a ∆ resonance <strong>in</strong> the<strong>in</strong>termediate state [4-6]. The measured crosssection dependence on the four momentumtransfer consists of two components. For the largemomentum transfer component the slope is<strong>in</strong>dependent on the beam momentum but isdifferent for 3 Hπ + and 3 Heπ 0 channels, whatviolates isosp<strong>in</strong> symmetry. The small momentumtransfer component, which is almost isotropic, is<strong>in</strong> agreement with IS.More detailed studies of the aboveprocesses were performed at the beam momentaclose to the threshold for the pd→ 3 Heη reaction[7-10]. It was expected that <strong>in</strong> this region theisosp<strong>in</strong> symmetry break<strong>in</strong>g should be large due toso called π 0 -η meson mix<strong>in</strong>g. The experimentalresults shown <strong>in</strong> figure 1 reveal the expectedvariation of the cross section ratio. The detailed,quite tedious, theoretical analysis of extract<strong>in</strong>g theπ 0 -η meson mix<strong>in</strong>g angle is <strong>in</strong> progress.We proposed also measurements of thecharge symmetry forbidden reactions. Theexpected cross sections are of the order ofpicobarns. Therefore up to now the measurementswere not possible. The new detection systemWASA <strong>in</strong>stalled at COSY accelerator openspossibilities to perform such studies. With<strong>in</strong>WASA collaboration the <strong>in</strong>vestigations willaddress charge symmetry forbidden reactionsdd→ 4 Heπ 0 and dd→ddπ 0 , together with the CSallowed channels (dd→ 3 Henπ 0 , dd→ 3 Hpπ 0 , …),necessary for the theoretical <strong>in</strong>terpretation. Theuse of polarized deuteron beam enables us also tostudy charge symmetry break<strong>in</strong>g <strong>in</strong> the deuteronbreak-up reaction dd→dpn. Such a complete setof data, analyzed on the basis of the ChiralPerturbation Theory, would allow to conclude onthe mass difference of up and down quarks.Fig. 1. Beam momentum dependence of the differential cross sectionratio for pd→ 3 Hπ + and pd→ 3 Heπ 0 reactions. Blue po<strong>in</strong>ts representthe values calculated us<strong>in</strong>g results of previous measurements. Redpo<strong>in</strong>ts show the results of our experiment, <strong>in</strong> which both reactionschannels were measured simultaneously.169


[1] A. Magiera, H. Machner, Nucl. Phys. A674, 515 (2000).[2] M. Betigeri, E. Białkowski, H. Bojowald, A. Budzanowski, A. Chatterjee, M. Drochner, J. Ernst,S. Förtsch, L. Fre<strong>in</strong>dl, D. Frekers, W. Garske, K. Grewer, A. Hamacher, S. Igel, J. Ilieva, L. Jarczyk,M. Jochmann, G. Kemmerl<strong>in</strong>g, K. Kilian, S. Kliczewski, W. Klimala, D. Kolev, T. Kutsarova, J. Lieb,G. Lippert, H. Machner, A. Magiera, H. Nann, E. Pentchev, H.S. Plendl, D. Protic, B. Razen, P. von Rossen,B.J. Roy, R. Siudak, J. Smyrski, R.V. Srikantiah, A. Strzałkowski, R. Tsenov, P.A. Żołnierczuk, K. Zwoll,Nucl. Inst. Methods A 421, 447 (1999).[3] J. Bojowald, A. Budzanowski, A. Chatterjee, J. Ernst, L. Fre<strong>in</strong>dl, D. Frekers, P. Hawranek, J. Ilieva,L. Jarczyk, K. Kilian, S. Kistryn, S. Kliczewski, W. Klimala, D. Kolev, M. Kravcikova, T. Kutsarova,J. Lieb, H. Machner, A. Magiera, G. Mart<strong>in</strong>ska, L. Pentchev, D. Protic, B. Razen, P. von Rossen, B.J. Roy,R. Siudak, J. Smyrski, A. Strzałkowski, R. Tsenov, M. Ulicny, J. Urban, A. Wrońska, Nucl. Inst. MethodsA 487, 314 (2002).[4] M.G. Betigeri, J. Bojowald, A. Budzanowski, A. Chatterjee, I. Ilieva, L. Jarczyk, K. Kilian, S. Kliczewski,W. Klimala, D. Kolev, T. Kutsarova, B.J. Lieb, H. Machner, A. Magiera, H. Nann, E. Pentchev,H.S. Plendl, D. Protic, B. Razen, P. von Rossen, B.J. Roy, R. Siudak, A. Strzałkowski, R. Tsenov, K. Zwoll,Nucl. Phys. A663&664, 963c (2000).[5] M. Betigeri, J. Bojowald, A. Budzanowski, A. Chatterjee, J. Ernst, L. Fre<strong>in</strong>dl, D. Frekers, W. Garske,K. Grewer, A. Hamacher, J. Ilieva, L. Jarczyk, K. Kilian, S. Kliczewski, W. Klimala, D. Kolev,T. Kutsarova, J. Lieb, H. Machner, A. Magiera, H. Nann, L. Pentchev, H.S. Plendl, D. Protic, B. Razen,P. von Rossen, B.J. Roy, R. Siudak, A. Strzałkowski, R. Tsenov, K. Zwoll, Nucl. Phys. A690, 473 (2001).[6] S. Abdel-Samad, J. Bojowald, A. Budzanowski, A. Chatterjee, J. Ernst, D. Frekers, P. Hawranek, J. Ilieva,L. Jarczyk, K. Kilian, S. Kliczewski, W. Klimala, D. Kolev, M. Kravcikova, T. Kutsarova, J. Lieb,H. Machner, A. Magiera, G. Mart<strong>in</strong>ska, H. Nann, L. Pentchev, D. Protic, P. von Rossen, B.J. Roy,R. Siudak, A. Strzałkowski, R. Tsenov, M. Ulicny, J. Urban, K. Zwoll, Phys. Lett. B 553, 31 (2003).[7] M. Abdel-Bary, P. Hawranek, J. Ilieva, K. Kilian, D. Kirilov, St. Kistryn, S. Kliczewski, W. Klimala,D. Kolev, M. Kravcikova, T. Kutsarova, J. Lieb, H. Machner, A. Magiera, G. Mart<strong>in</strong>ska, L. Pentchev,N. Piskunov, P. von Rossen, B.J. Roy, I. Sitnik, R. Siudak, J. Smyrski, R. Tsenov, M. Ulicny, J. Urban,A. Wrońska, Phys. Rev. C 68, 021603 (2003).[8] H. Machner, S. Abdel-Samad, J. Bojowald, A. Budzanowski, A. Chatterjee, J. Ernst, D. Frekers,W. Garske, P. Hawranek, J. Ilieva, R. Jahn, L. Jarczyk, K. Kilian, D. Kirillov, S. Kliczewski, W. Klimala,D. Kolev, M. Kravcikova, T. Kutsarova, J. Lieb, A. Magiera, G. Mart<strong>in</strong>ska, H. Nann, L. Pentchev,N. Piskunov, D. Protic, P. von Rossen, B.J. Roy, I. Sitnik, R. Siudak, M. Ulicny, A. Strzałkowski,R. Tsenov, J. Urban, K. Zwoll, Prog. Part. Nucl. Phys. 50, 605 (2003).[9] J. Bojowald, A. Budzanowski, A. Chatterjee, J. Ernst, L. Fre<strong>in</strong>dl, D. Frekers, P. Hawranek, J. Ilieva,L. Jarczyk, V. Jha, K. Kilian, D. Kirilov, S. Kliczewski, W. Klimala, D. Kolev, M. Kravcikova,T. Kutsarova, J. Lieb, H. Machner, A. Magiera, G. Mart<strong>in</strong>ska, H. Nann, L. Penchev, N. Piskunov, D. Protic,P. von Rossen, B.J. Roy, I. Sitnik, R. Siudak, A. Strzałkowski, R. Tsenov, M. Ulicny, J. Urban,A. Wrońska, Few-Body Systems Supplement 15, 61 (2003).[10] S. Abdel-Samad, J. Bojowald, A. Budzanowski, A. Chatterjee, J. Ernst, D. Frekers, P. Hawranek, J. Ilieva,L. Jarczyk, K. Kilian, S. Kliczewski, W. Klimala, D. Kolev, M. Kravcikova, T. Kutsarova, J. Lieb,H. Machner, A. Magiera, G. Mart<strong>in</strong>ska, H. Nann, L. Pentchev, D. Protic, P. von Rossen, B.J. Roy,R. Siudak, A. Strzałkowski, R. Tsenov, M. Ulicny, J. Urban, K. Zwoll, Eur. Phys. J. A18, 367 (2003).170


NUCLEAR STATES OF η, K MESONS, Σ HYPERONS & ANTIPROTONSJ.Dąbrowski, A.Deloff, J.Rożynek, J. Stepaniak, S.Wycech and P.ŻuprańskiA. Sołtan Institute for Nuclear Studies, WarszawaExperimental facilities: CELSIUS (Uppsala), COSY(Juelich)The search for <strong>nuclear</strong> states of exotichadrons follow the polish tradition ofhyper<strong>nuclear</strong> studies. However, the <strong>physics</strong> ofthese new states is different <strong>in</strong> two aspects: thestates are short-lived and the mechanisms of<strong>nuclear</strong> attraction is apparently not related to thestandard forces due to meson exchange. In thecases of K and η mesons the mechanism of theb<strong>in</strong>d<strong>in</strong>g is due to <strong>in</strong>ternal excitations of nucleons.Thus η mesons excite N*(1535) which is anexternal state to the N η system and is composedof quarks. The K mesons excite Λ(1405) whichmay be a KN bound state mixed with a quarkstate. Thus the <strong>in</strong>terest <strong>in</strong> this field is motivatedby studies of these resonances and the way theirproperties are affected by the <strong>nuclear</strong> medium.The N η state is coupled strongly to N πstate and such systems may be described by areal reaction matrix Ķ. S<strong>in</strong>ce there are no ηmeson beams, matrix Ķ at low energies is notwell determ<strong>in</strong>ed by the experimental mesonnucleonscatter<strong>in</strong>g data. F<strong>in</strong>al state <strong>in</strong>teractions ofη <strong>in</strong> few nucleon system yield additionalvaluable data. The figure <strong>in</strong>dicates strongattraction of η and deuteron at low energies [1].The peak at threshold reflects existence of aquasi-bound or a virtual state <strong>in</strong> the η-d system.A similar behavior was found <strong>in</strong> η-He systems <strong>in</strong>Saclay and Uppsala [2]. Strong <strong>in</strong>teractions arealso found <strong>in</strong> the N-N-η systems at low energies[3,4] but these are more difficult to <strong>in</strong>terpret.Experiments were performed to discover ηbound to heavier nuclei but none was successful,apparently due to high background and/or largewidths of those states.These <strong>in</strong>teractions have been studied bytheorists <strong>in</strong> our <strong>in</strong>stitute. A phenomenological Ķmatrix for N-η system was elaborated [5] andapplied to studies of η-d [6] and η-He f<strong>in</strong>al state<strong>in</strong>teractions [7]. A system of full three bodyequations was used to f<strong>in</strong>d the η-d scatter<strong>in</strong>glength [8] and a formalism was given to discussthe f<strong>in</strong>al three body ηNN states [9]. Oneconclusion is that the <strong>in</strong> deuteron and <strong>in</strong> 3 He ηmeson forms a virtual state but <strong>in</strong> 4 He the state isbound but unstable. While the ma<strong>in</strong> decay modeis due to the pion decay channel the twonucleon capture is also sizable [10].The idea that K meson may be bound <strong>in</strong>nuclei existed for a long time, and oneexpectation was that this b<strong>in</strong>d<strong>in</strong>g may be strongenough to make such states long-lived [11].Discoveries of such states <strong>in</strong> KNNN and KNNsystems were reported by Japanese and Italiangroups, but these leave some uncerta<strong>in</strong>ty <strong>in</strong> the<strong>in</strong>terpretation. The b<strong>in</strong>d<strong>in</strong>g mechanism may bedue to excitation of nucleon to Λ(1405) but also toΣ(1385) [12].The <strong>nuclear</strong> potential for Σ hyperon, isknown from Σ atoms [13] to be attractive at the<strong>nuclear</strong> surface. Inside nuclei this potential wascalculated with the Nijmegen models of thebaryon-baryon <strong>in</strong>teraction. The analysis of the(K - ,π ± ) and (π - ,K + ) reactions suggest that V Σ isrepulsive <strong>in</strong>side nuclei [14,15]. This makes theexistence of large Σ hypernuclei unlikely.Fig. 1. The cross section for pp→dη divided by phase space.Q – energy excess.171


[1] H. Calén, J. Dyr<strong>in</strong>g, K. Fransson, L. Gustafsson, S. Häggström, B. Höistad, J. Johanson,A. Johansson, T. Johansson, A. Khoukaz, S. Kullander, R. J. M. Y. Ruber, and J. Złomańczuk B. Morosov,A. Povtorejko, A. Sukhanov, and A. Zernov, A.Kupść, P.Marc<strong>in</strong>iewski, J. Stepaniak, R. Bilger,W. Brodowski, H. Clement, and G. J. Wagner ,C. Ekström , J.Zabierowski, A. Bondar, A. Kuzm<strong>in</strong>,B. Shwartz, V. Sidorov, and A. Sukhanov , A.Turowiecki ,Z.Wilhelmi, K. Kilian, W. Oelert, and T. SefzickV. Sopov and V. Tchernychev Phys.Rev.Lett.80( 1998) 2069[2].R. Bilger, W. Brodowski, H. Calén, H. Clement, C. Ekström, G. Fäldt, K. Fransson, L. Gustafsson,B. Höistad, A. Johansson, T. Johansson, K. Kilian, S. Kullander, A.Kupść , G. Kurz, P. Marc<strong>in</strong>iewski,B. Morosov, A. Mörtsell, W. Oelert, V. Renken, R. J. M. Y. Ruber, B. Shwartz, J. Stepaniak, A. Sukhanov,P. Thörngren-Engblom, A. Turowiecki, G. J. Wagner, Z.Wilhelmi, C. Wilk<strong>in</strong>, J.Zabierowski, andJ. Złomańczuk , Phys.Rev.C65(2002)044608[3] M. Abdel-Bary, S. Abdel-Samad, R. Bilger, K.-Th. Br<strong>in</strong>kmann, H. Clement, S. Dshemuchadse,E. Dorochkevitch, H. Dutz, W. Eyrich, A. Erhardt, D. Filges, A. Filippi, H. Freiesleben, M. Fritsch, R. Geyer,A. Gillitzer, D. Hesselbarth, B. Jakob, L. Karsch, K. Kilian, H. Koch, J. Kreß, E. Kuhlmann, S. Marcello,S. Marw<strong>in</strong>ski, S. Mauro, W. Meyer, P. Michel, K. Möller, H. P. Morsch, L. Naumann, N. Paul, M. Richter,E. Roderburg, M. Rogge, A. Schamlott, M. Schmitz, P. Schönmeier, M. Schulte-Wisserman, W. Schroeder,T. Sefzick, F. St<strong>in</strong>z<strong>in</strong>g, G.Y. Sun, G.J. Wagner, M. Wagner, A. Wilms, P. W<strong>in</strong>tz, S. Wirth and , P.Żuprański ,Eur. Phys.Journ. A16(2003)127[4] H. Calén, J. Dyr<strong>in</strong>g, K. Fransson, L. Gustafsson, S. Häggström, B. Höistad, A. Johansson, T.Johansson,S.Kullander, A. Mörtsell, R. Ruber, U. Schuberth, J. Złomańczuk ,C. Ekström K. Kilian, W. Oelert,T. Sefzick ,R. Bilger, W. Brodowski, H. Clement, G. J. Wagner ,A. Bondar, A. Kuzm<strong>in</strong>, B. Shwartz,V. Sidorov, A. Sukhanov, A.Kupść, P.Marc<strong>in</strong>iewski, J. Stepaniak, V. Dun<strong>in</strong>, B. Morosov, A. Povtorejko,A. Sukhanov, A. Zernov , J.Zabierowski, A.Turowiecki , Z.Wilhelmi , Phys.Rev.C58(1998)2667.[5] A.M.Green and S. Wycech, Phys. Rev.C 71 (2005)014001, Phys.Rev. C 55 (1997) 2167R[6] S. Wycech A.M.Green, Phys.Rev. C 64 (2001) 045206.[7] A.M.Green and S. Wycech , Phys. Rev.C 69 (2003)[8] A.Deloff , Phys. Rev. C61 (2000) 024004[9] A.Deloff , Phys. Rev. C69 (2004) 035206[10] J.Kulpa S. Wycech, Acta.Phys.Pol. 71 (2005)014001[11] S. Wycech, Nucl.Phys. A450 (1986)399c[12] A.M.Green and S. Wycech, Int.Journ.Mod.Phys. (2007).[13] J.Dąbrowski, J.Rożynek, G.S.Anagnostatos, Eur.Phys.Journ.A 14, 125 (2002).[14] J.Dąbrowski, J.Rożynek, Int.Journ.Mod.Phys.E 16, 603 (2007).[15] J.Dąbrowski, Phys.Rev.C 60, 025205 (1999}172


HYPERON RESONANCES PRODUCED IN PROTON-PROTONCOLLISIONSI. Zychor 1 , P. Kulessa 2 , K. Pysz 21 A. Sołtan Institute for Nuclear Studies, Świerk2 H. Niewodniczański Institute of Nuclear Physics PAN, KrakówExperimental facility: ANKE at COSY, IKP, Forschungszentrum Jülich, GermanyThe question of how hadrons arise from QCD iscentral to a fundamental understand<strong>in</strong>g ofhadronic multiquark and gluon systems. Newexperimental data may pave the way to achievethis understand<strong>in</strong>g <strong>in</strong> conjunction with latticeQCD, which is poised to provide the theoretical<strong>in</strong>sight <strong>in</strong>to strong QCD.The production of hyperons and their decayproperties have been a focus of experimental<strong>in</strong>vestigations ever s<strong>in</strong>ce their discovery, mostly<strong>in</strong> hadron-<strong>in</strong>duced reactions. In comparison to theexcitation spectrum of the nucleon resonances(N, ∆), the excited states of hyperons (Λ, Σ) are stillmuch less well known. Of particular <strong>in</strong>terest is theΛ(1405) where quark models have difficulties toexpla<strong>in</strong> its low mass, and which alternatively hasbeen <strong>in</strong>terpreted as a K N bound state or it mayeven be of exotic type. On the other hand, theΣ(1480) hyperon is far from be<strong>in</strong>g an establishedresonance. Our program is thus focused on the<strong>in</strong>vestigation of production and decay ofhyperons produced <strong>in</strong> pp collisions.At the COoler SYnchrotron COSY at theIKP-Forschungszentrum Jülich hyperons Y 0 withmasses up to 1540 MeV/c 2 are produced directly<strong>in</strong> pp → pK + Y 0 reactions at a proton beammomentum of up to 3.65 GeV/c. The detectionsystems of the magnetic spectrometer ANKE,placed at one <strong>in</strong>ternal target position of COSY,simultaneously register particles of either chargeand measure their momenta [1-5]. Indications forthe production of a neutral excited hyperon havebeen found <strong>in</strong> reactions <strong>in</strong>duced by protons<strong>in</strong>cident on a hydrogen cluster-jet target bydetect<strong>in</strong>g charged pions from the heavy hyperon0± mdecays (like Σ (1480 ) → Σ π ) <strong>in</strong> co<strong>in</strong>cidencewith K + p pairs. Consistent results were obta<strong>in</strong>edfor both f<strong>in</strong>al states provid<strong>in</strong>g an evidence for theproduction of a neutral excited hyperon with amass of (1480±15) MeV/c 2 and a width of(60±15) MeV/c 2 . The production cross section is ofthe order of few hundred nanobarns. S<strong>in</strong>ce theisosp<strong>in</strong> of the Y 0* has not been determ<strong>in</strong>ed here, itcould either be an observation of the Σ 0 (1480) oralternatively of the Λ(1480) hyperon. Relativisticquark models for the baryon spectrum do notpredict any excited hyperon <strong>in</strong> this mass rangeand so the Y 0* may be of exotic nature [6].In addition, <strong>in</strong> the pp → K + pY 0 reaction we havebeen <strong>in</strong>vestigat<strong>in</strong>g the decay of Y 0* hyperons viaΣ 0 π 0 . Such a decay mode allows to separateΛ(1405) from the lighter but overlapp<strong>in</strong>g hyperonΣ 0 (1385) and thus gives the l<strong>in</strong>e shape ofthe Λ(1405). Prelim<strong>in</strong>ary cross section for theproduction of Λ(1405) <strong>in</strong> the reaction at3.65 GeV/c beam is estimated to be of the order offew microbarns.Fig. 1. Miss<strong>in</strong>g-mass MM(pK + ) spectra for the reaction+ + −pp → pK π X (upper part) and+ − +pp → pK π X (lower).Experimental po<strong>in</strong>ts with statistical errors are compared to the fittedoverall Monte Carlo simulations (shaded histogram, blue). Thecontribution from the Y 0* resonance with a mass of(1480±15) MeV/c 2 and a width of (60±15) MeV/c 2 is shown as asolid histogram (red).173


[1] S. Barsov, U. Bechstedt, W. Bothe, N. Bongers, G. Borchert, W. Borgs, W. Brautigam, M. Buescher,W. Cass<strong>in</strong>g, V. Chernyshev, B. Chiladze, J. Dietrich, M. Drochner, S. Dymov, W. Erven, R. Esser,A. Franzen, E.S. Golubeva, D. Gotta, T. Grande, D. Grzonka, A. Hardt, M. Hartmann, V. Hejny, L.v.Horn,L. Jarczyk, H. Junghans, A. Kacharava, B. Kamys, A. Khoukaz, T. Kirchner, F. Klehr, W. Kle<strong>in</strong>, H.R. Koch,V.I. Komarov, L. Kondratyuk, V. Koptev, S. Kopyto, R. Krause, P. Kravtsov, V. Kruglov, P. Kulessa,A. Kulikov, N. Lang, N. Langenhagen, A. Lepges, J. Ley, R. Maier, S. Mart<strong>in</strong>, G. Macharashvili,S. Merzlyakov, K. Meyer, S. Mikirtychyants, H. Muller, P. Munhofen, A. Mussgiller, M. Nekipelov,V. Nelyub<strong>in</strong>, M. Nioradze, H. Ohm, A. Petrus, D. Prasuhn, B. Prietzschk, H.J. Probst, K. Pysz,F. Rathmann, B. Rimarzig, Z. Rudy, R. Santo, H. Paetz gen.Schieck, R. Schleichert, A. Schneider,C. Schneider, H. Schneider, U. Schwarz, H. Seyfarth, A. Sibirtsev, U. Siel<strong>in</strong>g, K. Sistemich, A. Selikov,H. Stechemesser, H.J. Ste<strong>in</strong>, A. Strzalkowski, K.H. Watzlawik, P. Wustner, S. Yashchenko, B. Zalikhanov,N. Zhuravlev, K. Zwoll, I.. Zychor, O.W.B. Schult, H. Ströher, Nucl.Instrum. Meth. A462, 364 (2001)[2] V. Koptev, M. Buescher, H. Junghans, M. Nekipelov, K. Sistemich, H. Ströher, V. Abaev, H.-H. Adam,R. Baldauf, S. Barsov, U. Bechstedt, N. Bongers, G. Borchert, W. Borgs, W. Braeutigam, W. Cass<strong>in</strong>g,V. Chernyshev, B. Chiladze, M. Debowski, J. Dietrich, M. Drochner, S. Dymov, J. Ernst, W. Erwen,R. Esser, P. Fedorets, A. Franzen, D. Gotta, T. Grande, D. Grzonka, G. Hansen, M. Hartmann, V. Hejny,L.v.Horn, L. Jarczyk, A. Kacharava, B. Kamys, A. Khoukaz, T. Kirchner, F. Klehr, H.R. Koch,V.I. Komarov, S. Kopyto, R. Krause, P. Kravtsov, V. Kruglov, P. Kulessa, A. Kulikov, V. Kurbatov,N. Lang, N. Langenhagen, I. Lehmann, A. Lepges, J. Ley, B. Lorentz, G. Macharashvili, R. Maier,S. Mart<strong>in</strong>, S. Merzliakov, K. Meyer, S. Mikirtychyants, H. Mueller, P. Munhofen, A. Mussgiller,V. Nelub<strong>in</strong>, M. Nioradze, H. Ohm, A. Petrus, D. Prasuhn, B. Prietzschk, H.J. Probst, D. Protic, K. Pysz,F. Rathmann, B. Rimarzik, Z. Rudy, R. Santo, H. Paetz gen. Schieck, R. Schleichert, A. Schneider,Chr. Schneider, H. Schneider, G. Schug, O.W.B.Schult, H. Seyfarth, A. Sibirtsev, H. Stechemesser,H.J. Ste<strong>in</strong>, A. Strzalkowski, K.H. Watzlawik, C. Wilk<strong>in</strong>, P. Wuestner, S. Yashenko, B. Zalikhanov,N. Zhuravlev, P. Zolnierczuk, K. Zwoll, I. Zychor, Phys. Rev. Lett. 87, 022301 (2001)[3] M. Buescher, H. Junghans, V. Koptev, M. Nekipelov, K. Sistemich, H. Ströher, S. Barsov, G. Borchert,W. Borgs, M. Debowski, W. Erven, R. Esser, P. Fedorets, D. Gotta, M. Hartmann, V. Hejny, A. Kacharava,H.R. Koch, V. Komarov, P. Kulessa, A. Kulikov, G. Macharashvili, S. Merzlyakov, S. Mikirtychyants,H. Muller, A. Mussgiller, R. Nellen, M. Nioradze, H. Ohm, A. Petrus, F. Rathmann, Z. Rudy,R. Schleichert, C. Schneider, O.W.B. Schult, H.J. Ste<strong>in</strong>, I. Zychor, Nucl. Instrum. Meth. A481, 378 (2002)[4] I.Zychor, Acta Phys. Polon. B33, 521 (2002)[5] V. Kleber, M. Buescher, V. Chernyshev, S. Dymov, P. Fedorets, V. Grish<strong>in</strong>a, C. Hanhart, M. Hartmann,V. Hejny, A. Khoukaz, H.R. Koch, V. Komarov, L. Kondratyuk, V. Koptev, N. Lang, S. Merzliakov,S. Mikirtychyants, M. Nekipelov, H. Ohm, A. Petrus, D. Prasuhn, R. Schleichert, A. Sibirtsev, H.J. Ste<strong>in</strong>,H. Ströher, K.H. Watzlawik, P. Wustner, S. Yaschenko, B. Zalikhanov, I. Zychor, Phys. Rev. Lett. 91,172304 (2003)[6] I. Zychor, V. Koptev, M. Buescher, A. Dzyuba, I. Keshelashvili, V. Kleber, H.R. Koch, S. Krewald,Y. Maeda, S. Mikirtychyants, M. Nekipelov, H. Ströher, C. Wilk<strong>in</strong>, Phys. Rev. Lett. 96, 012002 (<strong>2006</strong>)174


NONMESONIC DECAY OF Λ - HYPERON IN HEAVY HYPERNUCLEIL.Jarczyk 1 , B.Kamys 1 , P.Kulessa 1,2 , K.Pysz 1,2 , Z.Rudy 1 , A.Strzałkowski 1 , I.Zychor 31 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków3 A. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: Cooler Synchrotron COSY, Forschungszentrum JuelichThe nonmesonic Λ-decay Λ+N → N+Nrepresents an example for the nonleptonic weak<strong>in</strong>teraction of baryons with a change ofstrangeness (∆S = 1) and isosp<strong>in</strong> (∆I = 1/2 or 3/2).The study of the nonmesonic decay, whichproceeds via a weak <strong>in</strong>teraction only (theCoulomb and strong <strong>in</strong>teractions preserve thestrangeness) allows to study both parity violat<strong>in</strong>gand parity conserv<strong>in</strong>g amplitudes <strong>in</strong> contrast toe.g. the nucleon-nucleon weak <strong>in</strong>teraction, wherethe latter amplitudes are completely masked bystrong and Coulomb forces. The only possibilityto study nonmesonic decay of Λ-hyperon is<strong>in</strong>vestigation of hypernuclei s<strong>in</strong>ce at presentneither beams nor targets of hyperons areavailable. Heavy hypernuclei are favorized forthis purpose, because another mode of the Λ-hyperon decay, i.e. Λ→π+N, which dom<strong>in</strong>atesdecay of free hyperons is strongly Pauli blockedfor all but the lightest hypernuclei. We report hereon the <strong>in</strong>vestigations of production and decay ofheavy hypernuclei <strong>in</strong> proton <strong>in</strong>teraction with Au,Bi, and U targets [1-9]. The experiments havebeen performed on the <strong>in</strong>ternal beam of COSYaccelerator <strong>in</strong> Forschungszentrum Juelich us<strong>in</strong>gproton beams of two energies: 1 GeV, which isbelow the threshold for Λ-hyperon production,and 1.5 or 1.9 GeV at which hyperons can beproduced. The th<strong>in</strong> targets of Au, Bi or U(thickness of order of 30 µg/cm 2 ) with th<strong>in</strong> carbonback<strong>in</strong>g [5] , placed <strong>in</strong> the circulat<strong>in</strong>g beam ofCOSY accelerator were bombarded with 1 GeVand 1.5 (1.9) GeV protons <strong>in</strong> the subsequentacceleration cycles. This allowed for backgroundmeasurement (at 1 GeV) and hypernucleusproduction (at higher energies ) under identicaltarget conditions. The recoil shadow metod hasbeen applied for measurement of lifetime ofheavy hypernuclei produced <strong>in</strong> p+Bi [4], p+Au [7]and p+U [8] reactions. Details of the experimentalsetup and procedure are described <strong>in</strong> Ref. [5]whereas properties of the produced hypernucleiand the probability of their production and decaywere subject of theoretical estimations <strong>in</strong> Refs.[1,2]. The follow<strong>in</strong>g lifetimes of the Λ-hyperonhave been obta<strong>in</strong>ed <strong>in</strong> the reported <strong>in</strong>vestigations:130±20 ps (Au target), 161±16 ps (Bi target) and138±18 ps (U target) giv<strong>in</strong>g the average value ofthe lifetime of Λ-hyperon <strong>in</strong> heavy hypernuclei145±11 ps, <strong>in</strong> excellent agreement with results ofstudies performed with antiprotons on Bi and Utargets ( Phys.Rev. C47, 1957 (1993) ) , i.e. 143±36ps, however, much more accurate. The lifetimesobta<strong>in</strong>ed from electron <strong>in</strong>duced production ofheavy hypernuclei on Bi and U targets ( Sov. J.Nucl. Phys 43, 856 (1986); 46, 769 (1987) ) areorder of magnitude larger. Our experiments cangive estimation on cross section of such longliv<strong>in</strong>g hypernuclei to be smaller than 80nanobarns whereas cross section for production ofhypernuclei with lifetime of about 145 ps wasfound to be ~ 350 microbarns.In summary, the performed experiments havelead to the most precise value of the lifetime of Λ -hyperons <strong>in</strong> very heavy nuclei known up to now.Fig.1. The lifetimes of proton- and antiproton-produced hypernucleion Au, Bi and U targets. The horizontal bars present the statisticaland systematic errors added <strong>in</strong> quadrature. The position and width ofthe yellow vertical bar display the overall average value for thelifetime and its error, respectively. The smooth curve was evaluatedadd<strong>in</strong>g Gaussian curves represent<strong>in</strong>g results from <strong>in</strong>dividualexperiments.175


[1] Z. Rudy, T.Demski, L. Jarczyk, B. Kamys, P. Kulessa, A. Strzałkowski, W. Cass<strong>in</strong>g, O.W.B. Schult,Z. Phys. A351, 217 (1995).[2] Z. Rudy, W.Cass<strong>in</strong>g, L. Jarczyk, B. Kamys, P. Kulessa, O.W.B. Schult, A. Strzałkowski,Z. Phys. A354, 445 (<strong>1996</strong>)[3] H. Ohm, T. Hermes, W. Borgs, H.R. Koch, R. Maier, D. Prasuhn, H.J. Ste<strong>in</strong>, O.W.B. Schult, K. Pysz,Z. Rudy, L. Jarczyk, B. Kamys, P. Kulessa, A. Strzałkowski, W. Cass<strong>in</strong>g, Y. Uozumi, I. Zychor,Phys. Rev. C55, 3062 (1997)[4] P. Kulessa, Z. Rudy, M. Hartmann, K. Pysz, B. Kamys, I. Zychor, H. Ohm, L. Jarczyk, A. Strzałkowski,W.Cass<strong>in</strong>g, H. Hodde, W. Borgs, H.R. Koch, R. Maier, D. Prasuhn, M. Matoba, Z. Rudy,Phys. Lett. B427, 403 (1998)[5] K. Pysz, I. Zychor, T. Hermes, M. Hartmann, H. Ohm, P. Kulessa, W. Borgs, H.R. Koch, R. Maier,D. Prasuhn, Z. Rudy, B. Kamys, W. Cass<strong>in</strong>g, J. Pfeiffer, Y. Uozumi, L. Jarczyk, A. Strzałkowski,O.W.B. Schulz, Nucl. Inst. Meth. A420, 356 (1999)[6] W. Cass<strong>in</strong>g, L. Jarczyk, B. Kamys, P. Kulessa, Z. Rudy, Z. Rudy, A. Strzałkowski,Eur. Phys. J. A5, 127 (2001)[7] B. Kamys, P. Kulessa, H. Ohm, K. Pysz, Z. Rudy, H. Stroeher,Eur. Phys. J. A11, 1 (2001)[8] P. Kulessa, W. Cass<strong>in</strong>g, L. Jarczyk, B. Kamys, H. Ohm, K. Pysz, Z. Rudy, H. Stroeher,Acta Phys. Polon. B33, 603 (2002)[9] W. Cass<strong>in</strong>g, L. Jarczyk, B. Kamys, P. Kulessa, H. Ohm, K. Pysz, Z. Rudy, O.W.B. Schult, H. Stroeher,Eur. Phys. J. A16, 549 (2003)176


INTERACTION OF THE η AND η΄ MESONS WITH NUCLEONSJ. Balewski 1 , A. Budzanowski 1 , E. Czerwiński 2 , R. Czyżykiewicz 2 , D. Gil 2 ,M. Hodana 2 , M. Janusz 2 , L. Jarczyk 2 , B. Kamys 2 , P. Klaja 2 , P. Kow<strong>in</strong>a 3 , A. Kozela 1 ,J. Majewski 2 , W. Migdał 2 , P. Moskal 2 , C. Piskor-Ignatowicz 2 , J. Przerwa 2 ,B. Rejdych 2 , T. Rożek 3 , M. Siemaszko 3 , J. Smyrski 2 , M. Sokołowski 2 ,A. Strzałkowski 2 , D. Wyrwa 2 , W. Zipper 31 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków2 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków3 Institute of Physics, University of Silesia, KatowiceExperimental facility: COSY-11 facility at the Cooler Synchrotron COSY, Jülich, GermanyIn the low energy regime where the<strong>in</strong>teraction between quarks and gluons cannot betreated perturbatively, there exists no clearunderstand<strong>in</strong>g of the processes governed by thestrong forces. The phenomena <strong>in</strong> this regime arenot calculable us<strong>in</strong>g the particles and fields of theStandard Model. Here hadrons become therelevant degrees of freedom and the knowledgeof their <strong>in</strong>teractions is of the basic importance. Inthis report we give account of the studies of the<strong>in</strong>teractions between the η and η΄ mesons withnucleons. It is rather challeng<strong>in</strong>g to conduct suchresearch because these mesons decay with<strong>in</strong> adistance of tens of femtometers render<strong>in</strong>g theirdirect detection impossible. It is also completelyunfeasible to accomplish out of them a beam or atarget. Therefore, we have produced these mesons<strong>in</strong> the collisions of protons close to the k<strong>in</strong>ematicalthreshold where the outgo<strong>in</strong>g particles possesslow relative velocities and rema<strong>in</strong> <strong>in</strong> the distanceof few femtometers long enough to experience thestrong <strong>in</strong>teraction which may manifest itself <strong>in</strong> ameasurable manner.Us<strong>in</strong>g the stochastically cooled protonbeam of the cooler synchrotron COSY and theCOSY-11 facility we have conductedmeasurements of the pp→ppη and pp→ppη΄reactions close to the k<strong>in</strong>ematical threshold. Theremarkable difference between the shape of theexcitation functions of the pp→ppη and pp→ppη΄reactions allowed to conclude that the <strong>in</strong>teractionbetween the η΄ meson and the proton issignificantly weaker than the analogous η-proton<strong>in</strong>teraction. This is the first ever empiricalappraisal of this hitherto entirely unknown force.As far as the production dynamics is concerned,the observed large difference of the total crosssections for the creation of the η and η΄ mesons<strong>in</strong>dicates that they are produced via differentmechanisms. The large cross section for the ηmeson implies that it is created via baryonicresonance.Fig. 1. Total cross section as a function of the excess energy Q for thereactions pp→ppη (squares) and pp→ppη΄ (circles). The resultsdeterm<strong>in</strong>ed us<strong>in</strong>g the COSY-11 setup and the synchrotron COSY(red and blue) are shown together with the data from the CELSIUSand SATURNE facilities (black). The dashed l<strong>in</strong>es <strong>in</strong>dicate a phasespace <strong>in</strong>tegral normalized arbitrarily. The solid l<strong>in</strong>es show the phasespace distribution with <strong>in</strong>clusion of the proton-proton strong andCoulomb <strong>in</strong>teraction. The result of calculations tak<strong>in</strong>g <strong>in</strong>to accountadditionally the <strong>in</strong>teraction between the η meson and the proton ispresented by the red dotted l<strong>in</strong>e.177


[1] P. Moskal, J.T. Balewski, A. Budzanowski, H. Dombrowski, C. Goodman, D. Grzonka,J. Haidenbauer, C. Hanhart, L. Jarczyk, M. Jochmann, A. Khoukaz, K. Kilian, M. Köhler,A. Kozela, T. Lister,U.G. Meissner, N. Nikolaev, W. Oelert, C. Quentmeier, R. Santo,G. Schepers, U. Seddik, T. Sefzick, J. Smyrski, M. Sokołowski, A. Strzałkowski, C. Thomas,M. Wolke, P. Wüstner, D. Wyrwa, Phys. Rev. Lett. 80 (1998) 3202[2] V. Baru, J. Haidenbauer, C. Hanhart, A. Kudryavtsev, P. Moskal, J. Speth, Eur. Phys. J. A6 (1999)445[3] J. Smyrski, P. Wüstner, J.T. Balewski, A. Budzanowski, H. Dombrowski, D. Grzonka,L. Jarczyk, M. Jochmann, A. Khoukaz, K. Kilian, P. Kow<strong>in</strong>a, M. Köhler, T. Lister, P. Moskal,W. Oelert, C. Quentmeier, R. Santo, G. Schepers, U. Seddik, T. Sefzick, S. Sewer<strong>in</strong>,A. Strzałkowski, C. Thomas,M. Wolke, Phys. Lett. B 474 (2000) 182[4] P. Moskal, H.H. Adam, J.T. Balewski, V. Baru, A. Budzanowski, D. Grzonka, J. Haidenbauer,L. Jarczyk, A. Khoukaz, K. Kilian, M. Köhler, P. Kow<strong>in</strong>a, A. Kudryavtsev, N. Lang, T. Lister,W. Oelert, C. Quentmeier, R. Santo, G. Schepers, T. Sefzick, S. Sewer<strong>in</strong>, M. Siemaszko,J. Smyrski, A. Strzałkowski, M. Wolke, P. Wüstner, W. Zipper, Phys. Lett. B 474 (2000) 416[5] P. Moskal, H.H. Adam, J.T. Balewski, A. Budzanowski, J. Budziński, D. Grzonka, L. Jarczyk,A. Khoukaz, K. Kilian, P. Kow<strong>in</strong>a, N. Lang, T. Lister, W. Oelert, C. Quentmeier, R. Santo,G. Schepers, T. Sefzick, S. Sewer<strong>in</strong>, M. Siemaszko, J. Smyrski, A. Strzałkowski, M. Wolke,P. Wüstner, W. Zipper, Phys. Lett. B 482 (2000) 356[6] P. W<strong>in</strong>ter, H.H. Adam, F. Bauer, A. Budzanowski, R. Czyżykiewicz, T. Götz, D. Grzonka,L. Jarczyk, A. Khoukaz, K. Kilian, C. Kolf, P. Kow<strong>in</strong>a, N. Lang, T. Lister, P. Moskal, W. Oelert,C. Quentmeier, T. Rozek, R. Santo, G. Schepers, T. Sefzick, M. Siemaszko, J. Smyrski,S. Steltenkamp, A. Strzałkowski, M. Wolke, P. Wüstner, W. Zipser, Phys. Lett. B 544 (2002) 251[7] P. Moskal, M. Wolke, A. Khoukaz, W. Oelert, Prog. Part. Nucl. Phys. 49 (2002) 1[8] A. Khoukaz, I. Geck, C. Quentmeier, H.H. Adam, A. Budzanowski, R. Czyżykiewicz,D. Grzonka, L. Jarczyk, K. Kilian, P. Kow<strong>in</strong>a, N. Lang, T. Lister, P. Moskal, W. Oelert,C. Piskor-Ignatowicz, T. Rożek, R. Santo, G. Schepers, T. Sefzick, S. Sewer<strong>in</strong>, M. Siemaszko,J. Smyrski, S. Steltenkamp,A. Strzałkowski, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, W. Zipper, Eur.Phys. J. A 22 (2004) 293[9] P. Moskal, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, M. Janusz, L. Jarczyk,B. Kamys, A. Khoukaz, K. Kilian, P. Kow<strong>in</strong>a, K. Nakayama, W. Oelert, C. Piskor-Ignatowicz,J. Przerwa, T. Rożek, R. Santo, G. Schepers, T. Sefzick, M. Siemaszko, J. Smyrski,S. Steltenkamp, A. Täschner, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, W. Zipper, Phys. Rev. C 69(2004) 025203[10] P. Klaja, P. Moskal, H.H. Adam, A. Budzanowski, E. Czerwiński, R. Czyżykiewicz, D. Gil,D. Grzonka, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, J. Majewski, W. Migdał,W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, J. Ritman, T. Rożek, R. Santo, T. Sefzick,M. Siemaszko, J. Smyrski, A. Täschner, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, Z. Zhang,W. Zipper, Acta Phys. Slov. 56 (<strong>2006</strong>) 251[11] R. Czyżykiewicz, P. Moskal, H.H. Adam, A. Budzanowski, E. Czerwiński, D. Gil,D. Grzonka,M Hodana, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, P. Klaja,B. Lorentz, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, B. Rejdych, J. Ritman, T. Sefzick,M. Siemaszko, J. Smyrski, A. Täschner, K. Ulbrich, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner,W. Zipper, Phys. Rev. Lett. 98 (2007) 122003178


INVESTIGATION OF THE HYPERON-NUCLEON INTERACTIONJ. Balewski 1 , A. Budzanowski 1 , R. Czyżykiewicz 2 , M. Janusz 2 , L. Jarczyk 2 , B. Kamys 2 ,P. Klaja 2 , P. Kow<strong>in</strong>a 3 , A. Kozela 1 , P. Moskal 2 , C. Piskor-Ignatowicz 2 , J. Przerwa 2 ,T. Rożek 3 , M. Siemaszko 3 , J. Smyrski 2 , M. Sokołowski 2 , A. Strzałkowski 2 , D. Wyrwa 2 ,W. Zipper 31 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków2 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków3 Institute of Physics, University of Silesia, KatowiceExperimental facility: COSY-11 facility at the Cooler Synchrotron COSY, Jülich, GermanyThe existence of light hypernuclei, such as3 He Λ, shows the low energy Λ-p <strong>in</strong>teraction to bestrongly attractive, though not sufficient to b<strong>in</strong>dthe hyper-deuteron. The hyperon-nucleon<strong>in</strong>teraction is of special <strong>in</strong>terest s<strong>in</strong>ce it is<strong>in</strong>fluenced by the strange quark content of thehyperon. However, <strong>in</strong> contrast to the nucleonnucleoncase, due to the short lifetime ofhyperons, the direct measurements of low-energyhyperon-nucleon scatter<strong>in</strong>g are sparse and theresult<strong>in</strong>g parameters are rather poorly known.Us<strong>in</strong>g the COSY-11 detection setup and the coolersynchrotron COSY we have determ<strong>in</strong>ed theexcitation functions of the pp→pK + Λ, pp→pK + Σ 0 ,and pp→nK + Σ + reactions <strong>in</strong> the near thresholdenergy range. The reactions have been identifiedby the registration of the outgo<strong>in</strong>g nucleon andthe K + meson, and the usage of the miss<strong>in</strong>g masstechnique for the determ<strong>in</strong>ation of hyperons.Surpris<strong>in</strong>gly, the total cross section for theproduction of the hyperon Λ was found to be by afactor of thirty larger than this for Σ 0 . It is <strong>in</strong>drastic contrast to the results of the cross sectionratio σ(pp→pK + Λ)/σ(pp→pK + Σ 0 ) determ<strong>in</strong>ed athigher energies, where it was found to be equal tothree as expected from the isosp<strong>in</strong> relations. Thisobservation raised an <strong>in</strong>terest<strong>in</strong>g questionwhether the drastic <strong>in</strong>crease of the cross sectionratio near threshold is a mere effect of the Λ-p<strong>in</strong>teraction or whether it is due to the reactionmechanism. To expla<strong>in</strong> this unexpected <strong>in</strong>crease,different models have been proposed based on thecoherent exchange of the π and K mesons or onthe excitation of the <strong>in</strong>termediat<strong>in</strong>g resonances.All these models, failed however to predict thevalue of the total cross section for the pp→nK + Σ +reaction. To understand the hyperon-nucleon<strong>in</strong>teraction further thorough theoretical<strong>in</strong>vestigations are needed. They can be confrontedwith the empirical base delivered dur<strong>in</strong>g the lastdecade by the COSY-11 group.Figure 1 presents the data together withexpectations derived under the assumption of thehomogenously populated phase space and thephase-space modified by the hyperon-nucleon<strong>in</strong>teraction. The comparison of the calculationsand the data suggests much weaker f<strong>in</strong>al-state<strong>in</strong>teraction <strong>in</strong> the p-Σ 0 channel than <strong>in</strong> the case ofthe p-Λ. Interest<strong>in</strong>gly the parameters derived forthe n- Σ + potential are comparable to those for thep-Λ system. This may <strong>in</strong>dicate a strong n- Σ +<strong>in</strong>teraction but due to the present large systematicuncerta<strong>in</strong>ties the data are also consistent with apure phase space distribution.Fig. 1. Total cross section as a function of the excess energy Q for thenear threshold production of the hyperons Λ, Σ 0 and Σ + via thepp→pK + Λ, pp→pK + Σ 0 , and pp→nK + Σ + reactions, respectively. Thedashed l<strong>in</strong>es show excitation functions calculated for non-<strong>in</strong>teract<strong>in</strong>gparticles. The solid l<strong>in</strong>es <strong>in</strong>dicate results after the <strong>in</strong>clusion of thehyperon-nucleon <strong>in</strong>teraction which was fitted to conform the data.All superimposed l<strong>in</strong>es were normalized <strong>in</strong> amplitude to the data.179


[1] J.T. Balewski. A. Budzanowski, H. Dombrowski, C. Goodman, D. Grzonka, J. Haidenbauer,C. Hanhart, L. Jarczyk, M. Jochmann, A. Khoukaz, K. Kilian, M. Köhler, A. Kozela, T. Lister,R. Maier, P. Moskal, W. Oelert, D. Prasuhn, C. Quentmeier, R. Santo, G. Schepers, U. Seddik,T. Sefzick, J. Smyrski, M. Sokołowski, A. Strzałkowski, M. Wolke, P. Wüstner, Phys. Lett. B388 (<strong>1996</strong>) 859[2] J.T. Balewski. R. Bilger, A. Budzanowski, H. Clement, K.H. Diart, H. Dombrowski, K. Foehl,C. Goodman, D. Grzonka, H. Gutschmidt, K. Heitl<strong>in</strong>ger, L. Jarczyk, M. Jochmann, M. Karnadi,A. Khoukaz, K. Kilian, M. Köhler, A. Kozela, T. Lister, P. Moskal, R. Nellen, W. Oelert,C. Quentmeier, R. Santo, D. Schapler, G. Schepers, U. Seddik, T. Sefzick, J. Smyrski,M. Sokołowski, A. Strzałkowski, M. Wolke, G.J. Wagner, K.H. Watzlawik, P. Wüstner,K. Zwoll, Acta Phys. Polon. B 27 (<strong>1996</strong>) 2911[3] J.T. Balewski. A. Budzanowski, H. Dombrowski, E. Eyrich, C. Goodman, D. Grzonka,J. Haidenbauer, C. Hanhart, J. Hauffe, L. Jarczyk, M. Jochmann, A. Khoukaz, K. Kilian,M. Köhler, A. Kozela, T. Lister, A. Metzger, P. Moskal, W. Oelert, C. Quentmeier, R. Santo,G. Schepers, U. Seddik, T. Sefzick, J. Smyrski, M. Sokołowski, F. St<strong>in</strong>z<strong>in</strong>g, A. Strzałkowski,C. Thomas, S. Wirth, M. Wolke, R. Woodward, P. Wüstner, D. Wyrwa, Phys. Lett. B 420 (1998)211[4] J.T. Balewski. A. Budzanowski, C. Goodman, D. Grzonka, M. Hofmann, L. Jarczyk,A. Khoukaz, K. Kilian, T. Lister, P. Moskal, W. Oelert, I.A. Pellmann, C. Quentmeier, R. Santo,G. Schepers, T. Sefzick, S. Sewer<strong>in</strong>, J. Smyrski, A. Strzałkowski, C. Thomas, C. Wilk<strong>in</strong>,M. Wolke, P. Wüstner, D. Wyrwa, Eur. Phys. J. A 2 (1998) 99[5] S. Sewer<strong>in</strong>, G. Schepers, J.T. Balewski. A. Budzanowski, W. Eyrich, M. Fritsch, C. Goodman,Grzonka, J. Haidenbauer, C. Hanhart, M. Hofmann, L. Jarczyk, M. Jochmann, A. Khoukaz,K. Kilian, M. Köhler, T. Lister, P. Moskal, W. Oelert, I. Pellmann, C. Quentmeier, R. Santo,U. Seddik, T. Sefzick, J. Smyrski, F. St<strong>in</strong>z<strong>in</strong>g, A. Strzałkowski, C. Wilk<strong>in</strong>, M. Wolke,P. Wüstner, D. Wyrwa, Phys. Rev. Lett. 83 (1999) 682[6] P. Moskal, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, C. Kolf, L. Jarczyk,A. Khoukaz, K. Kilian, P. Kow<strong>in</strong>a, N. Lang, A. Lister, W. Oelert, C. Quentmeier, R. Santo,G. Schepers, T. Sefzick, M. Siemaszko, J. Smyrski, A. Strzałkowski, P. W<strong>in</strong>ter, M. Wolke,P. Wüstner, W. Zipper, J. Phys. G 28 (2002) 1777[7] P. Kow<strong>in</strong>a, M. Wolke, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, M. Janusz,L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, T. Lister, P. Moskal, W. Oelert, T. Rozek, R. Santo,G. Schepers, T. Sefzick, M. Siemaszko, J. Smyrski, S. Steltenkamp, A. Strzałkowski, P. W<strong>in</strong>ter,P. Wüstner, W. Zipper, Eur. Phys. J. A 18 (2003) 351[8] P. Kow<strong>in</strong>a, M. Wolke, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka,J. Haidenbauer, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, P. Moskal,W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, C. Quentmeier, T. Rożek, R. Santo, G. Schepers,T. Sefzick, M. Siemaszko, J. Smyrski, S. Steltenkamp, A. Strzałkowski, A. Täschner, P. W<strong>in</strong>ter,P. Wüstner, W. Zipper, Eur. Phys. J. A 22 (2004) 293[9] T. Rożek, D. Grzonka, K. Kilian, P. Kow<strong>in</strong>a, W. Oelert, T. Sefzick, P. W<strong>in</strong>ter, M. Wolke,P. Wüstner, M. Siemaszko, W. Zipper, R. Czyżykiewicz, M. Janusz, L. Jarczyk, B. Kamys,P. Klaja, P. Moskal, C. Piskor-Ignatowicz, J. Przerwa, J. Smyrski, H.H. Adam, A. Khoukaz,R. Santo, A. Täschner, A. Budzanowski, Int. J. Mod. Phys. A 20 (2005) 680[10] T. Rożek, D. Grzonka, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, M. Janusz, L. Jarczyk,B. Kamys, A. Khoukaz, K. Kilian, P. Klaja, P. Kow<strong>in</strong>a, P. Moskal, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, J. Ritman, T. Sefzick, M. Siemaszko, J. Smyrski, A. Täschner,P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, W. Zipper, Phys. Lett. B 643 (<strong>2006</strong>) 251180


η AND η΄ MESONS PRODUCTION IN D-P COLLISIONSA. Budzanowski 1 , E. Czerwiński 2 , R. Czyżykiewicz 2 , D. Gil 2 , M. Janusz 2 , L. Jarczyk 2 ,B. Kamys 2 , P. Klaja 2 , P. Kow<strong>in</strong>a 3 , J. Majewski 2 , P. Moskal 2 , C. Piskor-Ignatowicz 2 ,J. Przerwa 2 , B. Rejdych 2 , T. Rożek 3 , M. Siemaszko 3 , J. Smyrski 2 , A. Strzałkowski 2 ,W. Zipper 31 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków2 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków3 Institute of Physics, University of Silesia, KatowiceExperimental facility: COSY-11 facility at the Cooler Synchrotron COSY, Jülich, GermanyOne of the basic questions of the η meson<strong>physics</strong> concerns existence of η-nucleus boundstates postulated by Haider and Liu (Phys. Lett.B172, (1986) 257). Recent data from MAMI showsome <strong>in</strong>dications for photoproduction of η-mesic3 He. The 3 He-η <strong>in</strong>teraction can be <strong>in</strong>vestigated <strong>in</strong>experiments both above and below the ηproduction threshold. In the first case, low energy3 He-η scatter<strong>in</strong>g parameters can be determ<strong>in</strong>ed onthe basis of the f<strong>in</strong>al state <strong>in</strong>teraction effects. Inmeasurements below threshold one can search forresonance like structures <strong>in</strong> excitation curvesorig<strong>in</strong>at<strong>in</strong>g from decays of 3 He-η bound state <strong>in</strong>various possible reaction channels like 3 He- π 0 orppp π - .We performed studies of the 3 He-ηproduction and <strong>in</strong>teraction us<strong>in</strong>g the <strong>in</strong>ternaldeuteron beam of the COSY-Jülich acceleratorscattered on a proton target of the cluster jet typeand the COSY-11 facility detect<strong>in</strong>g the chargedreaction products. The nom<strong>in</strong>al momentum of thedeuteron beam was varied cont<strong>in</strong>uously with<strong>in</strong>each acceleration cycle <strong>in</strong> the range from41 MeV/c below to 39 MeV/c above thresholdmomentum equal to 3.140 GeV/c, allow<strong>in</strong>g toreduce most of the systematic errors associatedwith relative normalization of po<strong>in</strong>ts measured atdifferent beam momenta. In the miss<strong>in</strong>g massspectra to the registered 3 He ions determ<strong>in</strong>ed as afunction of the beam momentum (see Figure 1)clear signals from the η meson production as wellas from the s<strong>in</strong>gle π 0 production are visible. Ourresults on the forward-backward asymmetries ofthe differential cross sections for the dp→ 3 Heηreaction deviate clearly from zero for the centerof-massmomenta above 50 MeV/c <strong>in</strong>dicat<strong>in</strong>g thepresence of higher partial waves <strong>in</strong> the f<strong>in</strong>al state.Below 50 MeV/c center-of-mass momenta a fit ofthe f<strong>in</strong>al state enhancement factor to the data ofthe dp→ 3 Heη total cross section results <strong>in</strong> the 3 Heηscatter<strong>in</strong>g length of a=|2.9|+i⋅3.2 fm. Theexcitation curve for pion production <strong>in</strong> thereaction dp→ 3 Heπ 0 shows no structure orig<strong>in</strong>at<strong>in</strong>gfrom decays of possible 3 He-η bound state.We use also the p+d collisions for studiesof the structure of the η’ mesons which due totheir flavour-s<strong>in</strong>glet nature can mix with purelygluonic states. Therefore, additionally to themechanisms associated with the meson exchangesit is possible that the η’ meson is created fromexcited glue <strong>in</strong> the <strong>in</strong>teraction region of thecollid<strong>in</strong>g nucleons. We expect that comparison ofthe cross sections which we determ<strong>in</strong>ed for thepp→ppη’ reaction with the cross sections whichwe have recently measured for the isosp<strong>in</strong> relatedpn→pnη’ process, should provide <strong>in</strong>sight <strong>in</strong>to theflavour-s<strong>in</strong>glet (perhaps also gluonium) content ofthe η’ meson and the relevance of quark-gluon orhadronic degrees of freedom <strong>in</strong> the creationprocess. Data analysis of measurements of thequasi–free pn→pnη’ reaction is <strong>in</strong> progress.Fig. 1. Miss<strong>in</strong>g mass to the dp→ 3 HeX reaction (x-axis) as afunction of beam momentum (y-axis).181


[1] P. Moskal, H.H. Adam, A. Budzanowski, T. Götz, D. Grzonka, L. Jarczyk, A. Khoukaz, K. Kilian,C. Kolf, P. Kow<strong>in</strong>a, N. Lang, T. Lister, W. Oelert, C. Quentmeier, R. Santo, G. Schepers, T. SefzickM. Siemaszko, J. Smyrski, S. Steltenkamp, A. Strzałkowski, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner,W. Zipper, Phys. Lett. B 517 (2001) 295[2] P. Moskal, H.H. Adam, A. Budzanowski, D. Grzonka, L. Jarczyk, A. Khoukaz, K. Kilian, P. Kow<strong>in</strong>a,N. Lang, T. Lister, W. Oelert, C. Quentmeier, R. Santo, G. Schepers, T. Sefzick, S. Sewer<strong>in</strong>, M. Siemaszko,J. Smyrski, A. Strzałkowski, M. Wolke, P. Wüstner, W. Zipper Nucl. Inst. & Meth. A 466 (2001) 448[3] P. Moskal, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, M. Janusz, L. Jarczyk,T. Johansson, B. Kamys, A. Khoukaz, K. Kilian, P. Kow<strong>in</strong>a, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa,T. Rożek, R. Santo, G. Schepers, T. Sefzick, M. Siemaszko, J. Smyrski, A. Strzałkowski, A. Täschner,P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, W. Zipper AIP Conf. Proc. 717 (2004) 907.[4] J. Przerwa, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, M. Janusz, L. Jarczyk,B. Kamys, A. Khoukaz, K. Kilian, P. Klaja, N. Lang, P. Moskal, , W. Oelert, C. Piskor-Ignatowicz,T. Rożek, R. Santo, T. Sefzick, M. Siemaszko, J. Smyrski, A. Tächner, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner,W. Zipper Int. J. Mod. Phys. A 20 (2005) 625[5] H.H. Adam, A. Khoukaz, N. Lang, T. Lister, R. Santo, S. Steltenkamp, R. Czyżykiewicz, M. Janusz,L. Jarczyk, B. Kamys, P. Moskal, C. Piskor-Ignatowicz, J. Przerwa, J. Smyrski, D. Grzonka, K. Kilian,W. Oelert, T. Sefzick, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, A. Budzanowski, T. Rożek, M. Siemaszko,W. Zipper Int. J. Mod. Phys. A 20 (2005) 643[6] P. Moskal, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, M. Janusz, L. Jarczyk,T. Johansson, B. Kamys, A. Khoukaz, K. Kilian, P. Klaja, J. Majewski, W. Oelert, C. Piskor-Ignatowicz,J. Przerwa, J. Ritman, T. Rożek, T. Sefzick, M. Siemaszko, J. Smyrski, A. Täschner, J. Wessels,P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, Z. Zhang, W. Zipper, J. Phys. G 32 (<strong>2006</strong>) 629[7] J. Smyrski, H.H. Adam, A. Budzanowski, E. Czerwiński, R. Czyżykiewicz, D. Gil, D. Grzonka,A. Heczko, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, P. Klaja, J. Majewski, P. Moskal,W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, J. Ritman, T. Rożek, R. Santo, T. Sefzick, M. Siemaszko,A. Täschner, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, Z. Zhang, W. Zipper, Acta Phys. Slov. 56 (<strong>2006</strong>) 387[8] H.H. Adam, I. Geck, A. Khoukaz, T. Lister, R. Santo, S. Steltenkamp, A. Täschner, E. Czerwiński,R. Czyżykiewicz, M. Janusz, L. Jarczyk, B. Kamys, P. Klaja, P. Moskal, C. Piskor-Ignatowicz,J. Przerwa, J. Smyrski, D.Grzonka, K. Kilian, W. Oelert, T. Sefzick, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner,A. Budzanowski, T. Rożek, M. Siemaszko, W. Zipper, Phys. Rev. C 75 (2007) 014004[9] C. Piskor-Ignatowicz, J. Smyrski, P. Moskal, H.H. Adam, A. Budzanowski, E. Czerwiński,R. Czyżykiewicz, D. Gil, D. Grzonka, M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, P. Klaja,J. Majewski, P. Moskal, W. Oelert, J. Przerwa, J. Ritman, T. Rożek, T. Sefzick, M. Siemaszko,A. Täschner, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, W. Zipper. Int. J. Mod. Phys A 22 (2007) 528[10] J. Smyrski, H.H. Adam, A. Budzanowski, E. Czerwiński, R. Czyżykiewicz, D. Gil, D. Grzonka,M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, P. Klaja, P. Moskal, W. Oelert, C. Piskor-Ignatowicz,J. Przerwa, J. Ritman, T. Rożek, T. Sefzick, M. Siemaszko, A. Täschner, P. W<strong>in</strong>ter, M. Wolke,P. Wüstner, W. Zipper. Nucl. Phys. A(2007), <strong>in</strong> pr<strong>in</strong>t[11] J. Smyrski, H.H. Adam, A. Budzanowski, E. Czerwiński, R. Czyżykiewicz, D. Gil, D. Grzonka,M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, P. Klaja, T. Mersmann, P. Moskal, W. Oelert, C. Piskor-Ignatowicz, J. Przerwa, B. Rejdych, J. Ritman, T. Rożek, T. Sefzick, M. Siemaszko, A. Täschner,P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, W. Zipper. Phys. Lett. B (2007) , submitted182


K+ PRODUCTION IN PROTON-NUCLEUS REACTIONSL.Jarczyk 1 , B.Kamys 1 , A. Kowalczyk 1 , P.Kulessa 1,2 , Z.Rudy 1 , A.Strzałkowski 11 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, KrakówThe production of mesons heavier than pions<strong>in</strong> p+A collisions at bombard<strong>in</strong>g energies farbelow and close to the free nucleon-nucleonthreshold is of specific <strong>in</strong>terest, as one hopeseither to learn about cooperative <strong>nuclear</strong>phenomena and/or about high-momentumcomponents of the <strong>nuclear</strong> many body wavefunction that arise from nucleon-nucleoncorrelations. Especially K + mesons have beenconsidered as promis<strong>in</strong>g hadronic probes, due tothe moderate f<strong>in</strong>al state <strong>in</strong>teraction, which is aconsequence of strangeness conservation and factthat there are no barion resonances withantistrange quarks <strong>in</strong> nuclei. Antihyperons,futhermore, have a much larger productionthreshold and annihilate very fast <strong>in</strong> nuclei. Onthe other hand, the kaon properties might change<strong>in</strong> the <strong>nuclear</strong> medium, thus, the conclusions oncooperative <strong>nuclear</strong> phenomena require a preciseunderstand<strong>in</strong>g of the kaon potentials at f<strong>in</strong>ite<strong>nuclear</strong> density. Experiments on K + productionfrom nucleus-nucleus collisions at SIS energies of1-2 A GeV have shown that <strong>in</strong>-medium propertiesof the kaons are seen <strong>in</strong> the collective flow patternof K + mesons, both <strong>in</strong>-plane and out of plane , aswell as <strong>in</strong> the abundancy of antikaons. Thus <strong>in</strong>mediummodifications of the mesons havebecome a topic of substantial <strong>in</strong>terest triggered <strong>in</strong>part by the suggestion of Brown and Rho that themodification of hadron masses should scale withthe scalar quark condensate at f<strong>in</strong>itebaryon density. In the series of papers we havepublished results of studies on the production ofK+ mesons <strong>in</strong> proton-nucleus collisions from 1.0to 2.5 GeV with respect to one-step nucleonnucleonand two step ∆-nucleon or pion-nucleonproduction channels on the basis of a coupledchannel transport approach (CBUU) <strong>in</strong>clud<strong>in</strong>gdifferential transition probabilities from πNreactions that have been calculated with<strong>in</strong> thefold<strong>in</strong>g model. We have <strong>in</strong>cluded the kaon f<strong>in</strong>alstate<strong>in</strong>teractions, which are important for heavytargets like Pb or Au and we explored the effectsof momentum-dependent potentials for thenucleon, hyperon and kaon <strong>in</strong> the nucleus. Acomparison of the calculations to the experimentalK+ spectra taken at LBL Berkeley, SATURNE,CELSIUS, GSI and COSY-Juelich has shown thatthe different data sets are not compatible witheach other. Thus no clear signal on <strong>in</strong>-mediumpotentials could be extracted from our analysis <strong>in</strong>comparison to experimental spectra. However,the detailed calculations demonstrate that preciseand complete spectra show a substantialsensitivity to the potentials and their momentumdependence. At low bombard<strong>in</strong>g energies of ~1.0GeV the net attractive potentials for the nucleonand the Λ hyperon <strong>in</strong> the f<strong>in</strong>al state lead to arelative enhancement of the K + spectra while athigher bombard<strong>in</strong>g energies (~2 GeV) the baryonpotentials are repulsive and thus they suppress K +production relative to the free case. Thephenomenon is to be observed <strong>in</strong> the excitationfunction of the K + cross section when vary<strong>in</strong>g T LABfrom 1.0 to 2.5 GeV. Furthermore, the shape of thespectrum for low K + momenta <strong>in</strong> the laboratory isvery sensitive to both Coulomb U Coul and <strong>nuclear</strong>kaon U K potentials, s<strong>in</strong>ce the kaons areaccelerated by both forces when leav<strong>in</strong>g the<strong>nuclear</strong> environment and propagat<strong>in</strong>g tocont<strong>in</strong>uum. The relative strength of thismomentum shift <strong>in</strong> the forward K + spectra isproportional to the square root of the sum of bothpotentials, i.e. ∆p= 2 MK( UCoul + UK). Thus theK + spectral shape at low momenta (or kaonk<strong>in</strong>etic energies T K ) allows to determ<strong>in</strong>e thestrength of the K + potential from experimentaldata <strong>in</strong> an almost model-<strong>in</strong>dependent wayespecially when compar<strong>in</strong>g kaon spectra fromlight and heavy targets at the same bombard<strong>in</strong>genergy as a function of T K . A systematic study ofK + production <strong>in</strong> p + A reactions down tooutgo<strong>in</strong>g momenta of 150 MeV/c <strong>in</strong> thelaboratory or T K ≈23 MeV, performed on ANKEdetector at COSY accelerator site (FZJ Juelich) hasgiven value of 20 ± 5 MeV for strength of the kaonrepulsion at normal density.183


[1] W.Cass<strong>in</strong>g, T.Demski, L.Jarczyk, B.Kamys, Z.Rudy, O.W.B.Schult, A.Strzalkowski, Z.Phys. A349, 77(1994)[2] S. Barsov, U.Bechstedt, W.Bothe, N.Bongers, G.Borchert, W.Borgs, W.Bräutigam, M.Büscher, W Cass<strong>in</strong>g,V.Chernyshev, B.Chiladze, J.Dietrich, M.Drochner, S.Dymov, W.Erven, R.Esser, A.Franzen, Ye.Golubeva,D.Gotta, T.Grande, D.Grzonka, A.Hardt, M.Hartmann, V.Hejny, L.v.Horn, L.Jarczyk, H.Junghans,A.Kacharava, B.Kamys, A.Khoukaz, T.Kirchner, F.Klehr, W.Kle<strong>in</strong>, H.R.Koch, V.I.Komarov, L.Kondratyuk,V.Koptev, S.Kopyto, R.Krause, P.Kravtsov, V.Kruglov, P.Kulessa, A.Kulikov, N.Lang, N.Langenhagen,A.Lepges, J.Ley, R.Maier, S.Mart<strong>in</strong>, G.Macharashvili, S.Merzliakov, K.Meyer, S.Mikirtychiants, H.Müller,P.Munhofen, A.Mussgiller, M.Nekipelov, V.Nelyub<strong>in</strong>, M.Nioradze, H.Ohm, A.Petrus, D.Prasuhn,B.Prietzschk, H.J.Probst, K.Pysz, F.Rathmann, B.Rimarzig, Z.Rudy, R.Santo, H.Paetz gen.Schieck,R.Schleichert, A.Schneider, Chr.Schneider, H.Schneider, U.Schwartz, H.Seyfarth, A.Sibirtsev, U.Siel<strong>in</strong>g,K.Sistemich, A.Selikov, H.Stechemesser, H.J.Ste<strong>in</strong>, A.Strzalkowski, K.-H.Watzlawik, P.Wüstner,S.Yashenko, B.Zalikhanov, N.Zhuravlev, K.Zwoll, I.Zychor, O.W.B.Schult, H.Ströher, Nucl. Instrum.Methods Phys.Res. A 462, 364 (2001),[3] V.Koptev, M.Buscher, H.Junghans, M.Nekipelov, K.Sistemich, H.Stroher, V.Abaev, H.-H.Adam,R.Baldauf, S.Barsov, U.Bechstedt, N.Bongers, G.Borchert, W.Borgs, W.Brautigam, W.Cass<strong>in</strong>g,V.Chernyshev, B.Chiladze, M.Debowski, J.Dietrich, M.Drochner, S.Dymov, J.Ernst, W.Erven, R.Esser,P.Fedorets, A.Franzen, D.Gotta, T.Grande, D.Grzonka, G.Hansen, M.Hartmann, V.Hejny, L.von Horn,L.Jarczyk, A.Kacharava, B.Kamys, A.Khoukaz, T.Kirchner, S.Kistryn, F.Klehr, H.R.Koch, V.Komarov,S.Kopyto, R.Krause, P.Kravtsov, V.Kruglov, P.Kulessa, A.Kulikov, V.Kurbatov, N.Lang, N.Langenhagen,I.Lehmann, A.Lepges, J.Ley, B.Lorentz, G.Macharashvili, R.Maier, S.Mart<strong>in</strong>, S.Merzliakov, K.Meyer,S.Mikirtychyants, H.Muller, P.Munhofen, A.Mussgiller, V.Nelyub<strong>in</strong>, M.Nioradze, H.Ohm, A.Petrus,D.Prasuhn, B.Prietzschk, H.J.Probst, D.Protic, K.Pysz, F.Rathmann, B.Rimarzig, Z.Rudy, R.Santo, H.Paetzgen.Schieck, R.Schleichert, A.Schneider, Chr.Schneider, H.Schneider, G.Schug, O.W.B.Schult, H.Seyfarth,A.Sibirtsev, J.Smyrski, H.Stechemesser, E.Steffens, H.J.Ste<strong>in</strong>, A.Strzalkowski, K.-H.Watzlawik, C.Wilk<strong>in</strong>,P.Wustner, S.Yashenko, B.Zalikhanov, N.Zhuravlev, P.Zolnierczuk, K.Zwoll, I.Zychor, Phys.Rev.Lett.87, 022301 (2001)[4] Z.Rudy, W.Cass<strong>in</strong>g, L.Jarczyk, B.Kamys, P.Kulessa, Eur. Phys. J. A 15, 303 (2002)[5] M.Nekipelov, M.Buscher, W.Cass<strong>in</strong>g, M.Hartmann, V.Hejny, V.Kleber, H.R.Koch, V.Koptev, Y.Maeda,R.Maier, S.Merzliakov, S.Mikirtychiants, H.Ohm, A.Petrus, D.Prasuhn, F.Rathmann, Z.Rudy,R.Schleichert, H.Schneider, K.Sistemich, H.J.Ste<strong>in</strong>, H.Stroher, K.-H.Watzlawik, C.Wilk<strong>in</strong>,Phys.Lett. 540B, 207 (2002),[6] M.Buscher, H.Junghans, V.Koptev, M.Nekipelov, K.Sistemich, H.Stroher, S.Barsov, G.Borchert, W.Borgs,M.Debowski, W.Erven, R.Esser, P.Fedorets, D.Gotta, M.Hartmann, V.Hejny, A.Kacharava, H.R.Koch,V.Komarov, P.Kulessa, A.Kulikov, G.Macharashvili, S.Merzliakov, S.Mikirtychiants, H.Muller,A.Mussgiller, R.Nellen, M.Nioradze, H.Ohm, A.Petrus, F.Rathmann, Z.Rudy, R.Schleichert, Chr.Schneider, O.W.B.Schult, H.J.Ste<strong>in</strong>, I.Zychor, Nucl.Instrum.Methods Phys.Res. A481, 378 (2002)[7] V.Koptev, M.Nekipelov, M.Buscher, S.Dymov, M.Hartmann, V.Hejny, H.R.Koch, N.Lang,S.Mikirtichyants, H.Ohm, A.Petrus, Z.Rudy, R.Schleichert, A.Sibirtsev, K.Sistemich, H.Stroher, K.-H.Watzlawik, Eur.Phys.J. A 17, 235 (2003)[8] M.Buscher, V.Koptev, M.Nekipelov, Z.Rudy, H.Stroher, Yu.Valdau, S.Barsov, M.Hartmann, V.Hejny,V.Kleber, N.Lang, I.Lehmann, S.Mikirtychiants, H.Ohm, Eur.Phys.J. A 22, 301 (2004)[9] Z.Rudy, W.Cass<strong>in</strong>g, L.Jarczyk, B.Kamys, A.Kowalczyk, P.Kulessa,Eur. Phys. J. A 23, 379 (2005); Erratum Eur.Phys.J. A 24, 159 (2005)184


INTERACTION OF K + K - MESONSJ. Balewski 1 , A. Budzanowski 1 , E. Czerwiński 2 , R. Czyżykiewicz 2 , D. Gil 2 ,A. Heczko 2 , M. Janusz 2 , L. Jarczyk 2 , B. Kamys 2 , P. Klaja 2 , P. Kow<strong>in</strong>a 3 , A. Kozela 1 ,J. Majewski 2 , A. Misiak 2 , P. Moskal 2 , C. Piskor-Ignatowicz 2 , J. Przerwa 2 , T. Rożek 3 ,M. Siemaszko 3 , J. Smyrski 2 , M. Sokołowski 2 , A. Strzałkowski 2 , W. Zipper 31 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków2 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków3 Institute of Physics, University of Silesia, KatowiceExperimental facility: COSY-11 facility at the Cooler Synchrotron COSY, Jülich, GermanyOver the last several years, near-thresholdproduction of mesons <strong>in</strong> elementary nucleonnucleonscatter<strong>in</strong>g has become an important fieldof studies of medium-energy <strong>physics</strong>. A specificfeature of near-threshold measurements isconnected with the fact that due to the proximityof bound or quasi-bound states of some of thereaction products, <strong>in</strong>teraction between them canbe very strong thus <strong>in</strong>fluenc<strong>in</strong>g the measuredcross sections essentially. This creates anopportunity to <strong>in</strong>vestigate <strong>in</strong>teraction betweenparticles which cannot be accessed <strong>in</strong> direct elasticscatter<strong>in</strong>g experiments. For example,measurements of the reaction pp→ppK + K - allowone to <strong>in</strong>vestigate the kaon-antikaon <strong>in</strong>teraction.Such measurements can help us to understand thenature of the scalar mesons f 0 (980) and a 0 (980)which have masses very close to the mass of akaon pair. The nature of these mesons has been along-stand<strong>in</strong>g problem of meson <strong>physics</strong>. Thestandard quark model has difficulties with<strong>in</strong>terpret<strong>in</strong>g these mesons as quark-antiquarkpairs. In response to these difficulties, various nonq-qbar descriptions have been proposed <strong>in</strong>clud<strong>in</strong>ga four-quark system, a glueball and a kaonantikaonmolecule. Especially for the formation ofthe molecule, the strength of the kaon-antikaon<strong>in</strong>teraction is of a crucial importance.For study of this <strong>in</strong>teraction weperformed measurements of the pp→ppK + K -reaction us<strong>in</strong>g the <strong>in</strong>ternal detection facilityCOSY-11 at the COoler SYnchrotron COSY <strong>in</strong>Jülich. The measurements were done for fourbeam momenta above K + K - production thresholdbut below the φ(1020) meson productionthreshold. They were based on k<strong>in</strong>ematicallycomplete reconstruction of positively chargedejectiles while the negative kaon was identifiedvia the miss<strong>in</strong>g mass. Our results for the totalcross section <strong>in</strong> the reaction pp→ppK + K - are clearlyshow<strong>in</strong>g that towards the lower values of theexcess energy Q the data are exceed<strong>in</strong>g anyexpectations both from pure phase space with andwithout the pp f<strong>in</strong>al state <strong>in</strong>teraction (FSI)enhancement factor (see Figure 1). The observeddifference might orig<strong>in</strong>ate from the pK and/or KKFSI. We <strong>in</strong>vestigated the effect of the <strong>in</strong>teractionbetween particles <strong>in</strong> the f<strong>in</strong>al state us<strong>in</strong>g thedistributions of <strong>in</strong>variant masses of pK + , pK - andK + K - pairs. With<strong>in</strong> the limited statistics thedistribution for the pK - pairs shows anenhancement towards lower masses which couldat least be partially connected to the <strong>in</strong>fluence ofthe Λ(1405) resonance. The K + K - system is ratherconstant for different <strong>in</strong>variant masses whichagrees with a pure phase space distribution. For astrict description of the f<strong>in</strong>al state, calculationsbased on application of the four-body formalismare required. Further experimental study of thepp→ppK + K - reaction with a high acceptance and ahigh statistics is planned at the newlycommissioned WASA-at-COSY detector.Fig. 1. Total cross section for the reaction pp→ppK + K - as a functionof the excess energy Q. Our data po<strong>in</strong>ts lie significantly above theexpectations <strong>in</strong>dicated by the different l<strong>in</strong>es that are all normalized tothe data po<strong>in</strong>t measured by the DISTO collaboration at Q=114 MeV.185


[1] S. Brauksiepe, D. Grzonka, K. Kilian, W. Oelert, E. Roderburg, M. Rook, T. Sefzick, P. Turek,M. Wolke, U. Bechstedt, J. Dietrich, R. Maier, S. Mart<strong>in</strong>, D. Prasuhn, A. Schnase, H. Schneider,H. Stockhorst, Raimund Toelle, M. Karnadi, R. Nellen, K.H. Watzlawik, K.H. Diart, H. Gutschmidt,M. Jochmann, M. Koehler, R. Re<strong>in</strong>artz, P. Wuestner, K. Zwoll, F. Klehr, H. Stechemesser, H. Dombrowski,W. Hams<strong>in</strong>k, A. Khoukaz, Tim A. Lister, C. Quentmeier, R. Santo, G. Schepers, L. Jarczyk, A. Kozela,J. Majewski, A. Misiak, P. Moskal, J. Smyrski, M. Sokołowski, A. Strzałkowski, J. Balewski,A. Budzanowski, S. Bowes, A. Hardt, C. Goodman, U.Seddik, M. Ziolkowski, Nucl. Instr. Meth. A 376(<strong>1996</strong>) 397[2] M. Wolke, H.H. Adam, J.T. Balewski, A. Budzanowski, C. Goodman, D. Grzonka, L. Jarczyk,M. Jochmann, Khoukaz, K. Kilian, M. Köhler, P. Kow<strong>in</strong>a, N. Lang, T. Lister, P. Moskal, W. Oelert,C. Quentmeier, R. Santo, G. Schepers, U. Seddik, T. Sefzick, S. Sewer<strong>in</strong>, M. Siemaszko, J. Smyrski,A. Strzałkowski, P. Wüstner, W. Zipper, AIP Conf. Proc. 512 (2000) 143[3] P. Moskal, H.H. Adam, A. Budzanowski, D. Grzonka, L. Jarczyk, Khoukaz, K. Kilian, M. Köhler,P. Kow<strong>in</strong>a, N. Lang, T. Lister, W. Oelert, C. Quentmeier, R. Santo, G. Schepers, T. Sefzick, S. Sewer<strong>in</strong>,M. Siemaszko, J. Smyrski, M. Sokołowski, A. Strzałkowski, M. Wolke, P. Wüstner, W. Zipper, Acta.Phys. Polon. B 31 (2000) 2277[4] C. Quentmeier, H.H. Adam, J.T. Balewski, Budzanowski, D. Grzonka, L. Jarczyk, A. Khoukaz,K. Kilian, P. Kow<strong>in</strong>a, N. Lang. T. Lister, P. Moskal, W. Oelert, R. Santo, G. Schepers, T. Sefzick,S. Sewer<strong>in</strong>, M. Siemaszko, J. Smyrski, A. Strzałkowski, M. Wolke, P. Wüstner, W. Zipper, Phys. Lett. B515 (2001) 276[5] M. Wolke, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, M. Janusz, L. Jarczyk,B. Kamys, A. Khoukaz, K. Kilian, P. Kow<strong>in</strong>a, T. Lister, P. Moskal, W. Oelert, T. Rożek, R. Santo,G. Schepers, T. Sefzick, M. Siemaszko, J. Smyrski, S. Steltenkamp, A. Strzałkowski, P. W<strong>in</strong>ter,P. Wüstner, W. Zipper, Nucl. Phys. A721 (2003) 683[6] P. Moskal, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, M. Janusz, L. Jarczyk,B. Kamys, A. Khoukaz, K. Kilian, C. Kolf, P. Kow<strong>in</strong>a, T. Lister, Oelert, C. Piskor-Ignatowicz, J. Przerwa,C. Quentmeier, T. Rożek, R. Santo, G. Schepers, T. Sefzick, M. Siemaszko, J. Smyrski, A. Strzałkowski,A. Täschner, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, W. Zipper, J. Phys. G 29 (2003) 2235[7] J. Smyrski, Ch. Kolf, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, A. Heczko,M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, P. Kow<strong>in</strong>a, A. Misiak, P. Moskal, W. Oelert,C. Piskor-Ignatowicz, J. Przerwa, C. Quentmeier, T. Rożek, R. Santo, G. Schepers, T. Sefzick,M. Siemaszko, A. Täschner, P. W<strong>in</strong>ter, M. Wolke, P. Wüstner, W. Zipser, Nucl. Instr. & Meth. A 541(2005) 574[8] P. W<strong>in</strong>ter, M. Wolke, H.H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, M, Janusz,L. Jarczyk, B. Kamys, A. Khoukaz, K. Kilian, P. Klaja, P. Moskal, W. Oelert, C. Piskor-Ignatowicz,J. Przerwa, J. Ritman, T. Rożek, T. Sefzick, M. Siemaszko, J. Smyrski, A. Täschner, P. Wüstner,Z. Zhang, W. Zipser, Phys. Lett. B 635 (<strong>2006</strong>) 23[9] W. Oelert, H.H. Adam, A. Budzanowski, E. Czerwiński, R. Czyżykiewicz, D. Gil, D. Grzonka,M. Janusz, L. Jarczyk, B. Kamys, A. Khoukaz, P. Klaja, P. Moskal, C. Piskor-Ignatowicz, J. Przerwa,T. Rożek, R. Santo, T. Sefzick, M. Siemaszko, J. Smyrski, A. Täschner, P. W<strong>in</strong>ter, M. Wolke,P. Wüstner, W. Zipser, Int. J. Mod. Phys. A 22 (2007) 305186


PRODUCTION OF K+ AND K- MESONS IN HEAVY-ION COLLISIONSM. Dębowski, M. Cieślak, W. Prokopowicz, G. Surówka, W. WaluśM. Smoluchowski Institute of Physics, Jagiellonian University, KrakówExperimental facility: SIS, KaoS at GSI DarmstadtThe production of charged kaons <strong>in</strong> heavy- ioncollisions at <strong>in</strong>cident energies from 0.6A to 2.0AGeV has been measured with KaonSpectrometer(KaoS) at GSI by KAOSCollaboration[1-16]. This subject has beensystematically studied by analyz<strong>in</strong>g totalproduction cross section, energy distributions, andpolar angle distribution as the function of size ofthe collision system, the <strong>in</strong>cident energy, and thecollision centrality. The key observations can besummarised as follows[Phys. Rev. C75,024906(2007)] :(i) The multiplicities of both K + and K - mesons, permass number A of the collisions system, are higher<strong>in</strong> heavy collision systems than <strong>in</strong> light systems.This difference <strong>in</strong>crease with decreas<strong>in</strong>g beamenergy.(ii) The multiplicities per number of participat<strong>in</strong>gnucleons A part of K + and K - mesons with<strong>in</strong> thesame collision system rise stronge than l<strong>in</strong>earlywith A part , whereas the pion multiplicity isproportional to A part . Moreorver, the rise is rathersimilar for K + and K - , although the respective NNthresholds for their production are significantlydifferent.(iii) The K - /K + ratio is almost constant as the functionof the collision centrality. At 1.5A GeV this ratio isthe same for Au + Au and Ni + Ni collisions.(iv) The <strong>in</strong>verse slop parameters of the energydistributions of K + and K - mesons are higher <strong>in</strong>heavy than <strong>in</strong> light collision systems.(v) The <strong>in</strong>verse slop parameters of the energydistributions of K + mesons are about 15 to 25 MeVhigher than those of the K - distributions. This isobserved for all collision system and for allcentralities.(vi) The polar angle distributions exhibit a forwardbackwardrise which is more pronounced for K +than K - mesons. K - mesons produced <strong>in</strong> centralcollisions are emitted almost isotropically.From the systematics of these experimental resultsand from comparisons with transport-modelcalculations, the follov<strong>in</strong>g conclusions on theproperties of dense <strong>nuclear</strong> matter as created <strong>in</strong>heavy-ion collisions and on the productionmechanisms of K + and K - mesons can be drawn:(i) The K - and the K + yields are coupled bystrangeness exchange: Despite their significantlydifferent thresholds <strong>in</strong> b<strong>in</strong>ary NN collisions, themultiplicicities of K + and K - mesons show thesame dependence on the collision centrality. Theyare even similar for different collision systems.This can be expla<strong>in</strong>ed by the K - be<strong>in</strong>gpredom<strong>in</strong>antly produced via strageness exchangefrom hyperons which on the other hand arecreated together with the K + mesons. Stragenessexchange is predicted to be the ma<strong>in</strong> contributionto K - production <strong>in</strong> heavy-ion collisions at SISenergies by transport-model calculations as well.(ii) K + and K - mesons exhibit different freeze-outconditions: Transport model calculations predictdifferent emissions times for K + and K - mesons asconsequence of the strageness-exchange reaction.The K - are cont<strong>in</strong>ouously produced andreabsorbed and f<strong>in</strong>ally leavy the reaction zonemuch later than K + mesons. This and thek<strong>in</strong>ematics of the strageness-exchange process aremanifest <strong>in</strong> an isotropic emission of the K - <strong>in</strong>central collisions and <strong>in</strong> systematically lower<strong>in</strong>verse slope parameters of the K - energydistributions compered with those for K + .(iii) The <strong>nuclear</strong> equation of state is soft: The <strong>in</strong>creaseof M(K + )/A with the size of the collision system Apo<strong>in</strong>ts toward a dependence of the K + productionon the density reached <strong>in</strong> the collision. The ratio ofthe K + multiplicities <strong>in</strong> <strong>in</strong> Au + Au and C + C as afunction of the <strong>in</strong>cident energy allows theextraction of the compression modulus K N of<strong>nuclear</strong> matter by compar<strong>in</strong>g the data withtransport-model calculations. Only calculationsus<strong>in</strong>g a soft <strong>nuclear</strong> EoS ( K N ≈ 200 MeV) candescribe the data. This conclusion is rather<strong>in</strong>sensitive to the various <strong>in</strong>put parameters ofsuch calculations. A soft <strong>nuclear</strong> E0S is furthersupported by compar<strong>in</strong>g the centralitydependence of the K + multiplicities <strong>in</strong> Au + Aucollisions with transport-model calculations.KAOS Collaboration results demonstrate theimportance of the strageness-exchange reaction forproduction and propagation of negativelycharged kaons <strong>in</strong> heavy-ion collisions at <strong>in</strong>cidentenergies from 0.6A to 2A GeV, on the one handcoupl<strong>in</strong>g their yield to the K + production, and onthe other hand caus<strong>in</strong>g a rather late emission of K - .The production of positively charged kaons itselfis strongly l<strong>in</strong>ked to the high-density phase of aheavy-ion collision, allow<strong>in</strong>g for the conclusionthat the equation of state of <strong>nuclear</strong> matter is softwith<strong>in</strong> the density regime explored by heavy-ioncollisions between 0.6A and 2.0A GeV.187


[1] W.Ahner, C. Bormann, R. Barth, P. Beckerle, D. Brill, M. Cieslak, M. Debowski, E. Grosse,W. Henn<strong>in</strong>g, P. Koczon, B. Kohlmeyer, D. Miskowiec, C. Müntz, H. Oeschler, F. Pühlhofer, E. Schwab,R. Schicker, P. Senger, Y. Sh<strong>in</strong>, J. Speer, R. Stock, H. Ströbele, C.Sturm, K. Völkel, A. Wagner, W. Walus,Phys. Lett. B 393, 31 (1997)[2] R.Barth, P. Senger, W.Ahner, P. Beckerle, C. Bormann, D. Brill, M. Cieslak, M. Debowski, E. Grosse,P. Koczon, B. Kohlmeyer, D. Miskowiec, C. Müntz, H. Oeschler, F. Pühlhofer, E. Schwab, R. Schicker,Y. Sh<strong>in</strong>, J. Speer, H. Ströbele, C.Sturm, K. Völkel, A. Wagner, W. Walus, Phys. Rev. Lett. 78, 4007 (1997)[3] M. Debowski, P. Senger, M. Boiv<strong>in</strong>, Y. Le Bornec, P. Courtat, R. Gacougnolle, E. Grosse, S. Kabana,T. Kirchner, P. Koczon, M. Mang, E. Schwab, B. Tatischeff, A. Wagner, W. Walus, N. Willis, G. Wolf,R. Wurz<strong>in</strong>ger. J. Yonnet, Phys. Lett. B 413, 8 (1997)[4] A. Wagner, C. Müntz, H. Oeschler, C. Sturm, R. Barth, M. Cieslak, M. Debowski, E. Grosse, P. Koczon,M. Mang, D. Miskowiec, R. Schicker, E. Schwab, P. Senger, P. Beckerle, D. Brill, Y. Sh<strong>in</strong>, H. Ströbele,W. Walus, B. Kohlmeyer, F. Pühlhofer, J. Speer, K. Völke, Phys. Lett. B 420, 20 (1998)[5] Y. Sh<strong>in</strong>, W. Ahner, R.Barth, P. Beckerle, D. Brill, M. Cieslak, M. Debowski, E. Grosse, P. Koczon,B. Kohlmeyer, M. Mang, D. Miskowiec, C. Müntz, H. Oeschler, F. Pühlhofer, E. Schwab, R. Schicker,P. Senger, J. Speer, H. Ströbele, C. Sturm, K. Völkel, A. Wagner and W. Walus, Phys. Rev. Lett. 81,1576(1998)[6] P. Senger, P. Koczon, F. Laue, G. Surowka, A. Wagner, A. Förster, H. Oeschler, C. Sturm, F. Uhlig,E. Schwab, Y. Sh<strong>in</strong>, H. Ströbele, I. Böttcher, B. Kohlmeyer, M. Menzel, F. Pühlhofer, M. Debowski,W. Walus, F. Dohrmann, E. Grosse, L. Naumann, W. Sche<strong>in</strong>ast, Prog. Part. Nucl. Phys. 42, 209 (1999)[7] F. Laue, C. Sturm, I. Böttcher, M. Debowski, A. Förster, E. Grosse, P. Koczon, B. Kohlmeyer, M. Mang,L. Naumann, H. Oeschler, F. Pühlhofer, E.Schwab, P. Senger, Y. Sh<strong>in</strong>, J. Speer, H. Ströbele, G. Surowka,F. Uhlig, A. Wagner, W. Walus, Phys. Rev. Lett. 82, 1640 (1999)[8] N. Iwasa, F. Boue, G. Surowka, K. Sümmerer, T. Baumann, B. Blank, S. Czajkowski, A. Forster, M. Gai,H. Geissel, E. Grosse, M. Hellstrom, P. Koczon, B. Kohlmeyer, R. Kulessa R., F. Laue, C. Marchand,T. Motobayashi, H. Oeschler, A. Ozawa, M. S. Pravikoff, E. Schwab, W. Schwab, P. Senger, J. Speer,C. Sturm, A. Surowiec, T. Teranishi, F. Uhlig, A. Wagner, W. Walus, C. A. Bertulani, Phys. Rev. Lett. 83,2910 (1999)[9] A. Wagner, C. Müntz, H. Oeschler, C. Sturm, R. Barth, M. Cieslak, M. Debowski, E. Grosse, P. Koczon,F. Laue, M. Mang, D. Miskowiec, E. Schwab, P. Senger, P. Beckerle, D. Brill, Y. Sh<strong>in</strong>, H. Ströbele,W. Walus, B. Kohlmeyer, F. Pühlhofer, J. Speer, I.K. Yoo, Phys. Rev. Lett. 85, 18 (2000)[10] M. Menzel, I. Böttcher, M. Debowski, A. Förster, E. Grosse, P. Koczon, B. Kohlmeyer, F. Laue,L. Naumann, H. Oeschler, F. Pühlhofer, E.Schwab, P. Senger, Y. Sh<strong>in</strong>, H. Ströbele, C. Sturm,G. Surowka, F. Uhlig, A. Wagner, W. Walus, Physics Letters B, Vol. 495 (1-2), 26(2000)[11] C. Sturm, I. Böttcher, M. Debowski, A. Förster, E. Grosse, P. Koczon, B. Kohlmeyer, F. Laue, M. Mang,L. Naumann, H. Oeschler, F. Pühlhofer, E.Schwab, P. Senger, Y. Sh<strong>in</strong>, J. Speer, H. Ströbele, G. Surowka,F. Uhlig, A. Wagner, W. Walus, Phys. Rev. Lett. 86, 39 (2001)[12] A. Förster, F. Uhlig, I. Böttcher, M. Dębowski, F. Dormann, E. Grosse, P. Koczoń, B. Kohlmeyer,F. Laue, M. Menzel, L. Naumann, H. Oeschler, W. Sche<strong>in</strong>ast, E. Schwab, P. Senger, Y. Sh<strong>in</strong>, H. Ströbele,C. Sturm, G. Surówka, A. Wagner, and W. Waluś, Phys. Rev. Lett. 91, 152301 (2003)[13] F. Uhlig, A. Förster, I. Böttcher, M. Dębowski, F. Dohrmann, E. Grosse, P. Koczoń, B. Kohlmeyer,F. Laue, M. Menzel, L. Naumann, H. Oeschler, W. Sche<strong>in</strong>ast, E. Schwab, P. Senger, Y. Sh<strong>in</strong>, H. Ströbele,C. Sturm, G. Surówka, A. Wagner, and W. Waluś, Phys. Rev. Lett. 95, 012301(2005)[14] A. Schmah, S. Lang, I. Böttcher, F. Dohrmann, A. Förster, E. Grosse, P. Koczoń, B. Kohlmeyer, F. Laue,M. Menzel, L. Naumann, H. Oeschler, W. Sche<strong>in</strong>ast, T. Schuck, E. Schwab, P. Senger, Y. Sh<strong>in</strong>,H. Ströbele, C. Sturm, G. Surówka, F. Uhlig, A. Wagner, and W. Waluś, Phys. Rev. C71, 64907(2005)[15] W. Sche<strong>in</strong>ast, I. Böttcher, M. Dębowski, F. Dohrmann, A. Förster, E. Grosse, P. Koczoń, B. Kohlmeyer,F. Laue, M. Menzel, L. Naumann, E. Schwab, P. Senger, Y. Sh<strong>in</strong>, H. Ströbele, C. Sturm, G. Surówka,F. Uhlig, A. Wagner, W. Waluś, B. Kämpfer and H.W. Barz, Phys. Rev. Letters 96, 072301( <strong>2006</strong>)[16] A. Förster, F. Uhlig, I. Böttcher, D. Brill, M. Dębowski, F. Dohrmann, E. Grosse, P. Koczoń,B. Kohlmeyer, S. Lang, F. Laue, M. Mang, M. Menzel, L. Naumann, H. Oeschler, M. Płoskoń,W. Sche<strong>in</strong>ast, A. Schmah, T.J. Schuck, E. Schwab, P. Senger, Y. Sh<strong>in</strong>, J. Speer, H. Ströbele, C. Sturm,G. Surówka, A. Wagner and W. Waluś, Phys. Rev. C75, 024906(2007)188


AT THE BORDER BETWEEN ATOMIC AND NUCLEAR PHYSICSK. Pachucki 1 , M. Pfützner 2 , S. Wycech 3 , and J. Żylicz 21 Institute of Theoretical Physics, Warsaw University, Warszawa2 Institute of Experimental Physics, Warsaw University, Warszawa3 A. Sołtan Institute for Nuclear Studies, WarszawaWe report on studies performed <strong>in</strong> the years<strong>1996</strong>-<strong>2006</strong>, ma<strong>in</strong>ly <strong>in</strong> Warsaw, on selectedphenomena that belong to both the atomic and<strong>nuclear</strong> phy-sics: (i) the radiative electron capture(REC), (ii) <strong>nuclear</strong> structure effects <strong>in</strong> atomicenergy levels, and (iii) the hyperf<strong>in</strong>e <strong>in</strong>teraction <strong>in</strong>a hydrogen-like 229 Th 89+ ion.REC is the beta decay via capture of an orbitalelectron, <strong>in</strong> which the emission of a neutr<strong>in</strong>o is accompaniedby radiation of a photon. It is a higherorder effect with a probability of a few orders ofmagnitude lower than that of the non-radiativedecay. Experiments performed dur<strong>in</strong>g the lastdecade <strong>in</strong> Warsaw (<strong>in</strong> collaboration with theAarhus University) were focused on first-forbidden-unique(1u) decays: 204 Tl 204 Hg [1] and81 Kr 81 Br (still <strong>in</strong> progress). The orig<strong>in</strong>al aim ofthese studies was to test the theory of REC providedby Zon and Rapaport for the 1u transitions.This was a cont<strong>in</strong>uation of our earlier studies onthe 41 Ca 41 K 1u decay. In that case, the measuredphoton <strong>in</strong>tensity per non-radiative decaywas found to be essentially higher than the theorypredicts. An agreement with experiment wasachieved after an account for the γ/β and β/γdetour transitions (see papers quoted <strong>in</strong> ref. 2).However, the same approach applied to the 204 Tldata failed. Recently, Pachucki et al. [3] developeda new and remarkably simple approach with theuse of length gauge for the emitted photon, whichsuppresses significantly the <strong>nuclear</strong> contributionand shows an excellent agreement with the experimentalresults for all three cases under consideration.Atomic energy levels depend on the <strong>nuclear</strong>size and this effect is proportional to the square ofthe charge radius. For different isotopes thischarge radius is different and thus contributes tothe isotope shift. From precise measurement ofthe isotope shift <strong>in</strong> lithium isotopes, performed atGSI, and from our calculations of f<strong>in</strong>ite <strong>nuclear</strong>mass effects we have obta<strong>in</strong>ed <strong>nuclear</strong> chargeradii for various isotopes of lithium [4], <strong>in</strong>clud<strong>in</strong>gthe most <strong>in</strong>terest<strong>in</strong>g halo nucleus 11 Li. Moreover,we have studied polarizability effect, the excitationof a nucleus by the atomic electron and wehave found a significant measurable contributionfor 11 Li. This <strong>in</strong>vestigation is cont<strong>in</strong>ued withA. Moro and several <strong>in</strong>terest<strong>in</strong>g results forhelium isotopes have recently been obta<strong>in</strong>ed<strong>in</strong> [5].It was <strong>in</strong>directly shown by Helmer and Reich(1994) that the first excited 3/2 + <strong>nuclear</strong> state of229 Th is expected at about 3.5 eV above the 5/2 +ground state. Thus, 229 Th offers a unique chance tostudy coupl<strong>in</strong>g of the atomic and <strong>nuclear</strong> degreesof freedom. Moreover, it has been suggested(Flambaum <strong>2006</strong>) that a study of the ultraviolettransition between the two 229 Th states may shedlight on the question of temporal variation of thef<strong>in</strong>e structure constant. In this context, there is aneed for a direct observation of this transition anda much better determ<strong>in</strong>ation of its energy. A hopeis to achieve this goal via studies of hydrogen-like229 Th 89+ ions with the ESR facility at GSI Darmstadt.We have performed theoretical studies(partly, <strong>in</strong> collaboration with the St. Petersburgphysicists) on hyperf<strong>in</strong>e structure <strong>in</strong> 229 Th 89+ [6,7].In paticular we have <strong>in</strong>vestigated <strong>nuclear</strong>-sp<strong>in</strong>mix<strong>in</strong>g oscillations follow<strong>in</strong>g a formation of ahydrogen-like 229 Th ion <strong>in</strong> a fast collision process.We have discussed possible methods of experimentalverifications of these phenomena.189


[1] J. Kurcewicz, M. Pfützner, P. Hornshoj, H.L. Nielsen and B. Szweryn, Nuclear Physics A 728 (2003) 3.[2] J.L. Żylicz, M. Pfützner, S.G. Rohoziński and B.A. Brown Physical Review C 53 (<strong>1996</strong>) 1593[3] K. Pachucki, U.D. Jentschura and M. Pfützner submitted to Physical Review C.[4] M. Puchalski, A. Moro and K. Pachucki, Phys. Rev. Lett. 97, 133001 (<strong>2006</strong>)[5] K. Pachucki and A. Moro, Phys. Rev. A (<strong>in</strong> pr<strong>in</strong>t).[6] E.F. Karpesh<strong>in</strong>, S. Wycech, I.M. Band, M.B. Trzhaskovskaya, M. Pfützner and J. Żylicz, Physical ReviewC 57 (1998) 3085[7] K. Pachucki, S. Wycech, J. Żylicz and M. Pfützner, Physical Review C 64 (2001) 64301190


ATOMIC PHYSICS IN HEAVY ION – ATOM COLLISIONSD. Banaś 1 , T. Ludziejewski 2 , M. Pajek 1 , P. Rymuza 2 , D. Sierpowski 3 , A. Simon 3 ,Z. Stachura 4 , A. Warczak 31 Institute of Physics, Świętokrzyska Academy, Kielce2 A. Sołtan Institute for Nuclear Studies, Świerk3 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków4 H. Niewodniczański Institute of Nuclear Physics PAN, KrakówExperimental Facility: Accelerator Facility at GSI, Darmstadt, GermanyProduction of cooled <strong>in</strong>tense beams ofheavy ions at GSI, Darmstadt provides a powerfultool for precise spectroscopy measurements.Electric field of high-Z ions gives an opportunityto test QED <strong>in</strong> regime where an ord<strong>in</strong>aryperturbation treatment of QED, with Zα as theexpansion parameter, is no longer applicable. Insuch systems high order QED corrections can betested, for example by Lamb shift measurements.In recent years a number of experiments[1, 2] were performed at the ESR gas target orelectron cooler <strong>in</strong> order to obta<strong>in</strong> precision of themeasured Lamb shift <strong>in</strong> the H-like uraniumcomparable to theoretical calculations (i.e. 0.5 eV).Many techniques, such as beam deceleration andcool<strong>in</strong>g, have been used <strong>in</strong> order to improve theresults, ma<strong>in</strong>ly to reduce Doppler broaden<strong>in</strong>g ofthe observed X-ray l<strong>in</strong>es. Additionally, crystalspectrometer (FOCAL) [3] and microstrip Gedetectors,dedicated to the Lamb shift measurements,were constructed. Experimental resultsobta<strong>in</strong>ed <strong>in</strong> recent 15 years are presented <strong>in</strong> Fig. 1.Precise spectroscopy allows observationsof many electrons contributions to the groundstateenergy. This k<strong>in</strong>d of experiment wasperformed for the simplest many electron system– He-like uranium. Here, energy of K-RR l<strong>in</strong>e forradiative recomb<strong>in</strong>ation to H- and He-like U-ionswas observed. The energy difference betweenthose two l<strong>in</strong>es was obta<strong>in</strong>ed with an accuracy onthe level of two-electron contribution [2].Another process which was <strong>in</strong>vestigatedis the Radiative Electron Capture (REC) <strong>in</strong>relativistic collisions. Such systems revealcompletely new effects, which go beyond thedipole approximation. Experiments, <strong>in</strong> accordancewith theory, show that even at moderatelyrelativistic collision velocities (up to about1 GeV/u) total K-REC cross sections are still welldescribed by a simple non-relativistic dipoleapproximation [4, 5]. This is mostly due to anaccidental cancellation among the variousmanifestations of relativistic, retardation, andmultipole effects. Strong deviation from thisbehavior, predicted by theory, was only observed<strong>in</strong> the highly relativistic collision regime.More detailed <strong>in</strong>formation on REC wasobta<strong>in</strong>ed from differential cross sections. Inparticular, studies of the angular distribution ofthe REC radiation revealed importance of sp<strong>in</strong>fliptransitions caused by the magnetic<strong>in</strong>teraction. This <strong>in</strong>teraction produces a forwardbackwardasymmetry of the REC emission pattern<strong>in</strong> the laboratory frame, manifested by theenhanced photon emission at 0 O [6, 7, 8].Also angular distribution of the Ly-α1l<strong>in</strong>e, follow<strong>in</strong>g radiative electron capture from agas target <strong>in</strong>to the 2p 3/2 level of H-like uraniumwas measured, which allows us to obta<strong>in</strong> magnetic-substratesensitive <strong>in</strong>formation on the RECprocess. First experiments performed <strong>in</strong> relativisticcollisions of high-Z ions with light targetatoms show a strong emission anisotropy [9].Recently, polarization of photonsproduced due to radiative electron capture hasattracted particular <strong>in</strong>terest [9]. By means ofsegmented germanium detectors polarizationmeasurements can be performed by exploit<strong>in</strong>g therelation between the differential Comptonscatter<strong>in</strong>g cross-section and the l<strong>in</strong>ear polarizationof the primary photon as predicted by the Kle<strong>in</strong>-Nish<strong>in</strong>a formula.Fig. 1. Progress <strong>in</strong> precision of the Lamb shift measurement <strong>in</strong> ESRexperiments.191


[1] Th.Stöhlker, P.H.Mokler, F.Bosch, R.W.Dunford, F.Franzke, O.Klepper, C.Kozhuharov, T.Ludziejewski,F.Nolden, H.Reich, P.Rymuza, Z.Stachura, M.Steck, P.Świat, A.Warczak, Phys. Rev. Lett. 85 (2000) 3109[2] A.Gumberidze, Th.Stöhlker, D.Banaś, K.Beckert, P.Beller, H.F.Beyer, F.Bosch, X.Cai, S.Hagmann,C.Kozhuharov, D.Liesen, F.Nolden, X.Ma, P.H.Mokler, A.Orsic-Muthig, M.Steck, D.Sierpowski,S.Tashenov, A.Warczak ,Y.Zou, Phys. Rev. Lett. 92 (2004) 203004[3] S.Chatterjee, H.F.Beyer, D.Liesen, ThStöhlker, A.Gumberidze, C.Kozhuharov, D.Banaś, D.Protic,K.Beckert, P.Beller, Th.Kr<strong>in</strong>gs, F.Bosch, B.Franzke, S.Hagmann, J.Hoszowska, P.Indelicato, H.-J.Kluge,X.Ma, B.Manil, I.Mohos, F.Nolden, U.Popp, A.Simionovici, D.Sierpowski, M.Steck, U.Spillmann,C.Brandau, E.Förster, Z.Stachura, S.Tashenov, M.Trass<strong>in</strong>elli, A.Warczak, O.Wehrhan, E.Ziegler,S.Trotsenko, R.Reuschl, Nucl. Instr. Meth. B245 (<strong>2006</strong>) 67[4] A.Warczak, Nucl. Instr. Meth. B205 (2003) 36-46[5] Th.Stohlker, C.Kozhuharov, P.Mokler, A.Warczak, F.Bosch, H.Geissel, R. Moshammer,C.Schneidenberger, J.Eichler, A.Ichihara, T.Schirai, Z.Stachura, P.Rymuza, Phys. Rev. A 51 (1995) 2089[6] Th.Stöhlker, T.Ludziejewski, F.Bosch, R.W.Dunford, C.Kozhuharov, P.H.Mokler, H.F.Beyer,O.Br<strong>in</strong>zanescu, B.Franzke, J.Eichler, A.Griegal, S.Hagmann, A.Ichihara, A.Krämer, J.Lekki, D.Liesen,F.Nolden, H.Reich, P.Rymuza, Z.Stachura, M.Steck, P.Świat, A.Warczak, Phys. Rev. A 82 (1999) 3232[7] Th.Stöhlker, D.Banaś, S.Fritzsche, A.Gumberidze, C.Kozhuharov, X.Ma, A.Orsic-Muthig, U.Spillmann,D.Sierpowski, A.Surzhykov, S.Tachenov, A.Warczak, Phys. Scr T 110 (2004) 384[8] Th.Stöhlker, P.Mokler, C.Kozhuharov, A.Warczak, Comm. At. Mol. Phys. 33 (1997) 271[9] Th.Stöhlker, F.Bosch, A.Gallus, C.Kozhuharov, G.Menzel, P.H.Mokler, H.T.Pr<strong>in</strong>z, J.Eichler, A.Ichihara,T.Shirai, R. W.Dunford, T.Ludziejewski, P.Rymuza, Z.Stachura, P.Świat, and A.Warczak, Phys. Rev. Lett.79 (1997) 3270[10] Th.Stöhlker, X.Ma, T.Ludziejewski, H.F.Beyer, F.Bosch, O.Br<strong>in</strong>zanescu, R.W.Dunford, J.Eichler,S.Hagmann, A.Ichihara, C.Kozhuharov, A.Kraemer, D.Liesen, P.H.Mokler, Z.Stachura, P.Świat,A.Warczak, Phys. Rev. Lett. 86 (2001) 983192


PRECISION TESTS OF THE STANDARD MODEL IN THE DECAY OFPOLARIZED MUONSK.Bodek 1 , A.Budzanowski 2 , L.Jarczyk 1 , St.Kistryn 1 , A.Kozela 2 , J.Smyrski 1 , E.Stephan 3 ,A.Strzałkowski 1 , J.Zejma 11 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków3 Institute of Physics, University of Silesia, KatowiceExperimental facility: Paul Scherrer Institute, Villigen, SwitzerlandThe universality of the charged week<strong>in</strong>teraction allows to describe on the same basissuch a wide range of phenomena as <strong>nuclear</strong> betadecay, muon decay, and semileptonic decays ofhadrons and is <strong>in</strong>corporated <strong>in</strong> the StandardModel characterized by lefthanded fermions (V-A) and by the universal coupl<strong>in</strong>g constant G F . Itwas a selected set of µ decay experiments(<strong>in</strong>clud<strong>in</strong>g <strong>in</strong>verse µ decay) for which it waspossible to show the V-A structure of the week<strong>in</strong>teraction. Moreover, it is also exclusively µdecay from which G F was derived.Although the e+ are polarized ma<strong>in</strong>lylongitud<strong>in</strong>ally (P L = 0.998 ± 0.045), theexperimental limit ∆P L still allows for sizeabletransverse components P T1 = P T1·x 1 , P T2 = P T2·x 2 ,wherex2= ( ke× Pµ ) ke× Pµ, x1 = x2× keke.The experiment was performed at the µE1 beaml<strong>in</strong>eat Paul Scherrer Institute, Villigen, Switzerland.A longitud<strong>in</strong>ally polarized µ + beam (P µ ≈0.91) enters a beryllium stop target with bunchesevery 19.75 ns and a burst width of 3.9 ns(FWHM). The polarization P µ (t) of the stoppedmuons precesses <strong>in</strong> a homogeneous magneticfield (B = 373.6 ± 0.4 mT) with the same angularfrequency as the accelerator RF. This ensures ahigh stopped muon polarization P µ = 0.91 ± 0.02.A system of drift chambers and two th<strong>in</strong> plasticsc<strong>in</strong>tillator counters selects decay e + emitted at≈90° with respect to P µ . A 1 mm thick magnetizedVacoflux 50 TM foil with its polarized e - (P e- = 0.07)serves as polarization analyzer. The two γ's frome + annihilation-<strong>in</strong>-flight with the polarized e - areselected by an array of 127 BGO crystals with vetocounters <strong>in</strong> front of them (Fig. 1).The precession of P µ (t) implies precessionof P T (t) while P e- rema<strong>in</strong>s constant <strong>in</strong> time. Therate of detected γγ co<strong>in</strong>cidences for a given BGOcrystal pair can be expressed asR( t) = 1+ acosωt + bs<strong>in</strong> ωt = Nres ( t) ⋅N µ SR ( t) ⋅ Nγγ( t),where N res represents residual effects like thedifferential nonl<strong>in</strong>earity of the TDC, N µSR is due toFig. 1. Experimental setup.MWPC’s and veto sc<strong>in</strong>tillatorsare not shown.small remnant decay asymmetry and N γγ is theannihilation rate which traces the transversemuon polarization.The Fourier analysis of the collected dataled to the energy dependent transversepolarization components as shown <strong>in</strong> Fig. 2. TableI summarizes the results of the general and of therestricted analysis based on the 4-fermion contact<strong>in</strong>teraction.Fig. 2. Transversepositron polariza-tioncomponents P T1 andP T2 as a function of thee + energy at themoment of annihilation.The curvesare fit to the data.Table I. V-A values and experimental results (<strong>in</strong> units of 10 -3 ).The errors are statistical and systematic.193


[1] N. Danneberg, W. Fetscher, K.-U. Köhler, J. Lang, T. Schweizer, A. von Allmen, K. Bodek, L. Jarczyk,S. Kistryn, J. Smyrski, A. Strzałkowski, J. Zejma, K. Kirch, A. Kozela, and E. Stephan, Phys. Rev. Lett.94, 021802 (2005).[2] W. Fetscher, K. Bodek, A. Budzanowski, N. Danneberg, C. Hilbes, L. Jarczyk, K. Kirch, S. Kistryn,J. Klement, K. Köhler, A. Kozela, J. Lang, X. Morelle, T. Schweizer, J. Smyrski, J. Sromicki, E. Stephan,A. Strzałkowski, J. Zejma, Nucl. Phys. A721 (2003) 457c.[3] W. Fetscher, K. Bodek, A. Budzanowski, N. Danneberg, C. Hilbes, L. Jarczyk, K. Kirch, S. Kistryn,J. Klement, K. Köhler, A. Kozela, J. Lang, G. Llosá-Llácer, T.Schweizer, J. Smyrski, J. Sromicki,E. Stephan, A. Strzałkowski, J. Zejma, J. Phys. G: Nucl. Part. Phys. A 29 (2003) 2017.[4] I.C. Barnett, C. Bee, K. Bodek, A. Budzanowski, N. Danneberg, P. Eberhardt, W. Fetscher, C. Hilbes,M. Janousch, L. Jarczyk, K. Kirch, S. Kistryn, J. Klement, K. Koehler, A. Kozela, J. Lang, G. Liosa,M. Markiewicz, X. Morelle, O. Naviliat, T. Schweizer, J. Smyrski, J. Sromicki, E. Stephan,A. Strzałkowski, K. Szeker, J. Zejma, Nucl. Instr. Meth A 455 (2000) 329.[4] K. Bodek, A. Budzanowski, N. Danneberg, W, Fetscher, C. Hilbes, M. Janousch, L. Jarczyk, K. Kirch,S. Kistryn, J. Klement, K. Koehler, A. Kozela, J. Lang, G. Liosa Llacer, M. Markiewicz, X. Morelle,T. Schweizer, J. Smyrski, J. Sromicki, E. Stephan, A. Strzałkowski, J. Zejma, Nucl. Phys. A663-664(2000) 907.194


SEARCH FOR TIME REVERSAL VIOLATION EFFECTS IN BETA-DECAY OF NUCLEI AND NEUTRONSA.Białek 2 , K.Bodek 1 , St.Kistryn 1 , A.Kozela 2 , M.Kuźniak 1 , J.Pulut 1 , E.Stephan 3 , J.Zejma 11 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków3 Institute of Physics, University of Silesia, KatowiceExperimental facility: Paul Scherrer Institute, Villigen, SwitzerlandAll the CP violation effects observed so farcould be accommodated with<strong>in</strong> the StandardModel (SM) through CKM mix<strong>in</strong>g of the quarkstates. The amplitude of CP violation due tomix<strong>in</strong>g of the quark states is by several orders ofmagnitude too small to expla<strong>in</strong> the matterantimatterasymmetry of the Universe. If the onlysource of CP-violation would be the one offeredby the SM, effects <strong>in</strong> β-decay would bevanish<strong>in</strong>gly small. Thus any observation of timereversal violation <strong>in</strong> such a process would be thefirst unambiguous signal of new <strong>physics</strong> beyondthe SM. In renormalizable gauge-theories, at thetree level, the candidate models for scalarcontributions are charged Higgs, slepton andleptoquark exchange while for tensor coupl<strong>in</strong>g theonly candidate is the exchange of a sp<strong>in</strong>-0-leptoquark.The terms <strong>in</strong> the allowed β-decay ratefunction which are relevant for the discussedexperiments are:( p σ )⎛ J ⋅ p J ⋅ee×⎞eW ∝ ⎜1 + A + R + NJ⋅ σe+ K⎟.⎝ EeEe⎠The essential <strong>physics</strong> is conta<strong>in</strong>ed <strong>in</strong> theparity violat<strong>in</strong>g decay asymmetry parameter A, <strong>in</strong>the parity and time reversal violat<strong>in</strong>g parameter Rand <strong>in</strong> the parity and time reversal conserv<strong>in</strong>gparameter N. J describes the <strong>in</strong>itial nucleus (orneutron) polarization, whereas p e , E e and σ ecorrespond to the momentum, energy and sp<strong>in</strong> ofthe electron, respectively.The first experiment, performed at the PaulScherrer Institute, Villigen, Switzerland, measuredthe R-correlation coefficient <strong>in</strong> the decay of 8 L<strong>in</strong>uclei produced via the polarization transferreaction 7 Li(d,p) 8 Li <strong>in</strong>duced by 10 MeV vectorpolarized deuterons. The sketch of the apparatusis shown <strong>in</strong> Fig. 1. The f<strong>in</strong>al value of the R-coefficient for 8Li decay isR( )−38 = 0.9 ± 2.2 × 10 .LiFig. 1. Vertical cross section through the Mott polarimeter. Thedirection of the <strong>in</strong>cident polarized deuteron beam isperpendicular to the figure.The result is consistent with the time reversal<strong>in</strong>variance.The dist<strong>in</strong>ct advantage of the 8 Li → 9 Be(2.9MeV) transition is that the Fermi matrix elementvanishes and the R-parameter depends only onthe tensor <strong>in</strong>teraction which gives:TT( aRL) ≤ aRL< ( )Im 0.029, 0.0044 90% C.L.andmLQ*1/2L Rh h1/22= ≥1.8 GeV ( 90% C.L. ).T8G aFLRh L and h R are the (unknown) coupl<strong>in</strong>g constants ofthe leptoquarks and G F is the Fermi coupl<strong>in</strong>gconstant. Assum<strong>in</strong>g the “canonical” values forh L,R =√(4πα elm ) ≈ 0.3 we get m LQ ≥ 560 GeV/c 2 .The advantage of the neutron beta decay is itsmixed F–GT character and precisely known matrixelements lead<strong>in</strong>g toRn''⎛CS + C ⎞ ⎛SCT + C ⎞T= 0.28 ⋅ Im ⎜ ⎟+ 0.33⋅Im ⎜ ⎟.⎝ CA⎠ ⎝ CA⎠195


The experiment measur<strong>in</strong>g bothcomponents of the electron transverse polarizationis be<strong>in</strong>g carried out on the polarized cold neutronfacility FUNSPIN at the spallation source SINQ atthe Paul Scherrer Institute, Villigen, Switzerland.Present values of the N- and R-coefficient are:Nn= 0.059 ± 0.015 R = 0.026 ± 0.024.The achieved limits on imag<strong>in</strong>ary parts of thescalar and tensor coupl<strong>in</strong>gs are shown <strong>in</strong> Fig. 2.nFig. 2. ±σ constra<strong>in</strong>ts ob-ta<strong>in</strong>ed from β-decay experiments onS=Im{(C S +C’ S )/C A } and T=Im{(C T +C’ T )/C A }. Yellow band<strong>in</strong>dicates the prelim<strong>in</strong>ary result obta<strong>in</strong>ed from neutron decay.[1] R. Huber, J. Lang, S. Navert, J. Sromicki, K. Bodek, St. Kistryn, J. Zejma, O. Naviliat-Cuncic,E. Stephan, W. Haeberli, Phys. Rev. Lett. 90 (2003) 202301.[2] N. Severijns, M. Allet, K. Bodek, B.A. Brown, J. Camps, P. De Moor, J. Deutsch, M. Ferro-Luzzi,F. Gimeno-Nogues, J. Govaerts, B.R. Holste<strong>in</strong>, R. Kirchner, J. Lang, R. Mueller, S. Navert,O. Naviliat-Cuncic, T. Otto, I. Pepe, R. Prieels, P.A. Qu<strong>in</strong>, P. Schuurmans, J. Sromicki, E. Stephan,E. Thomas, A. Van Geert, B. Vereecke, L. Vanneste, J. Zejma, Nucl. Phys. A629 (1998) 423c-432c.[3] J. Sromicki, K. Bodek, D. Conti, St. Kistryn, J. Lang, S. Navert, O. Naviliat-Cuncic, E. Stephan,C. Sys, J. Zejma, W. Haeberli, E. Reichert, N. Steigerwald, Phys. Rev. Lett. 82 (1999) 57.[4] K. Bodek, P. Boeni, Ch. Hilbes, J. Lang, M. Lasakov, M. Luethy, St. Kistryn, M. Markiewicz,E. Medvedev, V. Pusenkov, A. Schebetov, A. Serebrov, J. Sromicki, A. Vassiljev, Neutron News 11(2000) 29.[5] J. Sromicki, M. Allet, K. Bodek, W. Hajdas, J. Lang, R. Müller, S. Navert, O. Naviliat-Cuncic, J. Zejma,W. Haeberli, Phys. Rev. C 53 (<strong>1996</strong>) 932.[6] G. Ban, M. Beck, A. Białek, K. Bodek, P. Gorel, K. Kirch, St. Kistryn, A. Kozela, M. Kuźniak,A. L<strong>in</strong>droth, O. Naviliat-Cuncic, J. Pulut, N. Severijns, E. Stephan, J. Zejma, Nucl. Instr. Meth. <strong>in</strong>Phys. Res. A 565 (<strong>2006</strong>) 622.[7] J. Zejma, G. Ban, M. Beck, A. Białek, K. Bodek, G. Frei, Ch. Hilbes, G. Kuehne, P. Gorel, K. Kirch,St. Kistryn, A. Kozela, M. Kuźniak, A. L<strong>in</strong>roth, O. Naviliat, J. Pulut, N. Severijns, E. Stephan, Nucl.Instr. Meth. A 539 (2005) 622-639.[8] K. Bodek, T. Boehm, D. Conti, N. Danneberg, W. Fetscher, C. Hilbes, M. Janousch, S. Kistryn,K. Köhler, J. Lang, M. Markiewicz, J. Sromicki, J. Zejma, Nucl. Instr. Meth. Phys. Res. A 473 (2001)326-334196


HIGH INTENSITY ULTRA-COLD NEUTRON SOURCEFOR FUNDAMENTAL PHYSICSK.Bodek, T.Bryś, S.Czekaj, M.Kasprzak, M.Kuźniak, A.Siódmok, A.Szelc, U.SzererM. Smoluchowski Institute of Physics, Jagiellonian University, KrakówExperimental facility: Paul Scherrer Institute, Villigen, SwitzerlandUltra cold neutrons (UCN) are neutrons withenergy of less than about 300 neV. Such slowneutrons are totally reflected by some materialsurfaces. Due to their magnetic moment, one sp<strong>in</strong>state is also reflected by conventionally achievablemagnetic fields (1 T corresponds to 60 neV). UCNare also affected by gravity. It is possible toconf<strong>in</strong>e UCN for times comparable to the neutronlifetime. Very often the neutron itself is an objectof <strong>in</strong>terest. Prom<strong>in</strong>ent examples <strong>in</strong>clude precisionmeasurements of the neutron lifetime, the neutronelectric dipole moment or the angular correlationsamong the decay products. The accuracy of suchexperiments is often limited by the UCN flux ordensities available. Currently, the only UCNsource operat<strong>in</strong>g as a user facility is located at theILL Grenoble, France. It delivers a few tenth ofUCN per cm 3 . with an <strong>in</strong>crease <strong>in</strong> UCN <strong>in</strong>tensity,a whole class of <strong>in</strong>vestigations, e.g. neutronant<strong>in</strong>eutronconversion, phase-space transformeror surface analysis experiments would becomefeasible.Among the world wide efforts to build thehigh <strong>in</strong>tensity UCN sources, the project of thePaul Sherrer Institute, Villigen, Switzerland, is themost advanced. The essential elements of the PSIUCN source are a pulsed proton beam withhighest <strong>in</strong>tensity (≥ 2 mA) and a low duty cycle (∼1%), a heavy element spallation target, a largemoderator and converter system. The moderatorconsists of about 4 m 3 of heavy water at roomtemperature where the spallation neutrons arethermalized. These are then down-scattered <strong>in</strong>tothe UCN regime <strong>in</strong> a converter made of 30 dm 3 ofsolid Deuterium (sD 2 ) at low temperature (∼ 6 K).A storage volume of about 2 m 3 serves as UCNreservoir and allows for quasi cont<strong>in</strong>uousoperation. It is connected to the experiments withvia horizontal neutron guide pipes equipped withmechanical shutters.Operat<strong>in</strong>g the UCN source <strong>in</strong> a pulsed modemakes it possible to hold the sD2 at lowtemperatures <strong>in</strong> the vic<strong>in</strong>ity of the spallationtarget despite the large power deposition dur<strong>in</strong>gthe beam pulse of a few seconds. Moreover, thepulsed regime is typical for UCN experimentswhich need the beam only for a few seconds tofeed the apparatus and then use a long (a fewm<strong>in</strong>.) observation time. The layout of the UCNsource tank is shown <strong>in</strong> Fig. 1.The layout of the UCN source tank.Fig. 1.The design of the PSI pulsed UCN source hasbeen accompanied by a series of dedicated R&Dactivities and special experiments prov<strong>in</strong>g thefeasibility of applied solutions. Much attentionwas put the properties of the sD 2 converter. Thebehavior of solid deuterium exposed to frequenttemperature cycl<strong>in</strong>g was studied with atomicspectroscopy methods and us<strong>in</strong>g cold, very-coldand ultra-cold neutrons. Also cool<strong>in</strong>g andma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g 30 dm 3 sD 2 crystal <strong>in</strong> a UCN“friendly” manner is challeng<strong>in</strong>g enterprise foritself.Another issue, critical for the project is thespallation target which must susta<strong>in</strong> up to 2 MWpeak power and be robust aga<strong>in</strong>st numerouscycl<strong>in</strong>g of physical conditions and heavy radiationdamage. Also the preparation of surfaces with thehighest possible UCN reflection potential andm<strong>in</strong>imum losses is a challeng<strong>in</strong>g task. DLCcoat<strong>in</strong>gs will be used <strong>in</strong> both large area (storagetank) and small area (UCN shutters, constructiondetails, etc.)The expected UCN density <strong>in</strong> the storagevolume is about 3’000 per cm 3 . Start of regularoperation is planned for 2008.197


[1] F. Atchison, T. Bryś, M. Daum, P.Fierl<strong>in</strong>ger, A. Fom<strong>in</strong>, R. Henneck, K. Kirch, M. Kuźniak, A.Pichlmaier, Nucl. Instr. Meth. <strong>in</strong> Phys. Res. A 552 (2005) 513.[2] F. Atchison, P. Baumann, T. Bryś, M. Daum, A. Egorov, P. Fierl<strong>in</strong>ger, P. Fuchs, R. Henneck, St. Joray,R. Keil, K. Kirch, R. Krutova, G. Kuehne, V.T. Lebedev, H. Obermeier, D.N. Orlova, Ch. Perret,A. Pichlmeier, Ph. Richard, A. Serebrov, S. Thies, Nucl. Instr. Meth. <strong>in</strong> Phys. Res. A 539 (2005) 646.[3] T. Bryś, M. Daum, P. Fierl<strong>in</strong>ger, A. Foelske, M. Gupta, R. Henneck, S. Heule, M. Kasprzak, K. Kirch,M. Kuźniak, T. Lippert, M. Meier, A. Pichlmeier, U. Straumann, Diamond & Related Materials 15(<strong>2006</strong>) 928.[4] F. Atchison, B. van den Brandt, T. Bryś, M. Daum, P. Fierl<strong>in</strong>ger, P. Hautle, R. Henneck, K. Kirch,J. Kohlbrecher, G. Kuehne, J.A. Konter, A. Pichlmeier, A. Wokaun, K. Bodek, M. Kasprzak, M.Kuźniak, P. Geltenbort, M. Giersch, J. Zmeskal, M. H<strong>in</strong>o,M. Utsuro, Phys. Rev. Lett. 94, 212502 (2005).[5] F. Atchison, B. van den Brandt, T. Bryś, M. Daum, P. Fierl<strong>in</strong>ger, P. Hautle, R. Henneck, S. Heule,M. Kasprzak, K. Kirch, J.A. Konter, A. Michels, A. Pichlmeier, M. Wohlmuther, A. Wokaun, K. Bodek,U. Szerer, P. Geltenbort, J. Zmeskal, Y. Pokotilovskiy,Phys. Rev. C 71 054601 (2005).[6] F. Atchison, P. Beaud, T. Bryś, M. Daum, P. Fierl<strong>in</strong>ger, R. Henneck, T. Hofmann, K. Kirch, G. Kuehne,G. Knopp, A. Pichlmeier, A. Serebrov, H. Spitzer, J. Wambach, J. Wimmer, A. Wokaun, K. Bodek,P. Geltenbort, M. Giersch, J. Zmeskal, K. Mishima,Phys. Rev. B 68 094114 (2003).[7] F. Atchison, B. Blau, M. Daum, P. Fierl<strong>in</strong>ger, P. Geltenbort, R. Henneck, S. Heule, M. Kasprzak, K.Kirch, K. Kohlik, M. Kuźniak, M. Meier, C.-F. Meyer, A. Pichlmeier, C. Plonka, P. Schmidt-Wellenburg, B. Schultrich, Th. Stucky, V. Weihnacht, O. Zimmer, Phys. Rev. C 74 055501 (<strong>2006</strong>).[8] T. Bryś, S. Czekaj, M. Daum, P. Fierl<strong>in</strong>ger, D. Georgie, R. Henneck, M. Kasprzak, K. Kirch,M. Kuźniak, G. Kuehne, A. Pichlmeier, A. Siódmok, A. Szelc, L. Tanner, C. Assman, S. Bechste<strong>in</strong>, D.Drung, Th. Schurig, C. Ciofi, B. Neri, Nucl. Instr. Meth. <strong>in</strong> Phys. Res. A 554 (2005) 527.[9] K. Bodek, K. van den Brandt, T. Bryś, M. Daum, P. Fierl<strong>in</strong>ger, P. Geltenbort, M. Giersch, P. Hautle,R. Henneck, M. Kasprzak, K. Kirch, J.A. Konter, G. Kuehne, M. Kuźniak, K. Mishima, A. Pichlmeier,D. Raetz, A. Serebrov, J. Zmeskal,Nucl. Instr. Meth. <strong>in</strong> Phys. Res. A 533 (2004) 491.[10] T. Bryś, M. Daum, P. Fierl<strong>in</strong>ger, A. Fom<strong>in</strong>, P. Geltenbort, R. Henneck, K. Kirch, A. Kharitonov,I. Krasnoshekova, M. Kuźniak, M. Lasakov, A. Pichlmeier, F. Raimondi, R. Schelldorfer, A. Serebrov,E. Siber, R. Tald’aev, V. Varlamov, A. Vasiliev, J. Wambach, O. Zherebtsov,Nucl. Instr. Meth. <strong>in</strong> Phys. Res. A 551 (2005) 429.[11] F. Atchison, T. Bryś, M. Daum, P. Fierl<strong>in</strong>ger, P. Geltenbort, R. Henneck, S. Heule, M. Kasprzak, K.Kirch, A. Pichlmeier, C. Plonka, U. Straumann, C. Wermel<strong>in</strong>ger, Phys. Lett. B 625(2005) 19.[12] T. Bryś, M. Daum, P. Fierl<strong>in</strong>ger, P. Geltenbort, D. Geurge, M. Gupta, R. Henneck, S. Heule, M. Horvat,M. Kasprzak, K. Kirch, K. Kohlik, M. Negrazus, A. Pichlmeier, U. Straumann, V. Vrankovic,C. Wermel<strong>in</strong>ger, Nucl. Instr. Meth. <strong>in</strong> Phys. Res. A 550 (2005) 637.198


NUCLEAR PHYSICS WITH ULTRACOLD ATOMIC GASESPiotr MagierskiFaculty of Physics, Warsaw University of Technology, WarszawaIn the last couple of years we have witnesseda tremendous progress <strong>in</strong> the field of coldfermionic atoms. Ultra cold atomic gases providea remarkable opportunity to <strong>in</strong>vestigate stronglycorrelated Fermi systems. They are dilute andtheir <strong>in</strong>teractions can be precisely controlledover an enormous range. In particular, they formunique laboratories where the crossover betweenthe Bose-E<strong>in</strong>ste<strong>in</strong> condensate and the BCSsuperfluid can be explored. In this limit, oftenreferred to as unitary regime, which is relevantfor the dilute neutron matter, the scatter<strong>in</strong>glength greatly exceeds the average <strong>in</strong>ter-particleseparations. Consequently, the system isbelieved to be strongly paired and the size ofCooper pairs is comparable with the Fermiwavelength.The experimental <strong>in</strong>vestigation of theunitary Fermi gas (UFG) began with itsrealization <strong>in</strong> atomic traps by the Duke group[1]. At unitarity (often referred to as ``atresonance"), when scatter<strong>in</strong>g length tends to<strong>in</strong>f<strong>in</strong>ity, the properties of such a system aregoverned by deceptively simple laws. Inparticular, the ground state energy per particle isgiven by E/N=3ε F ξ/5, where ε F =ħ 2 k F2 /2m is theFermi energy of a non<strong>in</strong>teract<strong>in</strong>g Fermi gas withthe same number density n=n/V=k F3 /3π 2 . Thedeterm<strong>in</strong>ation of the dimentionless constant ξ istheoretically very demand<strong>in</strong>g as it requires thenon-perturbative methods. The best currentaccepted value was determ<strong>in</strong>ed throughrestricted/fixed node Monte Carlo (MC)calculation as ξ=0.42(1). This value wasconfirmed by the zero temperature extrapolationof unrestricted MC calculations of Ref. [2], whereξ =0.44(3) was obta<strong>in</strong>ed. Theoretically, it wasalso found that this system is superfluid at lowtemperatures and the value of the pair<strong>in</strong>g gapwas estimated at zero temperature to be ∆ =0.504(24) ε F . A number of f<strong>in</strong>ite temperaturethermodynamic properties of the homogeneousphase were determ<strong>in</strong>ed as well [2-6]. Inparticular it was shown [2,3] that at lowtemperatures the thermodynamic behaviorappears as a rather surpris<strong>in</strong>g and unexpectedmelange of fermionic and bosonic features,which defies a straightforward classification asany known superfluid. Namely, the temperaturedependence is characteristic of an ideal Bosegas, which is superfluid at the same time.On the experimental side there is a quitewide spread <strong>in</strong> values of the dimensionlessparameter ξ determ<strong>in</strong>ed <strong>in</strong> various experiments.However, the latest experiments seem toconverge, possibly guided by the existence offirm theoretical results, to the expected value[7,8].The measurements of the pair<strong>in</strong>g gap arestill <strong>in</strong> their <strong>in</strong>fancy. Although it has beenconclusively demonstrated that a UFG issuperfluid at sufficiently low temperatures [9]the value of the pair<strong>in</strong>g gap has only beendeterm<strong>in</strong>ed so far <strong>in</strong> one experiment [10].Moreover, the extracted value is significantlysmaller than the theoretical value.One of the most <strong>in</strong>terest<strong>in</strong>g recentachievements was the first model-<strong>in</strong>dependentcomparison of measurements of the entropy andof the critical temperature for the supefluid-tonormalphase transition of a unitary Fermi gas,performed by the Duke group [11], with themost complete results currently available fromf<strong>in</strong>ite temperature Monte Carlo calculations [12].The measurement of the critical temperature <strong>in</strong> acold fermionic atomic cloud is consistent with avalue T C =0.23(2)ε F <strong>in</strong> the bulk, as predicted <strong>in</strong>Ref. [2].199


[1] K.M. O'Hara, et al., Science, 298, 2179 (2002).[2] A. Bulgac,J.E. Drut, P. Magierski., Phys. Rev. Lett. 96, 090404 (<strong>2006</strong>);[3] A. Bulgac,J.E. Drut, P. Magierski., Int. J. Mod. Phys. B20, 5165 (<strong>2006</strong>)[4] E. Burovski, et al., Phys. Rev. Lett. 96, 160402 (<strong>2006</strong>); ibidem 97, 239902(E) (<strong>2006</strong>); New J. Phys. 8, 153(<strong>2006</strong>).[5] D. Lee and T. Shäffer, Phys. Rev. C 73, 015202 (<strong>2006</strong>); D. Lee, Phys. Rev. B 73, 115112 (<strong>2006</strong>).[6] V.K. Akk<strong>in</strong>eni, et al., cond-mat/0608154.[7] J.T. Stewart, et al., Phys. Rev. Lett. 97, 220406 (<strong>2006</strong>).[8] L. Tarruell, et al., cond-mat/0701181.[9] M.W. Zwierle<strong>in</strong>, et al., Nature, 435, 1047 (2005).[10]C. Ch<strong>in</strong>, et al., Science 305, 1128 (2004).[11] L. Luo et al., cond-mat/0611566[12] A. Bulgac,J.E. Drut, P. Magierski., cond-mat/07017786200


FORWARD SPECTROMETER FOR PANDAD. Gil 1 , P. Hawranek 1 , B. Kamys 1 , St. Kistryn 1 , K. Korcyl 2 , W. Krzemień 1 , E. Lisowski 3 ,A. Magiera 1 , P. Moskal 1 , J. Otw<strong>in</strong>owski 1 , Z. Rudy 1 , P. Salabura 1 , J. Smyrski 1 ,A. Wrońska 11 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków3 Institute of Comput<strong>in</strong>g Science, Kraków University of Technology, KrakówExperimental facility: future Facility for Antiproton and Ion Research (FAIR), DarmstadtPANDA (Proton ANtiproton DetectorAssembly) is a general purpose detector whichwas proposed for studies of reactions <strong>in</strong>duced byantiproton beams on hydrogen as well as on<strong>nuclear</strong> targets at the Facility for Antiproton andIon Research (FAIR) at GSI-Darmstadt (wwwpanda.gsi.de).PANDA will be <strong>in</strong>stalled at the<strong>in</strong>ternal target of the High Energy Storage R<strong>in</strong>g(HESR) at FAIR which can store up to 10 11antiprotons and accelerate them <strong>in</strong> themomentum range 1.5-15 GeV/c. Application ofelectron cool<strong>in</strong>g will guarantee unprecedentedquality of the antiproton beam. This will enableperformance of high-precision experiments <strong>in</strong> thefield of: charmonium spectroscopy, establishmentof the QCD-predicted qluonic excitations(charmed hybrids, glueballs), search formodifications of properties of mesons with openand hidden-charm <strong>in</strong> <strong>nuclear</strong> medium,spectroscopy and study of rare decays of D andD s mesons, measurements of the proton electricand magnetic form factors <strong>in</strong> the time-like regionup to Q 2 ≈25 GeV 2 /c 2 .Our Kraków group is a member of the<strong>in</strong>ternational collaboration work<strong>in</strong>g at present onthe design and prototyp<strong>in</strong>g of the PANDAdetector. We are responsible for the ForwardSpectrometer (FS) which, besides the TargetSpectrometer (TS), is the key component of thePANDA setup. Our studies <strong>in</strong>volve a “3-D”model<strong>in</strong>g of the FS detectors <strong>in</strong>clud<strong>in</strong>g driftchambers, TOF sc<strong>in</strong>tillation wall, RICH detector,electromagnetic calorimeter and muon counters.We participate also <strong>in</strong> development of simulationand data analysis software which we exploit foroptimization of the FS detector setup. In order tostudy performance of drift chambers <strong>in</strong> the highrate environment expected at PANDA weconstructed a prototype drift chamber which isshown <strong>in</strong> Figure 1. The chamber is equipped withthe read-out electronics also developed <strong>in</strong>Kraków. It comprises preamplifier-discrim<strong>in</strong>atorcards based on the CARIOCA chips and the TDCboards based on the HPTDC chips. Currently weare test<strong>in</strong>g the chamber <strong>in</strong> various ways <strong>in</strong>clud<strong>in</strong>girradiation with proton beam from the COSY-Juelich accelerator. Last but not least wecontribute to development of the data acquisitionsystem (DAQ) for PANDA. We proposed a novelarchitecture of triggerless DAQ based on databuffers and process<strong>in</strong>g nodes <strong>in</strong>terconnected witha high speed network, allow<strong>in</strong>g for a very highflexibility <strong>in</strong> the event selection. Results of studiesof this architecture, performed with the use of theSYSTEM-C framework, are very promis<strong>in</strong>g.Fig. 1. Prototype drift chamber for PANDA. The chamber conta<strong>in</strong>sfour detection planes with square 1cm x 1cm cells. The centralopen<strong>in</strong>g is foreseen for the beam pipe.201


[1] C. Schwarz, T. Barnes, D. Bettoni, R. Calabrese, W. Cass<strong>in</strong>g, M. Duren, S. Ganzhur, A. Gillitzer,O. Hartmann, V. Hejny, P. Kienle, H. Koch, W. Kuhn, U. Lynen, R. Meier, V. Metag, P. Moskal, H. Orth,S. Paul, K. Peters, J. Pochodzalla, J. Ritman, M. Sapozhnikov, L. Schmitt, K. Seth, A. Sokolov, N. Vlassov,W. Weise, U. Wiedner, Phys. Scripta T104, 147 (2003).[2] J. Smyrski, Int. J. Mod. Phys. A20, 564 (2005).[3] J. Smyrski, "PANDA: a detector for research with antiprotons", Proceed<strong>in</strong>gs of the 9th ICATPPConference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Application, Como,17-21 October 2005.[4] P. Hawranek, Int. J. Mod. Phys. A22, 574 (2007).202


DESIGN STUDIES OF CHARMONIUM DETECTIONVIA J/ψ→2µ DECAYS IN CBMK. Piasecki, B. Sikora, Ł. Ślusarczyk, K. WiśniewskiInstitute of Experimental Physics, Warsaw University, WarszawaExperimental facility: future CBM detector, FAIR facility, GSI Darmstadt, GermanyThe Compressed Baryonic Matter (CBM)experiment at the new major accelerator facilitynamed FAIR <strong>in</strong> Darmstadt aims at the<strong>in</strong>vestigation of strongly <strong>in</strong>teract<strong>in</strong>g matter at veryhigh baryon densities. Jo<strong>in</strong><strong>in</strong>g the <strong>in</strong>ternationalCBM Collaboration, we participated <strong>in</strong> theplan<strong>in</strong>g of research and consequently <strong>in</strong> thedesign<strong>in</strong>g of apparatus – an universal detectionsystem dedicated to fully exploit the <strong>physics</strong>potential of nucleus-nucleus collisions at FAIR.The Warsaw group contributed to the shap<strong>in</strong>g ofthe basic <strong>in</strong>itial setup of the CBM [1], particularlythe geometry of transition radiation detector(TRD) planes and of the time-of-flight (TOF)detector.The research program comprises the study of thestructure and the equation of state of baryonicmatter. This <strong>in</strong>cludes the search for the phaseboundary between hadronic and partonic matter,the critical endpo<strong>in</strong>t and the search for signaturesfor the onset of chiral symmetry restoration.Among the various probes that should allow toga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the properties of hot and dense<strong>nuclear</strong> matter, important are pairs of leptons e + e -and µ + µ - . They orig<strong>in</strong>ate from and can be used todetect the decays of the hidden charm meson J/ψand of the low short-lived strange low-massvector mesons (LMVM) ρ and ω as well as of thehidden strangeness meson φ. These leptons do not<strong>in</strong>teract strongly and thus penetrate quasi freelythe hot and dense zone of collisions.The CBM experiment is designed to operate at<strong>in</strong>teraction rates up to 10 7 reactions per secondwith multiplicities of up to ∼1000 chargedparticles per collision. Such parameters requireunprecedented detector performance <strong>in</strong> terms ofreadout. The search for rare events requires <strong>in</strong>addition an appropriate trigger concept andefficient fast particle identification algorithms.Simulations of J/ψ identification via themeasurement of di-muon pairs as an alternativeto the di-electron pairs have been peformed. Inthis case the background is caused by muons fromweak decays of charged pions and kaons. One ofthe possible locations of the muon detector isbeh<strong>in</strong>d the basic CBM setup consist<strong>in</strong>g of: silicontrack<strong>in</strong>g system STS <strong>in</strong> a magnetic dipole, r<strong>in</strong>gimag<strong>in</strong>g Cerenkov detector RICH, TRD, TOF andelectromagnetic calorimeter ECAL [1]. The otherlocation considered is <strong>in</strong> the space occupied <strong>in</strong> thebasic setup by RICH, with the consequence ofresign<strong>in</strong>g from the detection of di-electron pairs.As a part of comparative studies of these optionsa search was performed for the optimumgeometry of a muon detector at the formerposition <strong>in</strong> CBM .The distant location implies large dimensions andrequires optimiz<strong>in</strong>g the geometry, compromis<strong>in</strong>gbetween efficiency, acceptable signal/backgroundratio (S/B) and size. The results favour the choiceof a two-arm structure – a consequence of theemission of the muon pair <strong>in</strong>to oppositehemispheres. Moreover a vertical arrangement ofthe arms, i.e. out of the bend<strong>in</strong>g plane of themagnetic dipole, results <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g S/B. Withtwo optimized rectangular arms of total area 25m 2 located at a distance 15 m from the target thedetection efficiency of 5% could be achieved forJ/ψ’s produced <strong>in</strong> 25A GeV Au+Au collisions.The rare production of J/ψ mesons (2·10 5 per suchcollision) with 6% decay<strong>in</strong>g <strong>in</strong>to the µ + µ - channelhas to be measured <strong>in</strong> presence of a strongcomb<strong>in</strong>atorial background of muons from decaysof several hundreds of pions. The suppression ofthis background could be achieved by measur<strong>in</strong>gthe k<strong>in</strong>k angle between the trajectory of mesonand its decay daughter. This method requires theoptimization of the set of parameters used todist<strong>in</strong>guish between deviations of trajectories dueto decay k<strong>in</strong>ks and trivial multiple scatter<strong>in</strong>g [2].Realistic estimates of track<strong>in</strong>g precision based onthe resolution of STS (1% momentum uncerta<strong>in</strong>ty)and TRD (3 stations with 3 planes of 250 µmspatial resolution) result <strong>in</strong> the reduction ofbackground and yield S/B ~ 2 <strong>in</strong> a 100 MeV widenvariant mass w<strong>in</strong>dow centered at the mass ofJ/ψ . The muon identify<strong>in</strong>g algorithm [2] has beenimproved and optimized to allow for fast particletagg<strong>in</strong>g required to take trigger decisions.Further simulations are carried out <strong>in</strong> search forpossible alternative and complementaryconfigurations of the CBM detector aim<strong>in</strong>g atsimultaneous detection of J/ψ and LMVM viatheir di-muon decays.203


[1] CBM Experiment, Technical Status Report, GSI, Darmstadt, 2005, p.14[2] CBM Experiment, Technical Status Report, GSI, Darmstadt, 2005, p.367204


ONLINE EVENT SELECTION IN THE CBM EXPERIMENTA. Bubak, A. Grzeszczuk, S. Kowalski, M. Krauze, E. Stephan, W. ZipperInstitute of Physics, University of Silesia, KatowiceExperimental facility: GSI Darmstadt, FAIR DarmstadtThe CBM experiments is a dedicated to<strong>in</strong>vestigate the properties of highly compressedbaryonic matter as it is produced <strong>in</strong> nucleusnucleus(e.g. Au+Au) collisions from 15 to 45AGeV. The scientific goal of the research programis to explore the QCD phase diagram of strongly<strong>in</strong>teract<strong>in</strong>g matter <strong>in</strong> the region of highest baryondensities and thus measurements of hadronic,leptonic and photonic observables at <strong>in</strong>teractionrates up to 10MHz. To make it feasible thededicated detectors will be designed. The currentlayout consist of high-resolution silicon track<strong>in</strong>gsystem (STS) placed <strong>in</strong> the field of asuperconduct<strong>in</strong>g dipole magnet. Outside of themagnetic field, a RICH detector and severalstations of transition radiation detectors (TRD)will identify electrons <strong>in</strong> the momentum rangesrelevant for low-mass vector meson andcharmonium measurements. Hadronidentification will be achieved by the time-offlightmeasurement <strong>in</strong> an array of resistive platechambers (TOF). The setup is completed by anelectromagnetic calorimeter (ECAL) foridentification of photons, electrons and muons.The experiment will operate at the future Facilityfor Antiproton and Ion Research (FAIR) <strong>in</strong>Darmstadt, Germany.The major experimental challenge is posed byextremely high reaction rates of up to10 7 event/second. A typical central Au+Aucollision <strong>in</strong> the CBM experiment will produce upto 700 tracks <strong>in</strong> the TRD detector. It produces ahuge amount of data which currently can not betransmitted and stored for further slow off-l<strong>in</strong>eanalysis. Therefore the standalone TRD track<strong>in</strong>galgorithm has been developed hav<strong>in</strong>g the lowlevelonl<strong>in</strong>e event selection <strong>in</strong> m<strong>in</strong>d. It has beencreated to reduce the amount of data that do notconta<strong>in</strong> <strong>in</strong>terest<strong>in</strong>g signal, i.e. detected electronsand positrons from the J/ψ decay. This particle isparticularly <strong>in</strong>terest<strong>in</strong>g because is one of thepredicted signal and experimental evidence of theformation of the quark-gluon plasma. The J/ψmeson, called also "charmonium", is produced <strong>in</strong>Au(25 AGeV)+Au reaction with multiplicity1.5·10 5 . If will be taken <strong>in</strong>to consideration plannedbeam <strong>in</strong>tensity, number of <strong>in</strong>teraction,charmonium rate, fraction (J/ψ → e + e - ) anddetector acceptance, only 0.17/s charmonium willbe meausered. Thus, the huge bulk of backgrounddata should be efficiently suppressed to make itpossible to pass rema<strong>in</strong><strong>in</strong>g <strong>in</strong>formation to themass storage system. This required high-speed,efficient and reliable data acquisition and anonl<strong>in</strong>e event selection and backgrund suppressionmethods. The standalone TRD track<strong>in</strong>gprocedure, based on cellular automatonalgorithm, is just a part of wider onl<strong>in</strong>ebackground suppression issue.In the present shape the algorithm givespromis<strong>in</strong>g results with regard to speed andefficiency. As test<strong>in</strong>g environment the particlesproduced from Au+Au central collision at 25GeVwere taken. After process<strong>in</strong>g 1000 eventsproduced by UrQMD particle generator, onaverage 550 tracks per event were reconstructed.Efficiency of correctly reconstructed tracks isabout 86% and 91% for particles with momentumbelow and above 1 GeV/c respectively. Onaverage process<strong>in</strong>g time per event is about 0.8seconds. The procedure was tested us<strong>in</strong>g thestandard PC computer with 2 multithreads, 3GHzprocessors and 1GB RAM.Reconstruct<strong>in</strong>g the tracks of electron and positronfrom discussed decay and calculat<strong>in</strong>g eachparticle's momentum vector leads to thereconstruction of J/ψ mass, which is equal 3.1GeV/c 2 . Hence, if the algorithm f<strong>in</strong>ds a value of<strong>in</strong>variant mass similar to the J/ψ, it accepts theentire event and sends it to the data acquisitionsystem. For production event with e + e - pairs fromJ/ψ decay was used the Pluto generator (a montecarlo simulation tool for hadronic <strong>physics</strong>).205


[1] CBM Collaboration, Technical Status Report, Compressed Baryonic Experiment,GSI 2005.[2] CBM Collaboration, Scientific Report 2005, GSI Report <strong>2006</strong>-1.206


DEVELOPMENT OF A FAST DATA READOUT SYSTEMFOR MEDIUM SIZE EXPERIMENTSSt. Kistryn 1 , K. Bodek 1 , A. Kozela 2 , E. Stephan 31 M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków2 H. Niewodniczański Institute of Nuclear Physics PAN, Kraków3 Institute of Physics, University of Silesia, KatowiceExperimental facility: PSI, Villigen, Switzerland; KVI Gron<strong>in</strong>gen, The NetherlandsIn numerous <strong>nuclear</strong>/particle <strong>physics</strong>experiments detection systems comprise up tofew thousands of analog data sources. Highprecision studies require accumulation of largedata samples and therefore the readout systemmust work reliably at trigger rates reach<strong>in</strong>g a fewtens of thousands events (with multiplicitiesbelow about a hundred) per second, without anysignificant dead-time. To meet such requirementsit is necessary to utilize a fast bus and/or protocolfor the data transmission. In contrast to thepresent generation of HEP experiments, here theusage of complicated multiplex<strong>in</strong>g schemes withspecially developed chips and boards as well asmany-level trigger<strong>in</strong>g and event-build<strong>in</strong>gtechniques is rather disadvantageous.As a response to the needs of moderatesizeexperiments we have developed a readoutsystem based on the standard FERA (trademarkof the LeCroy Corporation) configuration and anadditional custom CAMAC module, whose usepermits to avoid the limitations <strong>in</strong>herent <strong>in</strong> theorig<strong>in</strong>al FERA system. Use of the custom FERAExtender/Tagger module allows us to divide thereadout system <strong>in</strong>to sections match<strong>in</strong>g thedetector configuration, and to drive each sectionby a separate (differ<strong>in</strong>g <strong>in</strong> width or shifted <strong>in</strong>time) gate signal. In each sub-system the data areFig. 1. Block diagram of the full FERA readout system composed of three branches conta<strong>in</strong><strong>in</strong>g the Extender/Tagger modules, and controlledby a s<strong>in</strong>gle Manager module equipped with auxiliary logic.207


sent over a dedicated bus (at the speed of 100 nsper data word) to a pair of alternatively activebuffer<strong>in</strong>g memories. The coord<strong>in</strong>ation of the fullsystem (controll<strong>in</strong>g the event cycle, switch<strong>in</strong>g thememories, issu<strong>in</strong>g DAQ requests) is performed bya s<strong>in</strong>gle FERA Manager, which is equipped witha logic system for distribut<strong>in</strong>g and multiplex<strong>in</strong>g ofthe synchronization signals – see figure 1. Thesub-events are uniquely marked by theExtender/Tagger module (synchronously <strong>in</strong> allbranches), what allows to recomb<strong>in</strong>e them <strong>in</strong>tofull events by the processor controll<strong>in</strong>g theacquisition.Rate capability of the full FERA systemdepends clearly on a particular experimentalimplementation. For three sub-systems witha total of 2000 readout channels and a typicalevent size of 80 words, one obta<strong>in</strong>s a conservativeestimation for the event cycle duration of around25 µs. It follows, that an event rate of about 3·10 4per second can be processed by the system withdead-time losses of 3% only. A limitation on therate capability could arise due to the memoriesempty<strong>in</strong>g time, a slow procedure on the CAMACDATAWAY. Even then the acceptable event rateis about 3·10 3 s -1 . This restriction on the datathroughput could be easily removed by replac<strong>in</strong>gthe CAMAC memory modules by their VMEversions. In such a hybrid system the full ratecapability can be restored, allow<strong>in</strong>g for the datarates of about 5 MB/s (i.e. some 30000 moderatelengthevents per second). The described systemhas been, <strong>in</strong> various versions, successfully used <strong>in</strong>several fundamental research projects and provedits stable and reliable performance.[1] St. Kistryn, C.P. Bee, P. Eberhardt, Proc. of the 6-th Int. Conf. on Electronics for Particle Physics, LeCroyCorporation, Chestnut Ridge New York, May 28-29, 1997, ed. G.J. Blanar, R.L. Sumner, New York 1997,p. 193.[2] I.C. Barnett, C.P. Bee, St. Kistryn, Proc. of the 6-th Electronics New Zealand Conference, ed. G.E.J. Bold,University of Auckland, 1999.[3] I.C. Barnett, C. Bee, K. Bodek, A. Budzanowski, N. Danneberg, P. Eberhardt, W. Fetscher, C. Hilbes,M. Janousch, L. Jarczyk, K. Kirch, S. Kistryn, J. Klement, K. Köhler, A. Kozela, J. Lang, G. Llosa,M. Markiewicz, X. Morelle, O. Naviliat, T. Schweizer, J. Smyrski, J. Sromicki, E. Stephan,A. Strzałkowski, K. Szeker, J. Zejma, Nucl. Instr. Meth. A455, 329 (2000).[4] K. Bodek, T. Boehm, D. Conti, N. Danneberg, W. Fetscher, C. Hilbes, M. Janousch, S. Kistryn, K. Köhler,J. Lang, M. Markiewicz, J. Sromicki, J. Zejma, Nucl. Instr. Meth. A473, 326 (2001).[5] G. Ban, M. Beck, A. Białek, K. Bodek, P. Gorel, K. Kirch, St. Kistryn, A. Kozela, M. Kuźniak,A. L<strong>in</strong>droth, O. Naviliat-Cuncic, J. Pulut, N. Severijns, E. Stephan, J. Zejma, Nucl. Instr. Meth. A565, 711(<strong>2006</strong>).208


NEW TECHNOLOGIES OF SILICON DETECTORSA.Brzozowski 1 ,W.Czarnacki 2 , T.Czosnyka 3 , R.Gąsiorowski 3 , J.Iwanicki 3 ,A.Jakubowski 3 , M. Kisieliński 2,3 , A.J.Kordyasz 3 , M.Kowalczyk 3,4 , J.Kownacki 3 ,E.Kulczycka 3 , D.Lipiński 1 ,E.Nossarzewska-Orłowska 1 , E.Piasecki 2,3,4 , R.Pozorek 3 ,A.Pietrzak 3 , Sarnecki 1 , A.Syntfeld 2 , Ł.Świderski 2 , A.Wojtasiewicz 3 , J.Wojtkowska 2Experimental facility: Warsaw Cyclotron1 Institute of Electronic Materials Technology, Warszawa2 A. Sołtan Institute for Nuclear Studies, Warszawa3 Heavy Ion Laboratory, Warsaw University, Warszawa4 Institute of Experimental Physics, Warsaw University, WarszawaIdentification of low-energy light chargedparticles and heavy ions requires application of E-∆E telescopes with very th<strong>in</strong> transmission ∆Edetectors. The new technology elaborated forproduction of th<strong>in</strong> strip ∆E detectors is namedPlanar Process Partially Performed on Th<strong>in</strong> SiliconMembrane (PPPP process) [1,2]. Us<strong>in</strong>g thistechnology the 52 and 22 µm thick strip detectors(of diameter 3 <strong>in</strong>) were elaborated, see Fig. 1.technological process named Quasi-SelectiveEpitaxy (QSE) [3,4,5] As a result of the QSEprocess, we have the silicon mesa epitaxiallygrown <strong>in</strong> the place of the SiO 2 w<strong>in</strong>dows.Tests of monolithic E-∆E telescopes withheavy ions are illustrated by Fig. 3:Fig. 1. Th<strong>in</strong> srtip detector with spral strips.Comb<strong>in</strong>n<strong>in</strong>g it with thicker silicon E detector,the E-∆E telescopes are formed. The result ofheavy ions measurements with this telescopes ispresented <strong>in</strong> Fig. 2.Fig. 3. E-∆E spectrum measured by a monolithic E-∆E telescope.PPPP proces and QSE can be applied to thenew generation Si-balls as front detectors for lightcharged particles and heavy ion identification.Proces QSE can be applied to microelectronicsfor production transistors and ASIC's.Fig. 2. E-∆E spectra measured by telescopes.For construction of silicon monolithic E-∆Etelescopes (pair of silicon detectors created ons<strong>in</strong>gle silicon wafer) we have elaborated a new209


[1]A.J.Kordyasz, E.Nossarzewska-Orłowska, J.Wojtkowska, M.Kisieliński, E.Kulczycka, L.Reissig,J.Kownacki, A.Wojtasiewicz, J.Sarnecki, J.Iwanicki, Nucl. Instr. and Meth. A 539 (2005) 262[2]A.J.Kordyasz, M. Kowalczyk, E.Nossarzewska-Orłowska, M.Kisieliński, E.Kulczycka, J.Sarnecki,J.Iwanicki, Nucl. Instr. and Meth. A 570 (2007) 336[3]A.J.Kordyasz, E.Nossarzewska-Orłowska, E.Piasecki, D.Lipiński, A.Brzozowski, J.Kownacki,M.Kowalczyk, Ł.Świderski, A.Syntfeld, L.Reissig, A.Pietrzak, A.Jakubowski, R.Pozorek,R.Gąsiorowski, Nucl. Instr. and Meth. A 530 (2004) 87[4]A.J.Kordyasz, E.Nossarzewska-Orłowska, E.Piasecki, D.Lipiński, A.Brzozowski, J.Kownacki,M.Kowalczyk, Ł.Świderski, A.Syntfeld, L.Reissig, A.Pietrzak, A.Jakubowski, R.Pozorek,R.Gąsiorowski, Nucl. Instr. and Meth. A 528 (2004) 721[5]A.J.Kordyasz, J.Iwanicki, M.Kowalczyk, E.Kulczycka, E.Nossarzewska-Orłowska, D.Lipiński,A.Brzozowski, Nucl. Instr. and Meth. A 568 (<strong>2006</strong>) 778210


NUCLEAR REACTIONS IN THE ACCELERATION THERAPY BYTHE HIGH-ENERGY X-RAYS AND ELECTRONSA. Konefał 1 , W. Łobodziec 3 , A. Orlef 2 , K. Polaczek-Grelik 1 , W. Zipper 11 Institute of Physics, University of Silesia, Katowice2 Department of Medical Physics, Centre of Oncology, Gliwice3 Radiotherapy Department of the Hospital – Memorial St. Leszczyński, KatowiceThe high-energy photons and electrons ofthe therapeutic beams used <strong>in</strong> the acceleratortherapy <strong>in</strong>duce the photo<strong>nuclear</strong> (γ,n) andelectro<strong>nuclear</strong> (e,e’n) reactions ma<strong>in</strong>ly <strong>in</strong>side theprimary beam. The direct consequence of thesereactions is a production of undesirable neutronsand radioisotopes. In the vic<strong>in</strong>ity of the acceleratorhead the contam<strong>in</strong>ant-neutrons have a broadenergy spectrum with the high-energy end of morethan 10 MeV (Fig.1). The thermal and epithermalneutron radiation level is particularly importantbecause of the simply capture reaction (n,γ)occurr<strong>in</strong>g at thermal and epithermal energies formost of isotopes. In this reaction, variousradioisotopes can be produced, like <strong>in</strong> the photoandelectro<strong>nuclear</strong> reactions. The radioisotopeproduction <strong>in</strong>duced by the neutrons is not limitedto the primary beam but it takes place <strong>in</strong> the wholeaccelerator bunker (<strong>in</strong> the walls, floor and ceil<strong>in</strong>gand <strong>in</strong> all objects <strong>in</strong>side the treatment room and <strong>in</strong>the maze etc.) because the neutron flux does notdecrease significantly as the distance from theaccelerator head <strong>in</strong>creases. The orig<strong>in</strong>atedradioisotopes can emit the penetrative gamma rayswith energies of even several MeV dur<strong>in</strong>g thedis<strong>in</strong>tegration of excited states of nuclei.Particularly unfavorable radioisotopes are thosewith metastable states s<strong>in</strong>ce they causeradioactivity of accelerator components (Fig.1),accessories, air, walls and other objects <strong>in</strong> thebunker. This radioactivity can be accumulated andrema<strong>in</strong> on measurable level even for several daysafter the last beam emission. It is the ma<strong>in</strong> factor ofthe dose to personnel operat<strong>in</strong>g the accelerator. Theorig<strong>in</strong>ated neutrons appear only when the beam ison because the s<strong>in</strong>gle neutron life time <strong>in</strong> air isabout several µs. However, the neutrons are sourceof the additional undesired total body dose topatients. This neutron dose is not calculated by thetreatment plann<strong>in</strong>g system, thus the supplementaryprecise <strong>in</strong>vestigations are required.Our <strong>in</strong>vestigations started <strong>in</strong> 1999 haveaimed at determ<strong>in</strong>ation of distribution and energyspectrum of the neutrons and at identification ofmajor radioactive sources <strong>in</strong>side the acceleratorbunker. The study were and are carried out <strong>in</strong>cooperation with Department of Medical Physics ofCentre of Oncology <strong>in</strong> Gliwice and withRadiotherapy Department of the Hospital-Memorial St. Leszczyński <strong>in</strong> Katowice, for twowidely used type of medical l<strong>in</strong>acs: Primus Siemensand Varian Cl<strong>in</strong>ac-2300. Experimental methods aswell as computer simulations were applied <strong>in</strong> the<strong>in</strong>vestigations. The spectral measurements ofgammas were performed with the use of an highpuritygermanium detector connected to amultichannel analyzer <strong>in</strong>stalled <strong>in</strong> a PC computer(system for a field spectrometry). The thermal andepithermal neutrons were measured apply<strong>in</strong>g the<strong>in</strong>duce activity method whereas the neutronspectra and doses were determ<strong>in</strong>ed by the mean ofthe computer simulations based on the GEANT4libraries – one of the newest simulation software forthe use <strong>in</strong> <strong>nuclear</strong> <strong>physics</strong>. In future we plan toapply out <strong>in</strong>vestigation for hadrontherapy.Fig. 1. The neutron spectrum <strong>in</strong> the plane the treatment couch,calculated for the 20 MV X-rays from Varian Cl<strong>in</strong>ac-2300 l<strong>in</strong>ac(highly) and the gamma spectrum measured under the Primus Siemenshead after the short last<strong>in</strong>g emission of the 15 MV X-rays (low).211


[1] A. Konefał, A. Orlef, W. Zipper, J. Dorda, W. Łobodziec, Polish Journal of Medical Physics andEng<strong>in</strong>eer<strong>in</strong>g 7(2), 95-108 (2001)[2] A. Konefał, A. Orlef, W. Zipper, Z.Maniakowski, Physica Medica,Vol. XX, Suplement 1, p. 165-167 (2004)[3] A. Konefał, M. Dybek, W. Zipper, W. Łobodziec, K. Szczucka, Nuleonika Vol. 50, No. 2 p. 73-81 (2005)[4] A. Konefał, Postępy Fizyki, 57(6), 242-251 (<strong>2006</strong>)[5] A. Konefał, K. Polaczek-Grelik, A. Orlef, Z. Maniakowski, W. Zipper, Polish Journal of EnvironmentalStudies vol. 15, No. 4A, 176-180 (<strong>2006</strong>)[6] K. Polaczek-Grelik, A. Konefał, A. Orlef, W. Zipper, Polish Journal of Environmental Studies vol. 15,No. 4A, 195-197 (<strong>2006</strong>)212


NATURAL RADIOACTIVITY STUDIES IN SOIL, WATER AND AIRJ. Dorda, B. Kłos, B. Kozłowska, A. Walencik, W. ZipperInstitute of Physics, University of Silesia, KatowiceExperimental facility: Laboratory of Low Activities, University of SilesiaNatural radionuclides are present <strong>in</strong> air,water, soil, plants and animals and <strong>in</strong>consequence <strong>in</strong> the human diet. In groundwater,their presence is determ<strong>in</strong>ed by their activityconcentration <strong>in</strong> soil and bedrock. Groundwaterreacts with the surround<strong>in</strong>g rocks and releaseselements which can be dissolved <strong>in</strong> it. Presence ofradionuclides from uranium and thorium series <strong>in</strong>soil and rocks may also result <strong>in</strong> <strong>in</strong>creased radonand thoron activity concentration <strong>in</strong> air, soil airand water. Radionuclides of natural decay cha<strong>in</strong>senter the human body through <strong>in</strong>gestion and<strong>in</strong>halation.Investigations carried out <strong>in</strong> theLaboratory of Low Activities concern thedistribution and migration of naturally occurr<strong>in</strong>gradionuclides, i.e. 234,236 U, 226,228 Ra, 222 Rn <strong>in</strong> soil,water and air us<strong>in</strong>g <strong>nuclear</strong> spectrometrytechniques. Naturally occurr<strong>in</strong>g uranium conta<strong>in</strong>sthree alpha emitt<strong>in</strong>g radionuclides 238 U, 235 U and234 U, each with a different half-life and massabundance. Uranium 234 U is a decay product ofthe 238 U series and after a sufficient time the 234 Uisotope approaches a secular equilibrium with the238 U activity. Radiological risk aris<strong>in</strong>g fromuranium <strong>in</strong>gestion is small <strong>in</strong> comparison with itschemical toxicity. Uranium is deposited on thebones surfaces together with calcium but about90% is removed from the body with<strong>in</strong> 24 h withur<strong>in</strong>e. In nature there are four radium isotopes223 Ra, 224 Ra, 226 Ra, 228 Ra. The longest half-life equalto 1620 years has 226 Ra so this isotope is the mostimportant from the radiological po<strong>in</strong>t of view.Ingestion of both uranium and radium <strong>in</strong>tohumans may be toxic and dangerous. Similarbehavior of radium as calcium may cause thiselement to <strong>in</strong>corporate <strong>in</strong> bones. In naturalradioactivity studies one cannot omit radon 222 Rnmeasurements. Radon is a noble gas present <strong>in</strong>soil air, air and also soluble <strong>in</strong> water. Radon itselfis not harmful but its decay products are toxicheavy metals not neutral for human health.Laboratory of Low Activities carriesenvironmental studies with the use of modernα,β,γ – spectrometry systems. The measurement ofγ – radioactivity is performed with the use of γ –spectrometry systems with HPGe semiconductordetectors, both <strong>in</strong> the laboratory and directly <strong>in</strong>the field (In Situ Spectroscopy). Studies of γ –radioactive isotopes <strong>in</strong> environmental and nonenvironmentalcondensed and liquid samples arecarried out. Alpha and beta-radioactive isotopes( 222 Rn and 226,228 Ra) are studied us<strong>in</strong>g W<strong>in</strong>Spectral1414 α/β liquid sc<strong>in</strong>tillation counter (LSC) fromWallac. Alpha radioactive isotopes of uranium are<strong>in</strong>vestigated with the use of alpha spectrometer7401VR from Canberra – Packard withsemiconductor detector from Ortec. Radonmeasurements are also carried out with portabledetektor RAD7 from Durridge company.Laboratory of Low Activities carries notonly research but also didactics.Liquid Sc<strong>in</strong>tillation Counter 1414 α/β from Wallacis presented at the figure below.Fig. 1. Liquid Sc<strong>in</strong>tillation Counter 1414 α/β from Wallac at theLaboratory of Low Activities.213


[1] B. Kozłowska, A. Hetman, W. Zipper , Appl. Rad. Isotopes 51 (1999) 475-480[2] B. Kozłowska, J. Dorda, A. Hetman, W. Zipper, Proc. of the XXXIV Zakopane School of Physics,Condensed Matter Studies by Nuclear Methods edited by E. Gorlich, A. Pędziwiatr (1999) 226.[3] B. Kozłowska, A. Hetman, J. Dorda, W. Zipper , Radiation Physics and Chemistry 61 (2001) 677-678[4] T. Przylibski, B. Kozłowska, J. Dorda, B. Kiełczawa, Journal of Radioanal. Nucl. Chem. 253 (2002) 11.[5] Przylibski T.A., J. Dorda, B. Kozłowska, Nukleonika 47 No 2 (2002) 59-64.[6] Przylibski T. A., Staśko S., Szczepanowski S., Modelska M., Dorda J., Kozłowska B., PrzeglądGeologiczny 50 No. 5, (2002) 436-440 (<strong>in</strong> Polish).[7] B. Kozłowska, M. Kordiak, M. Wysocka, Proceed<strong>in</strong>gs of the 4th European Conference on Protectionaga<strong>in</strong>st Radon at Home and Work, Praga (2004).[8] T. A. Przylibski, K. Mamont-Cieśla, M. Kusyk, J. Dorda, B. Kozłowska, J. of Environmental Radioactivity75 (2004) 193.[9] A. Walencik, B. Kozłowska, Proceed<strong>in</strong>gs of the 2005 LSC Conference. Edts: Chalupnik, Schonhofer,Noakes. Radiocarbon (2005) 229.[10] B. Kozłowska, J. Dorda, B. Kłos and T. A. Przylibski, Radioactivity <strong>in</strong> the environment, ISBN 82-90362-21-8, (2005) 99-102.[11] A. Walencik, B. Kozłowska, Ł. Wojtecki, Polish Journal of Environmental Studies, 15 (4A), 210-213(<strong>2006</strong>).214


APPLICATION OF THE MÖSSBAUER SPECTROSCOPY ONINVESTIGATION OF IRON MINERALSJ. Komraus, E. PopielInstitute of Physics, University of Silesia, KatowiceMössbauer spectroscopy is an exam<strong>in</strong>ationtechnique based on the resonant emission andabsorption of gamma radiation. Thanks to highscopes of resolution, the Mössbauer spectroscopyis beg<strong>in</strong>n<strong>in</strong>g to be used <strong>in</strong> variety of researchconcern<strong>in</strong>g the exam<strong>in</strong>ation of physical andchemical properties of solid state. The Laboratoryof Mössbauer Spectroscopy at the Institute ofPhysics, University of Silesia, possesses threeMössbauer spectrometers and one cryostat, whichenable us to test samples of materials <strong>in</strong>temperatures rang<strong>in</strong>g from 10 to 500 K. Thelaboratory is also equipment with a heattreatment furnace that is capable of test<strong>in</strong>gsamples <strong>in</strong> temperatures up to 1470 K. Due to thefact that we possess sources of radioactivity anddetection equipment, the laboratory is a placewhere research based on the isotope of iron 57 Fe isconducted. High presence of iron <strong>in</strong> the natureallows us to exam<strong>in</strong>e a wide spectrum ofmaterials, both natural and artificial.For the past few years, the Laboratory ofMössbauer Spectroscopy has been do<strong>in</strong>g researchon the exam<strong>in</strong>ation of m<strong>in</strong>erals and rocks so as todeterm<strong>in</strong>e which iron compounds are present <strong>in</strong>them and specify what k<strong>in</strong>ds of changes thesecompounds undergo dur<strong>in</strong>g differenttechnological or geological processes. For<strong>in</strong>stance, several exam<strong>in</strong>ations were done <strong>in</strong> theLaboratory, the aim of which was to identify ironcompounds <strong>in</strong> hard coal obta<strong>in</strong>ed from differentcoal deposits and to specify what changes thesecompounds would undergo <strong>in</strong> such technologicalprocesses as: pyrolysis, hydropyrolysis and coalliquefaction [1, 2].The scope of analyses conducted <strong>in</strong> theLaboratory also <strong>in</strong>cludes determ<strong>in</strong><strong>in</strong>g thepresence and composition of m<strong>in</strong>erals that conta<strong>in</strong>iron <strong>in</strong> various geological formations. Ironmanganeseconcretions, granites and basalt’s wereexam<strong>in</strong>ed. Currently we are do<strong>in</strong>g research thepurpose of which is to exam<strong>in</strong>e changes offerriferous m<strong>in</strong>erals dur<strong>in</strong>g heat treatment (Fig. 1)and other processes such as weather<strong>in</strong>g andsecondary m<strong>in</strong>eralization [3-8].The Mössbauer Spectroscopy makes itpossible to obta<strong>in</strong> accurate <strong>in</strong>formationconcern<strong>in</strong>g the crystalochemical features of ironatom and the <strong>in</strong>fluence of immediate neighbourswith<strong>in</strong> a crystall<strong>in</strong>e network on properties of theentire alloy. The Mössbauer measurements allowus to specify the proportions of iron atoms <strong>in</strong>crystall<strong>in</strong>e networks. They also make it possiblefor us to determ<strong>in</strong>e the <strong>in</strong>fluence of particularcomponents of the alloy on crystallographicallocation. For many years, the Laboratory ofMössbauer Spectroscopy has been work<strong>in</strong>g on theexam<strong>in</strong>ation of magnetic properties of therecomponentalloys that conta<strong>in</strong> lanthanides andtransient metals, e.g. Sm 2 Fe 17-x Si x (0


[1] J.L. Komraus; E.S. Popiel, Hyperf<strong>in</strong>e Interactions, 90 383-388 (1994).[2] S. Pusz; A. Krztoń; J.L. Komraus; M.R. Mart<strong>in</strong>ez-Tarazona; A. Mart<strong>in</strong>ez-Alonso; J.M.D. Tascón,International Journal of Coal Geology, 33 369-386 (1997)[3] Z. Adamczyk, J. Komraus, Molecular Physics Reports, Vol. 30, p. 9-14, (2000).[4] Ludwig A. Zarek W. Popiel E. W<strong>in</strong>iarski A., Mol. Phys. Rep., vol. 30, (2000) 86-93.[5] Z. Adamczyk, J. Komraus, Materials and Manufactur<strong>in</strong>g Processes, Vol. 16, No. 4, p. 577-587, (2001)[6] J. L. Komraus, Z. Adamczyk, Hyperf<strong>in</strong>e Interactions 163, str 57-72 (2005) Spr<strong>in</strong>ger <strong>2006</strong>.[7] E. Talik, W. Zarek, M. Kruczek, S. Ganschow, D. Skrzypek, E. Popiel, Crystal Research andTechnology 41, 979-987 (<strong>2006</strong>).[8] M. Tuszyński, J. L. Komraus, Polish J. of Environ. Stud. Vol. 15 No. 4A 109-111 (<strong>2006</strong>).[9] Brząkalik K. Popiel E. Zarek W., Mol. Phys. Rep., vol. 30, (2000) 21-6[10] E.Popiel, W. Zarek, Z. Kapuśniak, M. Tuszyński, Nukleonika 48, 65-70 (2003)[11] E.S. Popiel, W. Zarek, M. Tuszyński, Nukleonika 49 (Suplement 3) (2004) 49 – 52[12] W.Zarek, E.Popiel, M.Tuszyński, E.Teper, Nukleonika 49 (Supplement 3), S59-S62 (2004)216


POSITRON ANNIHILATION LIFETIME SPECTROSCOPY STUDIESPERFORMED FOR POLYMERIC SYSTEMSA. Danch, W. OsobaInstitute of Physics, University of Silesia, KatowicePositron annihilation lifetime spectroscopy(PALS) is widely used for <strong>in</strong>vestigations ofdifferent aspects of polymer properties. Thethermalized positron can annihilate with anelectron from the absorber (annihilation of freepositrons) or it may form, with the electron, abound system - positronium (Ps) and thenannihilation from the bound state takes place. Theground state of Ps atom consists of two substates:para-Ps (total sp<strong>in</strong> of the particles is zero) andortho-Ps (total sp<strong>in</strong> of the particles is one). Invacuum a para-Ps lifetime is equal 125 ps andortho-Ps lifetime is equal 140 ns. In condensedmatter this long, ortho-Ps lifetime may beconsiderably reduced. In amorphous regions of apolymer substance free volumes exist whereortho-Ps may live for several nanoseconds.Positron lifetimes <strong>in</strong> polymer matter may beperturbated by different factors, for <strong>in</strong>stance:changes <strong>in</strong> degree of crystall<strong>in</strong>ity, blend<strong>in</strong>g ofpolymers, plasticization of polymers, ag<strong>in</strong>g ofpolymers, temperature, pressure and so on. Theresults of the positron lifetime measurements <strong>in</strong>polymers might be resolved <strong>in</strong>to three or fourexponentially decay<strong>in</strong>g components. The shortestcomponent (the mean lifetime equal to 125 ps), τ 1 ,is usually attributed to para-Ps annihilation. The<strong>in</strong>termediate component, τ 2 , describes theannihilation of the free positrons. The thirdcomponent, τ 3 , is <strong>in</strong>terpreted as the pick-offannihilation (annihilation of the positron, form<strong>in</strong>gthe ortho-Ps atom, with an electron from thesurround<strong>in</strong>g polymer matter) of ortho-Ps <strong>in</strong> thecrystall<strong>in</strong>e regions of the polymer. F<strong>in</strong>ally, thelongest lived component, τ 4 , is attributed to thepick-off annihilation of ortho-Ps <strong>in</strong> the amorphousregions of the polymer. Accord<strong>in</strong>g to a modelproposed by Tao (J.Chem. Phys. 56, 5499(1972))and Eldrup et al. (Chem. Phys. 63, 51 (1981)) , thelongest lived component of the positron lifetimespectrum may be correlated with the mean radiusof the free volume cavity <strong>in</strong> the polymer matter.They derived an equation:τl.lived⎡ R l ⎛ 2πR⎞⎤= 0.5⎢l− + s<strong>in</strong>⎜⎟0.1656 2 0.1656⎥⎣ R + π ⎝ R + ⎠⎦where τ l.livedis the o-Ps lifetime expressed <strong>in</strong>nanoseconds, R is the mean radius of thespherical well expressed <strong>in</strong> nm, and 0.1656 nm isan empirical constant.A conventional slow-fast co<strong>in</strong>cidencespectrometer with two cyl<strong>in</strong>drical plasticsc<strong>in</strong>tillators is used <strong>in</strong> the laboratory.The timeresolution of the spectrometer, approximated bytwo Gaussian curves, is determ<strong>in</strong>ed by analys<strong>in</strong>gthe positron lifetimes <strong>in</strong> Kapton foils. Typicalvalues of the full widths at half of the maximum(FWHM i ) are : FWHM 1 - 258.4 ps, (I 1 - 73.58%);FWHM 2 - 365.9 ps. A positron source ( 22 Na, about0.2 MBq) is sealed between two Kapton foils. Thesource correction is taken <strong>in</strong>to account dur<strong>in</strong>gnumerical evaluations.I3 [%]282420160 100 200 300TEMPERATURE [K]1. The I 3 values vs. temperature.• - cool<strong>in</strong>g cycle, • - heat<strong>in</strong>g cycleIn Fig 1. the change of the longest livedcomponent I 3 is presented, as a function of thetemperature <strong>in</strong> polyethylene.−1Fig217


[1] J. Borek, W. Osoba, Polymer, vol. 42, 2901, (2001).[2] J. Borek, W. Osoba, Mat.Sci.Forum, vols. 363-365, 334, (2001).[3] W. Osoba, Acta Phys.Polonica A, vol. 99, no. 3-4, 447,(2001).[4] A. Danch, W. Osoba, Journal of Thermal Analysis and Calorimetry, vol. 72, 641, (2003).[5] A. Danch, W. Osoba, Fibres and Textiles <strong>in</strong> Eastern Europe, vol. 11, no. 5, 126, (2003).[6] A. Danch, W. Osoba, and F.Stelzer: European Polymer Journal, vol. 39, 2051, (2003).[7] A. Danch, W. Osoba, Radiation Phys.Chem., vol. 68, 445, (2003).[8] A. Danch, W. Osoba, Desal<strong>in</strong>ation, vol. 163, 143, (2004).[9] M. Kozak, A. Danch, W. Osoba, L. Domka, F.Stelzer and S.Jurga, Polymers&Polymer Composites,vol. 12, no. 5, 409, (2004).[10] A. Danch, W. Osoba, Journal of Thermal Analysis and Calorimetry, vol.78, 923, (2004).[11] A. Danch, W. Osoba, Journal of Materials Process<strong>in</strong>g Technology, vol. 155-156, 1428-1434, (2004).[12] W. Osoba, Recent Res.Devel. Polymer Science, vol. 8, 87-104, (2004), Transworld Research Network[13] A. Danch and W. Osoba, Acta Physica Polonica A, vol. 107, no. 5, 811-816, (2005).[14] A. Danch, W. Osoba, Proceed<strong>in</strong>gs of the 7 th Mediterranean Conference on Calorimetry and ThermalAnalysis , 2-6 July 2005, Thesaloniki, Greece, p.45-49.[15] A. Danch, W. Osoba, Journal of Thermal Analysis and Calorimetry, vol. 84(1), 79-83, (<strong>2006</strong>).[16] A. Danch, W. Osoba, Journal of Thermal Analysis and Calorimetry, vol.84 (2), 311-337, (<strong>2006</strong>).218


VALIDATION OF NUCLEAR DATA AND MODELS FOR THESPALLATION TARGET CALCULATIONSG. Domańska 1 , J. Janczyszyn 1 , W. Pohorecki 1 , A. Polański 2 , S. Taczanowski 11 Faculty of Physics & Applied Computer Science, AGH-University of Science and Technology, Kraków2 A. Sołtan Institute for Nuclear Studies, WarszawaExperimental facility: Fazotron – 660 MeV proton accelerator at the Dzhelepov Laboratory of Nuclear Problems <strong>in</strong>JINR, Dubna, RussiaThe experiments are a part of the verificationof calculations used <strong>in</strong> the design<strong>in</strong>g of acceleratordriven systems (ADS), ma<strong>in</strong>ly for prediction oftransmutations <strong>in</strong> construction materials and theresult<strong>in</strong>g radioactivity. Samples of materials as wellas models of spallation target were exposed to 660MeV protons. Us<strong>in</strong>g γ-spectrometry, a number ofradionuclides were identified and absolute activitiesdeterm<strong>in</strong>ed. The experiments were also simulatedwith the MCNPX code. Comparison of the measuredand computed activities was used for the validationof models of <strong>nuclear</strong> <strong>in</strong>teractions <strong>in</strong> the MCNPX code.The models: CEM, Bert<strong>in</strong>i-Dresner, Bert<strong>in</strong>i-ABLA,Isabel-Dresner, Isabel-ABLA and INCL4-ABLA wereevaluatedThe experimentally determ<strong>in</strong>ed crosssections for production of 17 radionuclides <strong>in</strong> (p,x)reactions on natural iron were compared with thecomputed ones and the conclusions were drawn: 1)The best agreement, for all applied physical models,is observed for 54 Mn (∆ = 0.054 ± 0.023) and slightlyworse for 44 Sc (∆ = 0.084 ± 0.013). ∆ = 1 – C/E(calculation/experiment). 2) All model optionsstrongly underestimate values for 24 Na andoverestimate for 56 Co. 3) For even-even nuclides ( 44 Ti,48 Cr, 52 Fe) and near ones ( 43 Sc, 51 Mn, 52 Mn) there isremarkable difference between the ABLA (2 - 3 foldoverestimation) and Dresner (2 - 3 foldunderestimation) evaporation codes. 4) Values for41 Ar, 42 K, 43 K, 46 Sc (except CEM) and for 47 Sc (exceptBert<strong>in</strong>i and Isabel with Dresner option) areunderestimated.In another example the axial distributions ofactivity <strong>in</strong>side the Pb target were measured andcompared with calculations [2]. Three types of theresidual nuclides distribution shapes weredist<strong>in</strong>guished: 1) of Bi isotopes, 2) of mediumnuclides 3) of heavier ones. Examples are presented <strong>in</strong>the Figure. Some general regularities were found:1) Underestimated <strong>in</strong> calculations are valuesfor fission fragments. 2) Better agreement isobserved for heavier nuclides (A > 170). 3) At theworst, the comparison shows the discrepancywith<strong>in</strong> one order of magnitude. 4) Almost alwaysthe C/E ratio rema<strong>in</strong>s between 3 and 1/3. 4) Forthe whole target activity differences as low as 10%are observed. In particular for the atomic massdiffer<strong>in</strong>g by ~ 10 - 30 u from the orig<strong>in</strong>al. 5)However, one cannot po<strong>in</strong>t out a s<strong>in</strong>gle codeand/or model yield<strong>in</strong>g good results for allexam<strong>in</strong>ed nuclides. 6) The model of Cugnon-Schmidt gives the best agreement with ourexperimental values - about 70 % of resultsrema<strong>in</strong> with<strong>in</strong> 30 % difference.Fig. 1. Typical axial distributions of the specific activity ofradionuclides along the Pb target.activity [Bq/g]1.E-011.E-021.E-031.E+0060 Co0 10 20 301.E+21.E+11.E+01.E-1185 Os1.E-20 5 10 15 20 25 301.E-011.E-011.E-02102m Rh1.E-02207 Bi1.E-031.E-030 5 10 15 20 25 300 5 10 15 20 25 30distance from the target front [cm]219


[1] J. Janczyszyn, W. Pohorecki, G. Domańska, L. Loska, S. Taczanowski, V. Shvetsov, Annals of NuclearEnergy 33 633 (<strong>2006</strong>)[2] W. Pohorecki, T. Horwacik, J. Janczyszyn, S. Taczanowski, V. P. Bamblevski, S. A. Gustov,I. V. Mirokh<strong>in</strong>, A. G. Molokanov, A. Polanski, Radiation Protection Dosimetry 115 630 (2005)[3] J. Janczyszyn, S. Taczanowski, G. Domańska, W. Pohorecki, Work<strong>in</strong>g Material, ResearchCoord<strong>in</strong>ation Meet<strong>in</strong>g of the Coord<strong>in</strong>ated Research Project on "Analytical and Experimental BenchmarkAnalyses of Accelerator Driven Systems", IAEA-RC-1003.1 TWG-FR/127, pp. 140-154, Reproduced byIAEA, <strong>2006</strong>[4] W. Pohorecki, J. Janczyszyn, S. Taczanowski, I.V. Mirokh<strong>in</strong>,. A.G. Molokanov, G. Domańska,T. Horwacik, Nuclear Inst. and Methods <strong>in</strong> Physics Research, A 562 750 (<strong>2006</strong>)220


LOOK TO THE FUTURE: NUCLEARPHYSICS LONG RANGE PLAN221


222


LONG-RANGE PLAN OF POLISH NUCLEAR PHYSICSFOR THE YEARS 2008 – 2016Nuclear Physics Committee of the National Atomic Energy Agency 1Polish <strong>nuclear</strong> physicists are <strong>in</strong>volved <strong>in</strong>fundamental research, development of which isof great importance for future applications and foreducation of young generations of scientists that<strong>in</strong> the course of time will take the lead <strong>in</strong> the fieldof <strong>nuclear</strong> technologies <strong>in</strong> our country. Nuclearphysicists <strong>in</strong> Poland have always recognized theneed for contribut<strong>in</strong>g to <strong>nuclear</strong> <strong>physics</strong>applications.On the global scale, Polish <strong>nuclear</strong>physicists participate <strong>in</strong> many large, Europeanprojects, which grant the highest standards ofscientific <strong>in</strong>vestigations. Very often they playlead<strong>in</strong>g role <strong>in</strong> these collaborations - this can becertified by a large number of citations of articlespublished <strong>in</strong> well-known <strong>in</strong>ternational journals.Polish theoretical <strong>nuclear</strong> physicists, support<strong>in</strong>gexperimentalists cont<strong>in</strong>uously stream <strong>in</strong>to newresearch directions and play also the lead<strong>in</strong>g role<strong>in</strong> Europe.Nowadays the most importantexperiments are performed at the SIS acceleratorat GSI (Gesellschaft für Schwerionenforschung) <strong>in</strong>Darmstadt, at COSY <strong>in</strong> Jülich, at the GANIL(Grand Accelerateur National d’Ions Lourds)laboratory <strong>in</strong> Caen (France), at the ALPIaccelerator <strong>in</strong> Legnaro (Italy), at JYFL <strong>in</strong> Jyväskylä(F<strong>in</strong>land) and at ZIBJ <strong>in</strong> Dubna (Russia).Experiments <strong>in</strong> the field of <strong>nuclear</strong><strong>physics</strong> are <strong>in</strong> part performed us<strong>in</strong>g the HEAVYION CYCLOTRON at Heavy Ion Laboratory,Warsaw University (Polish acronym ŚLCJ).However, this cyclotron to deliver a largespectrum of heavy ion beams needs improvement- it is necessary to equip it with the newgeneration ion source (ECR, <strong>in</strong>stallation <strong>in</strong>progress), as well as to perform progressivemodernization of the <strong>in</strong>tensively used allaccelerator facilities.For Polish scientists, one of the most<strong>in</strong>terest<strong>in</strong>g European project is the FAIR project –Facility for Antiproton and Ion Research – at GSI <strong>in</strong>Darmstadt. Consider<strong>in</strong>g scientific and technicalreasons, the FAIR project is one of the mostambitious global programs. Its full cost is plannedfor 950 million Euros – 80% of the sum will becovered by the German government. Thescientific studies at FAIR will be carried out <strong>in</strong>five ma<strong>in</strong> areas of <strong>physics</strong>:1) <strong>nuclear</strong> structure <strong>physics</strong> and <strong>nuclear</strong>astro<strong>physics</strong> with the use of radioactivebeams;2) hadron <strong>physics</strong> with antiproton beams;3) hadron matter of high density;4) plasma <strong>physics</strong> of high pressure andtemperature;5) atomic <strong>physics</strong> and its applications.In the FAIR project, the most advancedtechnology will be employed - it should allow forparallel runn<strong>in</strong>g of several experiments. Theuniversal character of FAIR will make GSI thema<strong>in</strong> scientific center of European <strong>nuclear</strong> <strong>physics</strong>for the next decades.Second ambitious project, <strong>in</strong>volv<strong>in</strong>g aconiderable group of Polish physicists, is theSPIRAL 2 project (Systeme de Production d’IonsRadioactifs Acceleres en Ligne 2) at GANIL <strong>in</strong> Caen.SPIRAL 2 is a French <strong>in</strong>itiative (f<strong>in</strong>anced byFrench government <strong>in</strong> amount of 135 millionEuros) of global range. For the production ofradioactive beams, a l<strong>in</strong>ear low energy acceleratorwill be used. The SPIRAL 2 project should bestarted <strong>in</strong> 2011 and will provide radioactivebeams bas<strong>in</strong>g on the ISOL method (IsotopeSeparation On-L<strong>in</strong>e). The beams will be used for<strong>nuclear</strong> structure and <strong>nuclear</strong> astro<strong>physics</strong><strong>in</strong>vestigations, as well as for the studies of newsymmetries. This project has a strong support ofEuropean community because it is a predecessorfor EURISOL – a large European project – plannedafter the year 2016.In the context of the FAIR and SPIRAL 2projects, the AGATA (Advanced GAmma Track<strong>in</strong>gArray), a 4π array of highly segmented Gedetectors for γ-ray detection - new Europeandevice - attracts a considerable Polish<strong>in</strong>volvement. It will be used <strong>in</strong> future experimentswith the radioactive beams at both FAIR andSPIRAL 2 sites.1 Members of the Nuclear Physics Committee of the National Atomic Energy Agency <strong>in</strong>volved <strong>in</strong> the preparation of the lon-range plan:Jan Styczeń (IFJ PAN) – chair, Jerzy Jastrzębski (ŚLCJ UW), Marek Jeżabek (IFJ PAN) , Re<strong>in</strong>hard Kulessa (IF UJ), Adam Maj (IFJ PAN),Zbigniew Majka (IF UJ), Tomasz Matulewicz (IFD UW), Paweł Olko (IFJ PAN) – <strong>in</strong>vited, Krzysztof Pomorski (UMCS), GrzegorzWrochna (IPJ), Wiktor Zipper (UŚ)223


In the nearest future, other possibilitiesfor the Polish <strong>nuclear</strong> <strong>physics</strong> at relativisticenergies will be offered by the large hadroncollider LHC at CERN. It will be done ma<strong>in</strong>ly byus<strong>in</strong>g the ALICE, CMS and ATLAS detectors,built with the contribution of Polish <strong>in</strong>stitutes.One of the objectives will be <strong>in</strong>vestigation ofquark-gluon plasma produced <strong>in</strong> relativisticheavy ion collisions <strong>in</strong> the TeV energy range.Nowadays, similar works, but at much lowerenergies than planned at LHC, are conducted onRHIC accelerator (USA).Among <strong>nuclear</strong> <strong>physics</strong> experimentswhich do not require accelerated beams, we haveto mention the search for neutr<strong>in</strong>o-less doublebeta decay. This k<strong>in</strong>d of measurements, which areperformed <strong>in</strong> the underground laboratories withlow natural background, may give the<strong>in</strong>formation on basic properties of neutr<strong>in</strong>os. The<strong>in</strong>terest of Polish <strong>nuclear</strong> physicists concentrateson the participation <strong>in</strong> the construction ofSuperNEMO (Frejus) and GERDA (Gran Sasso)detectors. We plan also to start the Polish projectof the low natural background laboratory. Thiswould be done with the use of chambers withunique physico-chemical properties <strong>in</strong> the oldcopper m<strong>in</strong>e <strong>in</strong> Sieroszowice-Polkowice.The theoretical <strong>in</strong>vestigations on <strong>nuclear</strong><strong>physics</strong> are distributed among many academiccenters, similarly as it is organized <strong>in</strong> othercountries. On the European scale, the Polishtheoreticians play a very important role <strong>in</strong> theactivity of the European Center for TheoreticalStudies (ECT*) <strong>in</strong> Nuclear Physics <strong>in</strong> Trento.Radioactive isotopes, high-energy protonbeams and heavy ions play vital role <strong>in</strong> medic<strong>in</strong>e -<strong>in</strong> diagnostic and treatment of various diseases,particularly oncological. Consequently, thesupport for research projects aim<strong>in</strong>g atapplications of <strong>nuclear</strong> methods <strong>in</strong> medic<strong>in</strong>e andthe <strong>in</strong>crease of funds for those projects should beof primary importance. A significant project is theProton Therapy Center <strong>in</strong> Kraków. At this center,located at the Institute of Nuclear Physics PAN(IFJ PAN), the development of protonradiotherapy of the eye melanoma is alreadyadvanced. Also, the construction of the Center ofPositron Tomography at ŚLCJ <strong>in</strong> Warsaw is ofgreat importance. Those centers are vital both forthe development of new medical diagnosticmethods and for carry<strong>in</strong>g out research <strong>in</strong> largescale of “life sciences”.It is <strong>in</strong>evitable that <strong>in</strong> the nearest futurePoland, tak<strong>in</strong>g care of its energy self-dependenceand of ecology, will have to <strong>in</strong>troduce <strong>nuclear</strong>energy on the large scale. Recent events provedthat Poland cannot be secure with respect toenergy self-dependence. Therefore, to improve thesafety, the construction of <strong>nuclear</strong> power plants isnecessary. Polish science – particularly <strong>nuclear</strong><strong>physics</strong> – may support the decision process byprepar<strong>in</strong>g various expert reports, education ofhigh-qualified specialists and education of thesociety. Nowadays, we have to th<strong>in</strong>k about futuretechnologies, which assume among other issuesthe construction of IV generation hightemperaturereactors. Prelim<strong>in</strong>ary studies on theabove-mentioned reactors have been started at theFaculty of Physics and Applied Computer ScienceAGH and at the Heavy Ion Laboratory (ŚLCJ) <strong>in</strong>the Warsaw University, and several other<strong>in</strong>stitutions. The aim of the research program isthe construction of the appropriate <strong>in</strong>stallations <strong>in</strong>Poland, about the year of 2015. Deeper<strong>in</strong>vestigations on the thermo-<strong>nuclear</strong> reactorshave been undertaken. The Institute of NuclearStudies and the Institute of Plasma Physics andLaser Micro-synthesis actively participate <strong>in</strong> theproject of the European ITER reactor – it is done<strong>in</strong> the frame of the EURATOM program.A long-range plan of the development ofPolish <strong>nuclear</strong> <strong>physics</strong> and the engagement ofPolish physicists <strong>in</strong> the large, European researchprojects for the years 2007-2016 is presentedbelow. Included are also large projects associatedwith the use of <strong>nuclear</strong> <strong>physics</strong> technologies <strong>in</strong>medic<strong>in</strong>e, biology and <strong>in</strong>terdiscipl<strong>in</strong>ary<strong>in</strong>vestigations, and <strong>in</strong> the studies on <strong>nuclear</strong>energy and environment.224


225


ŚLCJ – Heavy Ion Laboratory, Warsaw University, WarszawaIFJ PAN – H. Niewodniczański Institute of Nuclear Physics PAN, KrakówIPJ – A. Sołtan Institute of Nuclear Studies, Świerk-WarszawaAGH – AGH University of Science and TechnologyGIG – Central M<strong>in</strong><strong>in</strong>g Institute, KatowiceIEA – Institute of Atomic Energy, ŚwierkIFPiLM – Institute of Plasma Physics and Laser Microfusion, WarszawaOBRI - Research and Development IAE Radioisotope Centre POLATOM, ŚwierkIChTJ – Institute of Chemistry and Nuclear TechnologyPLANNED AVERAGE STAFF INVOLVEMENTNumber of scientists <strong>in</strong>volved <strong>in</strong> particular projects – full time employeesSieroszowice 10%others 15%applications 15%FAIR 43%theory 30%SPIRAL2 15%ALICE 10%ŚLCJ 30%226


THE OUTLINE OF BUDGET EXPENDITURESThe necessary research expenditures of particular projects (not <strong>in</strong>clud<strong>in</strong>g yearly operation costs of thelaboratories).2520applicationsSieroszowicemln zł1510other (Legnaro, Jyvaskyla,EURISOL…)theoryALICESLCJ5SPIRAL2FAIR02007 2008 2009 2010 2011 2012 2013 2014 2015 2016Year227


228


INSTITUTION AND AUTHORINDEXES229


230


INSTITUTION INDEXAA. Sołtan Institute for Nuclear Studies, Warszawa-Świerk, 47, 53, 55, 57, 65, 67, 69, 71, 73, 113, 119, 121,123, 127, 135, 145, 151, 163, 165, 167, 171, 173, 175,189, 191, 209, 219DDepartment of Medical Physics, Centre of Oncology,Gliwice, 211FFaculty of Physics & Applied Computer Science, AGH-University of Science and Technology, Kraków, 219Faculty of Physics and Applied Informatics, Universityof Łódź, Łódź, 125Faculty of Physics, Warsaw University of Technology,Warszawa, 75, 81, 149, 165, 199HH. Niewodniczański Institute of Nuclear Physics PAN,Kraków, 15, 33, 37, 61, 63, 91, 99, 103, 111, 121, 135,137, 145, 151, 153, 157, 161, 169, 173, 175, 177, 179,181, 183, 185, 191, 193, 195, 201, 207Heavy Ion Laboratory, Warsaw University, Warszawa,9, 47, 65, 67, 71, 73, 75, 89, 93, 119, 121, 135, 209IInstitute of Comput<strong>in</strong>g Science, Kraków University ofTechnology, Kraków, 201Institute of Electronic Materials Technology, Warszawa,209Institute of Experimental Physics, Warsaw University,Warszawa, 47, 57, 65, 67, 69, 71, 73, 75, 79, 93, 99, 101,119, 135, 139, 141, 143, 159, 165, 189, 203, 209Institute of Informatics, Maria Curie-SkłodowskaUniversity, Lubl<strong>in</strong>, 43Institute of Physics, Maria Curie-SkłodowskaUniversity, Lubl<strong>in</strong>, 43, 45, 77, 79, 81, 85, 87, 89, 115,117, 129Institute of Physics, Świętokrzyska Academy, Kielce,165, 191Institute of Physics, University of Silesia, Katowice, 47,59, 111, 133, 135, 157, 177, 179, 181, 185, 193, 195, 205,207, 211, 213, 215, 217Institute of Physics, University of Szczec<strong>in</strong>, Szczec<strong>in</strong>, 97,131Institute of Theoretical Physics, Warsaw University,Warszawa, 29, 51, 65, 75, 79, 81, 83, 89, 103, 129, 189MM. Smoluchowski Institute of Physics, JagiellonianUniversity, Kraków, 21, 49, 59, 95, 105, 107, 109, 111,133, 135, 137, 145, 147, 153, 155, 157, 169, 175, 177,179, 181, 183, 185, 187, 191, 193, 195, 197, 201, 207Military University of Technology, Warszawa, 121PPaństwowa Wyższa Szkoła Zawodowa, Nowy Sącz,155RRadiotherapy Department of the Hospital – MemorialSt. Leszczyński, Katowice, 211UUniversity of Białystok, Białystok, 119231


AUTHOR INDEXAAdamczyk, 59, 137, 153Adrich, 49, 95Andrzejewski, 125BBalewski, 177, 179, 185Bałanda, 155Banaś, 191Baran, 43, 129Barczyk, 137, 145Bednarczyk, 63, 91Białek, 195Białkowska, 167Biegun, 111Blicharska, 135Bobyk, 115Bodek, 111, 193, 195, 197, 207Brekiesz, 63, 91Broda, 61Bryś, 197Brzozowski, 209Brzychczyk, 135, 137, 145, 153Bubak, 157, 205Budzanowski, 121, 157, 161, 177, 179, 181, 185, 193CChoiński, 71, 73, 121Cibor, 133, 135, 145, 147, 153Ciepał, 111Cieślak, 187Ciszek, 137Czajkowska, 75Czarnacki, 209Czech, 121, 145Czekaj, 197Czerski, 97, 131Czerwiński, 177, 181, 185Czosnyka P., 119Czosnyka T., 47, 71, 73, 75, 119, 121, 209Czyżykiewicz, 177, 179, 181, 185DDanch, 217Dąbrowski, 171Deloff, 171Dębowski, 187Dobaczewski, 29, 51, 81, 83, 129Dobrowolski, 45Domańska, 219Dorda, 213Droste, 65, 71, 73, 75Dutka, 153Dybczak, 155FFornal, 15, 61GGawlikowicz, 135, 137Gaździcki, 165Gąsiorowski, 209Gierlik, 67Gil, 177, 181, 185, 201Głowacka, 121Golak, 105, 107, 109Góźdź, 81, 115, 117Grebieszkow, 165Grębosz, 63, 91Grodner, 65Grotowski, 137, 153Grzeszczuk, 135, 205Grzywacz, 99, 101Gulda, 47, 69HHachaj, 137Hawranek, 169, 201Heczko, 157, 185Hodana, 177IIwanicki, 47, 71, 73, 209JJakubowski, 209Janas, 67, 99, 101Janczyszyn, 219Janusz, 177, 179, 181, 185Jarczyk, 157, 175, 177, 179, 181, 183, 185, 193Jastrzębski, 9, 47, 119, 223Jeżabek, 223KKaczarowski, 69, 73Kaczmarczyk, 125Kamiński, 115, 117Kamys, 157, 175, 177, 179, 181, 183, 185, 201Karabowicz, 153Karcz, 161Karny, 67, 99Kasprzak, 197Katryńska, 153Kicińska-Habior, 93Kijewska, 93Kirejczyk, 143, 159Kisiel, 149Kisieliński, 47, 65, 71, 73, 93, 119, 209Kistryn, M, 157232


Kistryn, S, 111, 157, 169, 193, 195, 201, 207Klaja, 177, 179, 181, 185Kliczewski, 121, 157, 169Klimkiewicz, 49, 95Kłos, 47, 111, 213Kmiecik, 63, 91Komraus, 215Konefał, 211Korcyl, 201Kordyasz, 65, 119, 209Korgul, 69, 99Kotula, 153Kowalczyk, 65, 71, 73, 93, 119, 157, 183, 209Kowalski, 59, 133, 135, 205Kow<strong>in</strong>a, 177, 179, 181, 185Kownacki, 65, 67, 73, 209Kozela, 111, 177, 179, 185, 193, 195, 207Kozik, 153, 157Kozłowska, 213Kożuch, 155Krauze, 205Krogulski, 119Królas, 61, 99Krzemień, 201Kulczycka, 209Kulessa P, 157, 173, 175, 183Kulessa R, 49, 95, 155, 223Kurcewicz, 47, 69Kuźniak, 195, 197LLach, 63, 91Lipiński, 209Lisowski, 201Lubiński, 47Ludziejewski, 191ŁŁasoń, 125Łobodziec, 211Łojek, 59Łojewski, 43Łukasik, 137, 145, 151Łukaszuk, 113MMagiera, 111, 157, 169, 201Magierski, 75, 81, 199Maj, 63, 91, 223Majewski, 157, 177, 181, 185Majka, 59, 133, 135, 145, 147, 153, 223Marc<strong>in</strong>kowska, 75Marganiec, 125Matulewicz, 139, 141, 223Mazurek, 45, 91Męczyński, 63, 91Micek, 137Michalska-Trębacz, 155Mierzejewski, 65Migdał, 157, 177Misiak, 185Morek, 65, 73, 75Moskal, 177, 179, 181, 185, 201Moszyński, 67Mrówczyński, 165Mykulyak, 151NNapiorkowski, 47, 65, 71, 73, 75Nazarewicz, 51, 83, 103, 129Nerlo-Pomorska, 43, 45, 77Nossarzewska-Orłowska, 209OOkołowicz, 103Olbratowski, 73, 81Olko, 33, 223Orlef, 211Osoba, 217Otw<strong>in</strong>owski, 155, 201PPachucki, 189Paduszyński, 135Pajek, 191Palacz, 67Pawlak, 149Pawłat, 61Pawłowski, 137, 145Peryt, 149Pfützner, 101, 189Piasecki E, 119, 135, 209Piasecki K, 119, 139, 141, 203Pieńkowski, 47Pietrzak, 209Piskor-Ignatowicz, 157, 177, 179, 181, 185Planeta, 135Pluta, 149Płaneta, 137, 153Płochocki, 67Płóciennik, 65, 69Pohorecki, 219Polaczek-Grelik, 211Polański, 219Pomorski, 43, 45, 77, 79, 89, 223Popiel, 215Pozorek, 209Prokopowicz, 187Próchniak, 79, 85, 89Przerwa, 177, 179, 181, 185Przygoda, 155Puchała, 157Pulut, 195Pysz, 157, 173, 175RRejdych, 177, 181Rogowska, 159Rohoziński, 65, 75, 79, 89Rożek, 177, 179, 181, 185Rożynek, 163, 171Ruchowska, 65, 69, 73Rudy, 157, 175, 183, 201Rusek, 119, 121, 123Rykaczewski, 99, 101233


Rymuza, 191Rząca-Urban, 69, 75SSalabura, 21, 155, 201Sarnecki, 209Satuła, 83Schmidt, 135Seyboth, 165Siemaszko, 177, 179, 181, 185Sierpowski, 191Sikora, 143, 159, 203Simon, 191Siódmok, 197Siudak, 121, 157, 169Siwek-Wilczyńska, 57, 135, 143, 159Skalski, 127Skibiński, 105, 107, 109Skrzypczak, 165Skwira, 135Skwirczyńska, 121, 161Smolańczuk, 47, 55Smolarkiewicz, 143Smyrski, 169, 177, 179, 181, 185, 193, 201Sobiczewski, 53Sochocka, 135Sokołowski, 177, 179, 185Soliwoda-Poddany, 143Sos<strong>in</strong>, 59, 137, 153Srebrny, 65, 71, 73, 75, 79, 89Stachura, 191Starosta, 75Staszczak, 129Staszel, 133, 147, 153Stepaniak, 171Stephan, 111, 193, 195, 205, 207Strzałkowski, 175, 177, 179, 181, 183, 185, 193Styczeń, 63, 91, 223Sujkowski, 113Surówka, 49, 95, 187Sworst, 111Syntfeld, 69, 209Szałański, 125Szelc, 197Szerer, 197ŚŚlusarczyk, 203Świderski, 119, 135, 209WWalencik, 213Waluś, 49, 95, 155, 187Warczak, 191Warda, 43, 45Wasilewski, 69Werner, 51, 83Wesołowski, 75Wieloch, 59, 137, 145, 153Wierzchucka, 75Wilczyński, 57, 135Wilk, 163Wiśniewski, 143, 159, 203Wiśniowski, 155Witała, 105, 107, 109Witecki, 119Wodecki, 117Wojciechowski, 157Wojtasiewicz, 209Wojtkowska, 209Wolińska-Cichocka, 65, 67Wolski, 67Wójcik, 93Wrochna, 223Wrońska, 169, 201Wrzesiński, 61Wrzosek, 71Wycech, 47, 113, 171, 189Wyrwa, 177, 179ZZając, 79, 87, 89Zalewska, 37, 65Zaręba, 115Zberecki, 81Zejma, 111, 193, 195Zielińska, 71Ziębliński, 63, 91Zipper, 111, 133, 135, 177, 179, 181, 185, 205, 211, 213,223Zuber, 63, 91Zwięgliński, 145, 151Zychor, 173, 175ŻŻuprański, 171Żylicz, 67, 69, 189TTaczanowski, 219Targosz, 131Trębacz, 155Trzciński, 151Trzcińska, 47Trznadel, 93Tucholski, 151Tymińska, 141UUrban, 67, 69234


UNITS OF POLISH NUCLEAR PHYSICSNETWORK235


236


POLISH NUCLEAR PHYSICS NETWORKList of participat<strong>in</strong>g laboratoriesAGH University of Science and TechnologyFaculty of Physics and Applied ComputerScienceReymonta 19Pl-30-059 KrakówPhone: + 48 12 617 41 53Fax: + 48 12 634 00 10www.ftj.agh.edu.plContact person:Prof. Zbigniew KąkolA. Sołtan Institute for Nuclear StudiesPl-05-400 Otwock – ŚwierkPhone: + 48 22 718 05 83Fax: + 48 22 779 34 81www.ipj.gov.plContact person:Prof. Grzegorz WrochnaCopernicus Astronomical CenterBartycka 18Pl-00-716 WarszawaPhone: + 48 22 329 61 39Fax: + 48 22 841 00 46www.camk.edu.plContact person:Prof. Paweł HaenselDepartment of Nuclear Physics and itsApplicationsInstitute of PhysicsUniversity of SilesiaUniwersytecka 4Pl-40-007 KatowicePhone: + 48 032 359 18 88Fax: + 48 032 258 84 31www.nuph.us.edu.plContact person:Prof. Wiktor ZipperDivision of Nuclear PhysicsInstitute of Experimental PhysicsWarsaw UniversityHoża 69Pl-00-681 WarszawaPhone: + 48 22 553 21 39Fax: + 48 22 626 14 96zfjavs.fuw.edu.plContact person:Prof. Krystyna Siwek-WilczyńskaDivision of Nuclear SpectroscopyInstitute of Experimental PhysicsWarsaw UniversityPasteura 7Pl-02-093 WarszawaPhone: + 48 22 554 68 47Fax: + 48 22 823 76 47zsjl<strong>in</strong>.igf.fuw.edu.plContact person:Prof. Andrzej PłochockiFaculty of Physics and Applied InformaticsUniversity of ŁódźPomorska 149/153Pl-90-236 ŁódźPhone: + 48 042 635 56 29Fax: + 48 042 6355621www.wfis.uni.Łódź.plContact person:Prof. Józef AndrzejewskiFaculty of PhysicsWarsaw University of TechnologyPl-00-662 WarszawaKoszykowa 75Phone: + 48 22 660 73 43Fax: + 48 22 628 21 71www.if.pw.edu.plContact person:Prof. Jan PlutaHeavy Ion LaboratoryWarsaw UniversityPasteura 5 APl-02-093 WarszawaPhone: + 48 22 822 21 23Fax: + 48 22 659 27 14www.slcj.uw.edu.plContact person:Prof. Jerzy JastrzębskiHenryk NiewodniczańskiInstitute of Nuclear Physics PANRadzikowskiego 152Pl-31-342 KrakówPhone: + 48 12 662 81 41Fax: + 48 12 662 84 23www.ifj.edu.plContact person:Prof. Marek Jeżabek237


Institute of PhysicsMaria Curie – Skłodowska UniversityRadziszewskiego 10Pl-20-031 Lubl<strong>in</strong>Phone: + 48 081 537 61 68Fax: + 48 081 537 61 91kft.umcs.lubl<strong>in</strong>.plContact person:Prof. Krzysztof PomorskiM. Smoluchowski Institute of PhysicsJagiellonian UniversityReymonta 4Pl-30-059 KrakówPhone: + 48 012 663 91 68Fax: + 48 012 633 70 86www.if.uj.edu.plContact person:Prof. Re<strong>in</strong>hard KulessaNuclear Structure Theory DivisionInstitute of Theoretical PhysicsWarsaw UniversityHoża 69Pl-00-681 WarszawaPhone: + 48 22 628 33 96Fax: + 48 22 621 94 75www.fuw.edu.plContact person:Prof. Marek Napiórkowski238


LIST OF ELECTRONIC ADDRESSES239


240


Nuclear Physics community <strong>in</strong> PolandInstitution orderAGH University of Science & TechnologyFaculty of Physics & Applied Computer ScienceKrakówBolewski Andrzej bolewski@ novell.ftj.agh.edu.plCetnar Jerzy cetnar@novell.ftj.agh.edu.plChruściel Edward chrusciel@novell.ftj.agh.edu.plCiechanowski Marek marek@novell.ftj.agh.edu.plCzapliński Wilhelm czapl<strong>in</strong>ski@novell.ftj.agh.edu.plDomańska Grażyna domanska@novell.ftj.agh.edu.plDuliński Marek dul<strong>in</strong>ski@novell.ftj.agh.edu.plFurman Leszek furman@novell.ftj.agh.edu.plGorczyca Zbigniew gorczyca@novell.ftj.agh.edu.plJanczyszyn Jerzy janczyszyn@novell.ftj.agh.edu.plJodłowski Paweł jodlowski@novell.ftj.agh.edu.plKalita Stefan kalita@novell.ftj.agh.edu.plKopeć Mariusz mariusz@novell.ftj.agh.edu.plKorus Adam korus@novell.ftj.agh.edu.plKreft Andrzej kreft@novell.ftj.agh.edu.plKuc Tadeusz kuc@novell.ftj.agh.edu.plLankosz Marek lankosz@novell.ftj.agh.edu.plLenda Andrzej lenda@novell.ftj.agh.edu.plNęcki Jarosław necki@novell.ftj.agh.edu.plNguyen D<strong>in</strong>h Chau chau@novell.ftj.agh.edu.plOstachowicz Jerzy ostachowicz@novell.ftj.agh.edu.plPetryka Leszek petryka@novell.ftj.agh.edu.plRosiek Janusz rosiek@novell.ftj.agh.edu.plRóżański Kazimierz rozanski@novell.ftj.agh.edu.plStęgowski Zdzisław stegowski@novell.ftj.agh.edu.plTaczanowski Stefan taczanowski@novell.ftj.agh.edu.plWachniew Przemysław wachniew@novell.ftj.agh.edu.plWęgrzynek Dariusz dw@agh.edu.plWoźniak Jan wozniak@ftj.agh.edu.plZimnoch Mirosław zimnoch@agh.edu.plA. Sołtan Institute for Nuclear StudiesŚwierk-WarszawaAugustyniak Witold witeka@fuw.edu.plBerłowski Marc<strong>in</strong> marc<strong>in</strong>.berlowski@fuw.edu.plBiałkowska Helena Helena.Bialkowska@fuw.edu.plBłocki Jan J.Blocki@ipj.gov.plBoimska Bożena Bozena.Boimska@fuw.edu.plChmielewska Danuta danka@ipj.gov.plDąbrowski Janusz Dabrnucl@fuw.edu.plGójska Aneta gojska@ipj.gov.plIlkiv Ir<strong>in</strong>a ir<strong>in</strong>a.ilkiv@fuw.edu.plJaskóła Marian jaskola@fuw.edu.plKaczarowski Rościslaw slawek@ipj.gov.plKeeley Nicholas keeley@fuw.edu.plKorman Andrzej aak@fuw.edu.plKowal Michał michal.kowal@fuw.edu.plKozłowski Tadeusz kozlowski@ipj.gov.plKupść Andrzej Andrzej.Kupsc@tsl.uu.seKurashvili Podist podist.kurashvili@fuw.edu.plMariański Bohdan bohdan@fuw.edu.plMelnychuk Dimitro dimam@fuw.edu.pl241


Muntian Igor Mountian@fuw.edu.plParkhomenko Oleksander shura@fuw.edu.plPatyk Zygmunt Patyk@fuw.edu.plRożynek Jacek Rozynek@fuw.edu.plRuchowska Ewa ewa@ipj.gov.plRusek Krzysztof rusek@fuw.edu.plRzadkiewicz Jacek jacek@ipj.gov.plSiemiarczuk Teodor Teodor.Siemiarczuk@fuw.edu.plSkalski Janusz jskalski@fuw.edu.plSmolańczuk Robert smolan@fuw.edu.plSobiczewski Adam sobicz@fuw.edu.plStepaniak Joanna Joanna.Stepaniak@fuw.edu.plStrojek Izabela strojek@fuw.edu.plSyntfeld Agnieszka syntfeld@ipj.gov.plTrzciński Andrzej trzc<strong>in</strong>sk@fuw.edu.plWasilewski Adam adamw@ipj.gov.plWilczyński Janusz wilczynski@ipj.gov.plWilk Grzegorz wilk@fuw.edu.plWojtkowska Jolanta jola@ipj.gov.plWrochna Grzegorz Grzegorz.Wrochna@fuw.edu.plWycech Sławomir Wycech@fuw.edu.plZabierowski Janusz janzab@zpk.u.lodz.plŻuprański Paweł zupran@fuw.edu.plZwięgl<strong>in</strong>ski Bogusław bzw@fuw.edu.plZychor Izabella Zychor@ipj.gov.plCopernicus Astronomical CenterWarszawaHaensel Paweł haensel@camk.edu.plLubiński Piotr piotr@camk.edu.plFaculty of PhysicsWarsaw University of Technology, WarszawaDuda Przemysław duda@if.pw.edu.plDudek Wanda wanda@if.pw.edu.plGrebieszkow Katarzyna kperl@if.pw.edu.plJaworski Grzegorz tatrofil@slcj.uw.edu.plKikoła Daniel kikola@if.pw.edu.plKisiel Adam kisiel@if.pw.edu.plKupczak Radomir kupczak@if.pw.edu.plLeszczyński Piotr leszczu@if.pw.edu.plMagierski Piotr magiersk@if.pw.edu.plOleniacz Janusz oleniacz@if.pw.edu.plPawlak Tomasz Pawlak@if.pw.edu.plPeryt Wiktor peryt@if.pw.edu.plPluta Jan pluta@if.pw.edu.plSłodkowski Marc<strong>in</strong> slodkow@if.pw.edu.plSłowiński Bronisław slowb@if.pw.edu.plStaranowicz Agnieszka starana@if.pw.edu.plSzuba Marek cyberman@if.pw.edu.plTraczyk Tomasz ttraczyk@ia.pw.edu.plWosińska Krystyna wos<strong>in</strong>ska@if.pw.edu.plZawisza Marc<strong>in</strong> zawisza@if.pw.edu.plZbroszczyk Hanna gos@if.pw.edu.plZych Włodzimierz zych@if.pw.edu.pl242


Faculty of Physics and Applied InformaticsUniversity of ŁódźAndrzejewski Jozef jozefan@uni.lodz.plKaczmarczyk Maria marykacz@uni.lodz.plKorejwo Andrzej akorejwo@kfj.fic.uni.lodz.plKról Adam adamkrol@uni.lodz.plŁasoń Lech llason@uni.lodz.plMarganiec Justyna justmarg@uni.lodz.plOlejniczak Urszula ulkaol@uni.lodz.plPerkowski Jarosław jarekper@uni.lodz.plSobczak Kamil ksobczak@uni.lodz.plSzałański Paweł pjszalan@uni.lodzŻak Andrzej anzak@uni.lodz.plHeavy Ion LaboratoryWarsaw UniversityChoiński Jarosław jch@nov.slcj.uw.edu.plCydzik Izabela ice@nov.slcj.uw.edu.plGawlikowicz Wojciech wojtek@slcj.uw.edu.plHechner Dorota dorotah@slcj.uw.edu.plIwanicki Jędrzej iwanicki@slcj.uw.edu.plJastrzębski Jerzy jastj@nov.slcj.uw.edu.plKilian Krzysztof kilian@nov.slcj.uw.edu.plKisieliński Maciej kisiel@slcj.uw.edu.plKordyasz Andrzej kord@slcj.uw.edu.plKownacki Jan JKO@nov.slcj.uw.edu.plMierzejewski Jan jmierz@slcj.uw.edu.plMiszczak Jan miszczak@nov.slcj.uw.edu.plNapiorkowski Paweł pjn@slcj.uw.edu.plPalacz Marc<strong>in</strong> palacz@slcj.uw.edu.plPiasecki Ernest Piasecki@fuw.edu.plPieńkowski Ludwik pienkowsk@jasio.slcj.uw.edu.plSrebrny Julian Julian.Srebrny@poczta.tp.plSteczkiewicz Olga osteczk@nov.slcj.uw.edu.plStolarz Anna anna@slcj.uw.edu.plSura Józef Sura@nov.slcj.uw.edu.plTańczyk Roman tanczyk@nov.slcj.uw.edu.plTrzcińska Agnieszka agniecha@jasio.slcj.uw.edu.plTys Jan tys@nov.slcj.uw.edu.plWolińska-Cichocka Marzena mala@slcj.uw.edu.plWrzosek Katarzyna wrzosek@slcj.uw.edu.plZielińska Magdalena magda@slcj.uw.edu.plH. Niewodniczański Institute of Nuclear PhysicsPolish Academy of SciencesKrakówAdamczak Andrzej Andrzej.Adamczak@ifj.edu.plBartke Jerzy Jerzy.Bartke@ifj.edu.plBednarczyk Piotr Piotr.Bednarczyk@ifj.edu.plBiałkowski Edward Edward.Bialkowski@ifj.edu.plBiegun Aleksandra Aleksandra.Biegun@ifj.edu.plBożek Piotr Piotr.Bozek@ifj.edu.plBroda Rafał Rafal.Broda@ifj.edu.plBudzanowski Andrzej Andrzej.Budzanowski@ifj.edu.plCyz Antoni Antoni.Cyz@ifj.edu.pl243


Czech Bronisław Bronisław.Czech@ifj.edu.plCzerski Piotr Piotr.Czerski@ifj.edu.plFornal Bogdan Bogdan.Fornal@ifj.edu.plGładysz-Dziaduś Ewa Ewa.Gladysz@ifj.edu.plGrębosz Jerzy Jerzy.Grebosz@ifj.edu.plJakiel Jacek Jacek.Jakiel@ifj.edu.plJeżabek Marek Marek.Jezabek@ifj.edu.plKamińska Agnieszka Agnieszka.Kam<strong>in</strong>ska@ifj.edu.plKamiński Grzegorz Grzegorz.Kam<strong>in</strong>ski@ifj.edu.plKarcz Waldemar Waldemar.Karcz@ifj.edu.plKistryn Małgorzata Malgorzata.Kistryn@ifj.edu.plKliczewski Stanisław Stanislaw.Kliczewski@ifj.edu.plKmiecik Maria Maria.Kmiecik@ifj.edu.plKowalski Marek Marek.Kowalski@ifj.edu.plKozela Adam Adam.Kozela@ifj.edu.plKozik Ewa Ewa.Kozik@ifj.edu.plKrólas Wojciech Wojciech.Krolas@ifj.edu.plKulessa Paweł Pawel.Kulessa@ifj.edu.plLach Małgorzata Malgorzata.Lach@ifj.edu.plŁukasik Jerzy Jerzy.Lukasik@ifj.edu.plMaj Adam Adam.Maj@ifj.edu.plMazurek Katarzyna Katarzyna.Mazurek@ifj.edu.plMęczyński Witold Witold.Meczynski@ifj.edu.plMyalski Szymon Szymon.Myalski@ifj.edu.plOkołowicz Jacek Jacek.Okolowicz@ifj.edu.plOlko Paweł Pawel.Olko@ifj.edu.plPawłat Tomasz Tomasz.Pawlat@ifj.edu.plPawłowski Piotr Piotr.Pawlowski@ifj.edu.plPysz Krzysztof Krzysztof.Pysz@ifj.edu.plRybicki Andrzej Andrzej.Rybicki@ifj.edu.plSiudak Reg<strong>in</strong>a Reg<strong>in</strong>a.Siudak@ifj.edu.plSkwirczyńska Irena Irena.Skwirczynska@ifj.edu.plSrokowski Tomasz Tomasz.Srokowski@ifj.edu.plStyczeń Jan Jan.Styczeń@ifj.edu.plSzczurek Antoni Antoni.Szczurek@ifj.edu.plWolski Roman Roman.Wolski@ifj.edu.plWrzesiński Jacek Jacek.Wrzes<strong>in</strong>ski@ ifj.edu.plZiębliński Mirosław Miroslaw.Ziebl<strong>in</strong>ski@ifj.edu.plInstitute of Atomic EnergyOtwock-ŚwierkMarc<strong>in</strong>kowska Zuzanna zussska@gmail.comTymińska Katarzyna kasia.tym<strong>in</strong>ska@gmail.com244Institute of Experimental PhysicsWarsaw UniversityDroste Chrystian droste@zfja-gate.fuw.edu.plGasik Piotr gasik@japc50.fuw.edu.plGrodner Ernest egrodner@npdaxp.fuw.edu.plJanas Zenon janas@mimuw.edu.plJaracz Piotr pja@fuw.edu.plKarny Marek karny@mimuw.edu.plKicińska-Habior Marta marta@fuw.edu.plKirejczyk Marek mkir@fuw.edu.plKorgul Agnieszka korgul@fuw.edu.plKowalczyk Michał Michal.Kowalczyk@fuw.edu.plKurcewicz Jan jkurc@fuw.edu.plKurcewicz Wiktor kurcewic@mimuw.edu.pl


Kurpeta Jan jkurpeta@mimuw.edu.plMatulewicz Tomasz Tomasz.Matulewicz@fuw.edu.plMiernik Krzysztof kmiernik@fuw.edu.plMorek Tomasz morek@npdaxp.fuw.edu.plPfűtzner Marek pfutzner@mimuw.edu.plPiasecki Krzysztof krzysztof.piasecki@fuw.edu.plPłochocki Andrzej plohocki@mimuw.edu.plRząca-Urban Teresa rzaca@@fuw.edu.plSankowska Iwona zalewska@npdaxp.fuw.edu.plSikora Brunon sikora@npdaxp.fuw.edu.plSiwek-Wilczyńska Krystyna siwek@npdaxp.fuw.edu.plSkrzypczak Ewa Ewa.Skrzypczak@fuw.edu.plSkwira-Chalot Izabela skwira@npdaxp.fuw.edu.plSzefliński Zygmunt szef@fuw.edu.plSzweryn Beata szweryn@mimuw.edu.plTurowiecki Adam atr@zfja-gate.fuw.edu.plUrban Waldemar urban@fuw.edu.plWilhelmi Zdzisław wilhelmi@zfja-gate.fuw.edu.plWiśniewski Krzysztof krzysiek@@npdl.fuw.edu.plWojtasiewicz Andrzej wojtas@nov.slcj.uw.edu.plŻylicz Jan zylicz@fuw.edu.plInstitute of Physics, Maria Curie-Skłodowska UniversityLubl<strong>in</strong>Baran Andrzej baran@tytan.umcs.lubl<strong>in</strong>.plBerej Waldemar berej@kft.umcs.lubl<strong>in</strong>.plBobyk Andrzej Andrzej.Bobyk@lubman.plDobrowolski Artur arturd@kft.umcs.lubl<strong>in</strong>.plGóźdź Andrzej gozdz@tytan.umcs.lubl<strong>in</strong>.plGóźdź Marek mgozdz@kft.umcs.lubl<strong>in</strong>.plKamiński Wiesław kam<strong>in</strong>ski@neuron.umcs.lubl<strong>in</strong>.plKleban Małgorzata kleban@kft.umcs.lubl<strong>in</strong>.plKraśkiewicz Jerzy Jerzy.Kraskiewicz@umcs.lubl<strong>in</strong>.plŁojewski Zdzisław loe@tytan.umcs.lubl<strong>in</strong>.plMierzyński Paweł PMIERZYN@tytan.umcs.lubl<strong>in</strong>.plMiskiewicz Marek miskiewicz@kft.umcs.lubl<strong>in</strong>.plNerlo-Pomorska Bożena Bozena.Pomorska@umcs.lubl<strong>in</strong>.plNowak Marek nowakm@golem.umcs.lubl<strong>in</strong>.plPietrow Marek mrk@kft.umcs.lubl<strong>in</strong>.plPomorski Krzysztof Krzysztof.Pomorski@umcs.lubl<strong>in</strong>.plPróchniak Leszek Leszek.prochniak@umcs.lubl<strong>in</strong>.plSieja Kamila ksieja@hektor.umcs.lubl<strong>in</strong>.plStaszczak Andrzej STAS@tytan.umcs.plSurowiec Agnieszka a.surowiec@pollub.plSzpikowski Stanisław szp@tytan.umcs.lubl<strong>in</strong>.plTuros Małgorzata kleban@kft.umcs.lubl<strong>in</strong>.plWarda Michał Warda@tytan.umcs.lubl<strong>in</strong>.plWodecki Andrzej andrzej.wodecki@puw.plZając Krystyna zajac@tytan.umcs.lubl<strong>in</strong>.plInstitute of Physics, Świętokrzyska AcademyKielceBanaś Dariusz d.banas@pu.kielce.plBraziewicz Janusz janusz.braziewicz@pu.kielce.plBroniowski Wojciech Wojciech.Broniowski@ifj.edu.plFlorkowski Wojciech Wojciech.Florkowski@ifj.edu.plGaździcki Marek marek@ikf.uni-frankfurt.deMrówczyński Stanisław mrow@fuw.edu.plRybczyński Maciej Maciej.Rybczynski@pu.kielce.pl245


Seyboth Peter pxs@mppmu.mpg.deStefanek Grzegorz Grzegorz.Stefanek@pu.kielce.plWłodarczyk Zbigniew Zbigniew.Wlodarczyk@pu.kielce.plWojtaszek Agnieszka wojtaszek@pu.kielce.plInstitute of Physics, University of SilesiaKatowiceBubak Arkadiusz abubak@nuph.us.edu.plCzakański Jacek czakansk@us.edu.plDorda Jerzy dorda@us.edu.plGrzeszczuk Andrzej grzeszcz@us.edu.plHoleczek Jacek holeczek@us.edu.plKadziołka Mariola marioloa@nuoh.us.edu.plKisiel Jan kisielj@us.edu.plKłos Barbara Barbara.Klos@us.edu.plKomraus Józef komraus@us.edu.plKonefał Adam akonefal@us.edu.plKowalski Seweryn skowalsk@us.edu.plKozłowska Beata bkozlows@us.edu.plKrauze Maciej meszik@nuph.us.edu.plNiedzielska Małgorzata niedziel@nuoh.us.edu.plOsoba Wojciech osoba@us.edu.plPolaczek-Grelik K<strong>in</strong>ga polaczek@nuoh.us.edu.plPopiel Eustachy popiel@us.edu.plSchmidt Katarzyna kschmidt@nuph.us.edu.plSiemaszko Marek siemaszk@us.edu.plStephan Elżbieta Stephan@us.edu.plWalencik Agata awalencik@nuoh.usedu.plWęglorz Wojciech weglorz@nuoh.us.edu.plZipper Wiktor zipper@us.edu.plInstitute of PhysicsUniversity of Szczec<strong>in</strong>Czerski Konrad czerski@physik.tu-berl<strong>in</strong>.deTargosz Natalia natalia.targosz@wmf.univ.szczec<strong>in</strong>.plInstitute of Theoretical PhysicsWarsaw UniversityDobaczewski Jacek Jacek.Dobaczewski@fuw.edu.plNazarewicz Witold witek@utk.eduOlbratowski Przemysław Przemyslaw.Olbratowski@fuw.edu.plRohoziński Grzegorz Stanislaw-G.Rohoz<strong>in</strong>ski@fuw.edu.plSatuła Wojciech Wojciech.Satula@fuw.edu.plWerner Tomasz Tomasz.Werner@fuw.edu.pl246M. Smoluchowski Institute of Physics, Jagiellonian UniversityKrakówAdrich Przemysław adrich@gsi.deBałanda Andrzej balanda@if.uj.edu.plBodek Kazimierz ufbodek@if.uj.edu.plBryś Tomasz tomasz.brys@psi.chBrzychczyk Janusz ufbrzych@cyf-kr.edu.plCiepał Izabela ciepal@wp.plCzerwiński Eryk eryk.czerw<strong>in</strong>ski@uj.edu.plCzyżykiewicz Rafał r.czyzykiewicz@fz-juelich.deDybczak Adrian adybczak@gmail.comFidelus Małgorzata puchala@if.uj.edu.pl


Gil Damian damian.gil@if.uj.edu.plGolak Jacek ufgolak@cyf-kr.edu.plHawranek Piotr hawranek@if.uj.edu.plHodana Małgorzata m.hodana@gmail.comJanusz Michał m.janusz80@wp.plJany Benedykt b.jany@fz-juelich.deJarczyk Lucjan jarczyk@if.uj.edu.plKamys Bogusław ufkamys@cyf-kr.edu.plKarabowicz Radosław r.karabowicz@if.uj.edu.plKistryn Stanisław skistryn@if.uj.edu.plKlaja Paweł klajus@poczta.onet.plKlimkiewicz Adam A.klimkiewicz@gsi.deKowalczyk Anna kowalczyk@pisa.if.uj.edu.plKozik Tomasz ufkozik@cyf-kr.edu.plKożuch Anna annakozuch@wp.plKrzemień Wojciech wojciech.krzemien@if.uj.edu.plKulessa Re<strong>in</strong>hard kulessa@if.uj.edu.plKuźniak Marc<strong>in</strong> kuzniak@if.uj.edu.plLesiak Mariola m.lesiak@fz-juelich.deŁojek Konrad lojek@netmail.if.uj.edu.plMagiera Andrzej magiera@if.uj.edu.plMajka Zbigniew ufmajka@cyf-kr.edu.plMichalska Beata michalskabeata@poczta.onet.plMisiaszek Marc<strong>in</strong> misiaszek@zefir.if.uj.edu.plMoskal Paweł ufmoskal@if.uj.edu.plOtw<strong>in</strong>owski Jacek otw<strong>in</strong>ow@psja1.if.uj.edu.plPałka Marek marcus.fm@wp.plPiskor-Ignatowicz Cezary c.piskor-ignatowicz@fz-juelich.dePiskor-Ignatowicz Borys piskor@if.uj.edu.plPłaneta Roman ufplanet@cyf-kr.edu.plPodkopal Paweł p.podkopal@fz-juelich.dePrzerwa Joanna j.przerwa@fz-juelich.dePrzygoda Witold przygoda@if.uj.edu.plPulut Jacek pulut@if.uj.edu.plRejdych Barbara brejdych@gmail.comRozpędzik Dagmara dagmara.rozpedzik@if.uj.edu.plRudy Zbigniew ufrudy@cyf-kr.edu.plSalabura Piotr Salabura@if.uj.edu.plSimon Anna simon@if.uj.edu.plSkibiński Roman skib<strong>in</strong>sk@if.uj.edu.plSmoliński Tytus t.smol<strong>in</strong>ski@fz-juelich.deSmyrski Jerzy smyrski@if.uj.edu.plSos<strong>in</strong> Zbigniew ufsos<strong>in</strong>@cyf-kr.edu.plStaszel Paweł ufstasze@if.uj.edu.plStrzałkowski Adam ufstrzal@cyf-kr.edu.plSurówka Grzegorz surowka@th.if.uj.edu.plSworst Rafał sworst@pisa.if.uj.edu.plŚmiechowicz Michał smiechowicz@pisa.if.uj.edu.plTrębacz Radosław rtrebacz@poczta.onet.plWaluś Władysław wladyslaw.walus@uj.edu.plWarczak Andrzej ufwarcza@cyf-kr.edu.plWieloch Andrzej ufwieloc@cyf-kr.edu.plWisniowski Marc<strong>in</strong> wisnia@hades.if.uj.edu.plWitała Henryk witala@if.uj.edu.plWojciechowski Mariusz Wojciech@if.uj.edu.plWójcik Tomasz twojcik@if.uj.edu.plWrońska Aleksandra wronska@if.uj.edu.plZejma Jacek zejma@jetta.if.uj.edu.plZuzel Grzegorz Grzegorz.Zuzel@mpi-hd.mpg.de247


University of WrocławRedlich Krzysztof redlich@rose.ift.uni.wroc.plUniversity of Zielona GóraRozmej Piotr P.Rozmej@if.uz.zgora.pl248


Nuclear Physics community <strong>in</strong> PolandAlphabetic orderName First Name Institution E-mailAdamczak Andrzej IFJ PAN Andrzej.Adamczak@ifj.edu.plAdrich Przemysław IP JU adrich@gsi.deAndrzejewski Jozef IP UL jozefan@uni.lodz.plAugustyniak Witold IPJ witeka@fuw.edu.plBałanda Andrzej IP JU balanda@if.uj.edu.plBanaś Dariusz IP d.banas@pu.kielce.plBaran Andrzej IP UMCS baran@tytan.umcs.lubl<strong>in</strong>.plBartke Jerzy IFJ PAN Jerzy.Bartke@ifj.edu.plBednarczyk Piotr IFJ PAN Piotr.Bednarczyk@ifj.edu.plBerej Waldemar IP UMCS berej@kft.umcs.lubl<strong>in</strong>.plBerłowski Marc<strong>in</strong> IPJ marc<strong>in</strong>.berlowski@fuw.edu.plBiałkowska Helena IPJ Helena.Bialkowska@fuw.edu.plBiałkowski Edward IFJ PAN Edward.Bialkowski@ifj.edu.plBiegun Aleksandra IFJ PAN Aleksandra.Biegun@ifj.edu.plBłocki Jan IPJ J.Blocki@ipj.gov.plBobyk Andrzej IP UMCS Andrzej.Bobyk@lubman.plBodek Kazimierz IP JU ufbodek@if.uj.edu.plBoimska Bożena IPJ Bozena.Boimska@fuw.edu.plBolewski Andrzej AGH FPACS bolewski@ novell.ftj.agh.edu.plBożek Piotr IFJ PAN Piotr.Bozek@ifj.edu.plBraziewicz Janusz IP janusz.braziewicz@pu.kielce.plBroda Rafał IFJ PAN Rafal.Broda@ifj.edu.plBroniowski Wojciech IP Wojciech.Broniowski@ifj.edu.plBryś Tomasz IP JU tomasz.brys@psi.chBrzychczyk Janusz IP JU ufbrzych@cyf-kr.edu.plBubak Arkadiusz IP US abubak@nuph.us.edu.plBudzanowski Andrzej IFJ PAN Andrzej.Budzanowski@ifj.edu.plCetnar Jerzy AGH FPACS cetnar@novell.ftj.agh.edu.plChmielewska Danuta IPJ danka@ipj.gov.plChoiński Jarosław HIL UW jch@nov.slcj.uw.edu.plChruściel Edward AGH FPACS chrusciel@novell.ftj.agh.edu.plCiechanowski Marek AGH FPACS marek@novell.ftj.agh.edu.plCiepał Izabela IP JU ciepal@wp.plCydzik Izabela HIL UW ice@nov.slcj.uw.edu.plCyz Antoni IFJ PAN Antoni.Cyz@ifj.edu.plCzakański Jacek IP US czakansk@us.edu.plCzapliński Wilhelm AGH FPACS czapl<strong>in</strong>ski@novell.ftj.agh.edu.plCzech Bronisław IFJ PAN Bronisław.Czech@ifj.edu.plCzerski Piotr IFJ PAN Piotr.Czerski@ifj.edu.plCzerski Konrad USz czerski@physik.tu-berl<strong>in</strong>.deCzerwiński Eryk IP JU eryk.czerw<strong>in</strong>ski@uj.edu.plCzyżykiewicz Rafał IP JU r.czyzykiewicz@fz-juelich.deDąbrowski Janusz IPJ Dabrnucl@fuw.edu.plDobaczewski Jacek IFT UW Jacek.Dobaczewski@fuw.edu.plDobrowolski Artur IP UMCS arturd@kft.umcs.lubl<strong>in</strong>.plDomańska Grażyna AGH FPACS domanska@novell.ftj.agh.edu.plDorda Jerzy IP US dorda@us.edu.plDroste Chrystian IEP UW droste@zfja-gate.fuw.edu.plDuda Przemysław PhF WUT duda@if.pw.edu.plDudek Wanda PhF WUT wanda@if.pw.edu.plDuliński Marek AGH FPACS dul<strong>in</strong>ski@novell.ftj.agh.edu.plDybczak Adrian IP JU adybczak@gmail.comFidelus Małgorzata IP JU puchala@if.uj.edu.plFlorkowski Wojciech IP Wojciech.Florkowski@ifj.edu.plFornal Bogdan IFJ PAN Bogdan.Fornal@ifj.edu.pl249


250Furman Leszek AGH FPACS furman@novell.ftj.agh.edu.plGasik Piotr IEP UW gasik@japc50.fuw.edu.plGawlikowicz Wojciech HIL UW wojtek@slcj.uw.edu.plGaździcki Marek IP marek@ikf.uni-frankfurt.deGil Damian IP JU damian.gil@if.uj.edu.plGładysz-Dziaduś Ewa IFJ PAN Ewa.Gladysz@ifj.edu.plGolak Jacek IP JU ufgolak@cyf-kr.edu.plGorczyca Zbigniew AGH FPACS gorczyca@novell.ftj.agh.edu.plGójska Aneta IPJ gojska@ipj.gov.plGóźdź Andrzej IP UMCS gozdz@tytan.umcs.lubl<strong>in</strong>.plGóźdź Marek IP UMCS mgozdz@kft.umcs.lubl<strong>in</strong>.plGrebieszkow Katarzyna PhF WUT kperl@if.pw.edu.plGrębosz Jerzy IFJ PAN Jerzy.Grebosz@ifj.edu.plGrodner Ernest IEP UW egrodner@npdaxp.fuw.edu.plGrzeszczuk Andrzej IP US grzeszcz@us.edu.plHaensel Paweł CAC haensel@camk.edu.plHawranek Piotr IP JU hawranek@if.uj.edu.plHechner Dorota HIL UW dorotah@slcj.uw.edu.plHodana Małgorzata IP JU m.hodana@gmail.comHoleczek Jacek IP US holeczek@us.edu.plIlkiv Ir<strong>in</strong>a IPJ ir<strong>in</strong>a.ilkiv@fuw.edu.plIwanicki Jędrzej HIL UW iwanicki@slcj.uw.edu.plJakiel Jacek IFJ PAN Jacek.Jakiel@ifj.edu.plJanas Zenon IEP UW janas@mimuw.edu.plJanczyszyn Jerzy AGH FPACS janczyszyn@novell.ftj.agh.edu.plJanusz Michał IP JU m.janusz80@wp.plJany Benedykt IP JU b.jany@fz-juelich.deJaracz Piotr IEP UW pja@fuw.edu.plJarczyk Lucjan IP JU jarczyk@if.uj.edu.plJaskóła Marian IPJ jaskola@fuw.edu.plJastrzębski Jerzy HIL UW jastj@nov.slcj.uw.edu.plJaworski Grzegorz PhF WUT tatrofil@slcj.uw.edu.plJeżabek Marek IFJ PAN Marek.Jezabek@ifj.edu.plJodłowski Paweł AGH FPACS jodlowski@novell.ftj.agh.edu.plKaczarowski Rościslaw IPJ slawek@ipj.gov.plKaczmarczyk Maria IP UL marykacz@uni.lodz.plKadziołka Mariola IP US marioloa@nuoh.us.edu.plKalita Stefan AGH FPACS kalita@novell.ftj.agh.edu.plKamińska Agnieszka IFJ PAN Agnieszka.Kam<strong>in</strong>ska@ifj.edu.plKamiński Grzegorz IFJ PAN Grzegorz.Kam<strong>in</strong>ski@ifj.edu.plKamiński Wiesław IP UMCS kam<strong>in</strong>ski@neuron.umcs.lubl<strong>in</strong>.plKamys Bogusław IP JU ufkamys@cyf-kr.edu.plKarabowicz Radosław IP JU r.karabowicz@if.uj.edu.plKarcz Waldemar IFJ PAN Waldemar.Karcz@ifj.edu.plKarny Marek IEP UW karny@mimuw.edu.plKeeley Nicholas IPJ keeley@fuw.edu.plKicińska-Habior Marta IEP UW marta@fuw.edu.plKikoła Daniel PhF WUT kikola@if.pw.edu.plKilian Krzysztof HIL UW kilian@nov.slcj.uw.edu.plKirejczyk Marek IEP UW mkir@fuw.edu.plKisiel Jan IP US kisielj@us.edu.plKisiel Adam PhF WUT kisiel@if.pw.edu.plKisieliński Maciej HIL UW kisiel@slcj.uw.edu.plKistryn Małgorzata IFJ PAN Malgorzata.Kistryn@ifj.edu.plKistryn Stanisław IP JU skistryn@if.uj.edu.plKlaja Paweł IP JU klajus@poczta.onet.plKleban Małgorzata IP UMCS kleban@kft.umcs.lubl<strong>in</strong>.plKliczewski Stanisław IFJ PAN Stanislaw.Kliczewski@ifj.edu.plKlimkiewicz Adam IP JU A.klimkiewicz@gsi.deKłos Barbara IP US Barbara.Klos@us.edu.plKmiecik Maria IFJ PAN Maria.Kmiecik@ifj.edu.plKomraus Józef IP US komraus@us.edu.plKonefał Adam IP US akonefal@us.edu.pl


Kopeć Mariusz AGH FPACS mariusz@novell.ftj.agh.edu.plKordyasz Andrzej HIL UW kord@slcj.uw.edu.plKorejwo Andrzej IP UL akorejwo@kfj.fic.uni.lodz.plKorgul Agnieszka IEP UW korgul@fuw.edu.plKorman Andrzej IPJ aak@fuw.edu.plKorus Adam AGH FPACS korus@novell.ftj.agh.edu.plKowal Michał IPJ michal.kowal@fuw.edu.plKowalczyk Michał IEP UW Michal.Kowalczyk@fuw.edu.plKowalczyk Anna IP JU kowalczyk@pisa.if.uj.edu.plKowalski Marek IFJ PAN Marek.Kowalski@ifj.edu.plKowalski Seweryn IP US skowalsk@us.edu.plKownacki Jan HIL UW JKO@nov.slcj.uw.edu.plKozela Adam IFJ PAN Adam.Kozela@ifj.edu.plKozik Ewa IFJ PAN Ewa.Kozik@ifj.edu.plKozik Tomasz IP JU ufkozik@cyf-kr.edu.plKozłowska Beata IP US bkozlows@us.edu.plKozłowski Tadeusz IPJ kozlowski@ipj.gov.plKożuch Anna IP JU annakozuch@wp.plKraśkiewicz Jerzy IP UMCS Jerzy.Kraskiewicz@umcs.lubl<strong>in</strong>.plKrauze Maciej IP US meszik@nuph.us.edu.plKreft Andrzej AGH FPACS kreft@novell.ftj.agh.edu.plKról Adam IP UL adamkrol@uni.lodz.plKrólas Wojciech IFJ PAN Wojciech.Krolas@ifj.edu.plKrzemień Wojciech IP JU wojciech.krzemien@if.uj.edu.plKuc Tadeusz AGH FPACS kuc@novell.ftj.agh.edu.plKulessa Re<strong>in</strong>hard IP JU kulessa@if.uj.edu.plKulessa Paweł IFJ PAN Pawel.Kulessa@ifj.edu.plKupczak Radomir PhF WUT kupczak@if.pw.edu.plKupść Andrzej IPJ Andrzej.Kupsc@tsl.uu.seKurashvili Podist IPJ podist.kurashvili@fuw.edu.plKurcewicz Jan IEP UW jkurc@fuw.edu.plKurcewicz Wiktor IEP UW kurcewic@mimuw.edu.plKurpeta Jan IEP UW jkurpeta@mimuw.edu.plKuźniak Marc<strong>in</strong> IP JU kuzniak@if.uj.edu.plLach Małgorzata IFJ PAN Malgorzata.Lach@ifj.edu.plLankosz Marek AGH FPACS lankosz@novell.ftj.agh.edu.plLenda Andrzej AGH FPACS lenda@novell.ftj.agh.edu.plLesiak Mariola IP JU m.lesiak@fz-juelich.deLeszczyński Piotr PhF WUT leszczu@if.pw.edu.plLubiński Piotr CAC piotr@camk.edu.plŁasoń Lech IP JU llason@uni.lodz.plŁasoń Lech IP UL llason@uni.lodz.plŁojek Konrad IP JU lojek@netmail.if.uj.edu.plŁojewski Zdzislaw IP UMCS loe@tytan.umcs.lubl<strong>in</strong>.plŁukasik Jerzy IFJ PAN Jerzy.Lukasik@ifj.edu.plMagiera Andrzej IP JU magiera@if.uj.edu.plMagierski Piotr PhF WUT magiersk@if.pw.edu.plMaj Adam IFJ PAN Adam.Maj@ifj.edu.plMajka Zbigniew IP JU ufmajka@cyf-kr.edu.plMarc<strong>in</strong>kowska Zuzanna IEA zussska@gmail.comMarganiec Justyna IP UJ justmarg@uni.lodz.plMariański Bohdan IPJ bohdan@fuw.edu.plMatulewicz Tomasz IEP UW Tomasz.Matulewicz@fuw.edu.plMazurek Katarzyna IFJ PAN Katarzyna.Mazurek@ifj.edu.plMelnychuk Dimitro IPJ dimam@fuw.edu.plMęczyński Witold IFJ PAN Witold.Meczynski@ifj.edu.plMichalska Beata IP JU michalskabeata@poczta.onet.plMiernik Krzysztof IEP UW kmiernik@fuw.edu.plMierzejewski Jan HIL UW jmierz@slcj.uw.edu.plMierzyński Paweł IP UMCS PMIERZYN@tytan.umcs.lubl<strong>in</strong>.plMisiaszek Marc<strong>in</strong> IP JU misiaszek@zefir.if.uj.edu.plMiskiewicz Marek IP UMCS miskiewicz@kft.umcs.lubl<strong>in</strong>.plMiszczak Jan HIL UW miszczak@nov.slcj.uw.edu.pl251


252Morek Tomasz IEP UW morek@npdaxp.fuw.edu.plMoskal Paweł IP JU ufmoskal@if.uj.edu.plMrówczyński Stanisław IP mrow@fuw.edu.plMuntian Igor IPJ Mountian@fuw.edu.plMyalski Szymon IFJ PAN Szymon.Myalski@ifj.edu.plNapiorkowski Paweł HIL UW pjn@slcj.uw.edu.plNazarewicz Witold IFT UW witek@utk.eduNerlo-Pomorska Bożena IP UMCS Bozena.Pomorska@umcs.lubl<strong>in</strong>.plNęcki Jarosław AGH FPACS necki@novell.ftj.agh.edu.plNguyen D<strong>in</strong>h Chau AGH FPACS chau@novell.ftj.agh.edu.plNiedzielska Małgorzata IP US niedziel@nuoh.us.edu.plNowak Marek IP UMCS nowakm@golem.umcs.lubl<strong>in</strong>.plOkołowicz Jacek IFJ PAN Jacek.Okolowicz@ifj.edu.plOlbratowski Przemysław IFT UW Przemyslaw.Olbratowski@fuw.edu.plOlejniczak Urszula IP UL ulkaol@uni.lodz.plOleniacz Janusz PhF WUT oleniacz@if.pw.edu.plOlko Paweł IFJ PAN Pawel.Olko@ifj.edu.plOsoba Wojciech IP US osoba@us.edu.plOstachowicz Jerzy AGH FPACS ostachowicz@novell.ftj.agh.edu.plOtw<strong>in</strong>owski Jacek IP JU otw<strong>in</strong>ow@psja1.if.uj.edu.plPalacz Marc<strong>in</strong> HIL UW palacz@slcj.uw.edu.plPałka Marek IP JU marcus.fm@wp.plParkhomenko Oleksander IPJ shura@fuw.edu.plPatyk Zygmunt IPJ Patyk@fuw.edu.plPawlak Tomasz PhF WUT Pawlak@if.pw.edu.plPawła Tomasz IFJ PAN Tomasz.Pawlat@ifj.edu.plPawłowski Piotr IFJ PAN Piotr.Pawlowski@ifj.edu.plPerkowski Jarosław IP UL jarekper@uni.lodz.plPeryt Wiktor PhF WUT peryt@if.pw.edu.plPetryka Leszek AGH FPACS petryka@novell.ftj.agh.edu.plPfűtzner Marek IEP UW pfutzner@mimuw.edu.plPiasecki Ernest HIL UW Piasecki@fuw.edu.plPiasecki Krzysztof IEP UW krzysztof.piasecki@fuw.edu.plPieńkowski Ludwik HIL UW pienkowsk@jasio.slcj.uw.edu.plPietrow Marek IP UMCS mrk@kft.umcs.lubl<strong>in</strong>.plPiskor-Ignatowicz Cezary IP JU c.piskor-ignatowicz@fz-juelich.dePiskor-Ignatowicz Borys IP JU piskor@if.uj.edu.plPluta Jan PhF WUT pluta@if.pw.edu.plPłaneta Roman IP JU ufplanet@cyf-kr.edu.plPłochocki Andrzej IEP UW plohocki@mimuw.edu.plPodkopal Paweł IP JU p.podkopal@fz-juelich.dePolaczek-Grelik K<strong>in</strong>ga IP US polaczek@nuoh.us.edu.plPomorski Krzysztof IP UMCS Krzysztof.Pomorski@umcs.lubl<strong>in</strong>.plPopiel Eustachy IP US popiel@us.edu.plPróchniak Leszek IP UMCS Leszek.prochniak@umcs.lubl<strong>in</strong>.plPrzerwa Joanna IP JU j.przerwa@fz-juelich.dePrzygoda Witold IP JU przygoda@if.uj.edu.plPulut Jacek IP JU pulut@if.uj.edu.plPysz Krzysztof IFJ PAN Krzysztof.Pysz@ifj.edu.plRedlich Krzysztof UWr redlich@rose.ift.uni.wroc.plRejdych Barbara IP JU brejdych@gmail.comRohoziński Grzegorz IFT UW Stanislaw-G.Rohoz<strong>in</strong>ski@fuw.edu.plRosiek Janusz AGH FPACS rosiek@novell.ftj.agh.edu.plRozmej Piotr UZG P.Rozmej@if.uz.zgora.plRozpędzik Dagmara IP JU dagmara.rozpedzik@if.uj.edu.plRożynek Jacek IPJ Rozynek@fuw.edu.plRóżański Kazimierz AGH FPACS rozanski@novell.ftj.agh.edu.plRuchowska Ewa IPJ ewa@ipj.gov.plRudy Zbigniew IP JU ufrudy@cyf-kr.edu.plRusek Krzysztof IPJ rusek@fuw.edu.plRybczyński Maciej IP Maciej.Rybczynski@pu.kielce.plRybicki Andrzej IFJ PAN Andrzej.Rybicki@ifj.edu.plRzadkiewicz Jacek IPJ jacek@ipj.gov.pl


Rząca-Urban Teresa IEP UW rzaca@@fuw.edu.plSalabura Piotr IP JU Salabura@if.uj.edu.plSankowska Iwona IEP UW zalewska@npdaxp.fuw.edu.plSatuła Wojciech IFT UW Wojciech.Satula@fuw.edu.plSchmidt Katarzyna IP US kschmidt@nuph.us.edu.plSeyboth Peter IP pxs@mppmu.mpg.deSieja Kamila IP UMCS ksieja@hektor.umcs.lubl<strong>in</strong>.plSiemaszko Marek IP US siemaszk@us.edu.plSiemiarczuk Teodor IPJ Teodor.Siemiarczuk@fuw.edu.plSikora Brunon IEP UW sikora@npdaxp.fuw.edu.plSimon Anna IP JU simon@if.uj.edu.plSiudak Reg<strong>in</strong>a IFJ PAN Reg<strong>in</strong>a.Siudak@ifj.edu.plSiwek-Wilczyńska Krystyna IEP UW siwek@npdaxp.fuw.edu.plSkalski Janusz IPJ jskalski@fuw.edu.plSkibiński Roman IP JU skib<strong>in</strong>sk@if.uj.edu.plSkrzypczak Ewa IEP UW Ewa.Skrzypczak@fuw.edu.plSkwira-Chalot Izabela IEP UW skwira@npdaxp.fuw.edu.plSkwirczyńska Irena IFJ PAN Irena.Skwirczynska@ifj.edu.plSłodkowski Marc<strong>in</strong> PhF WUT slodkow@if.pw.edu.plSłowiński Bronisław PhF WUT slowb@if.pw.edu.plSmolańczuk Robert IPJ smolan@fuw.edu.plSmoliński Tytus IP JU t.smol<strong>in</strong>ski@fz-juelich.deSmyrski Jerzy IP JU smyrski@if.uj.edu.plSobczak Kamil IP UJ ksobczak@uni.lodz.plSobiczewski Adam IPJ sobicz@fuw.edu.plSos<strong>in</strong> Zbigniew IP JU ufsos<strong>in</strong>@cyf-kr.edu.plSrebrny Julian HIL UW Julian.Srebrny@poczta.tp.plSrokowski Tomasz IFJ PAN Tomasz.Srokowski@ifj.edu.plStaranowicz Agnieszka PhF WUT starana@if.pw.edu.plStaszczak Andrzej IP UMCS STAS@tytan.umcs.plStaszel Paweł IP JU ufstasze@if.uj.edu.plSteczkiewicz Olga HIL UW osteczk@nov.slcj.uw.edu.plStefanek Grzegorz IP Grzegorz.Stefanek@pu.kielce.plStepaniak Joanna IPJ Joanna.Stepaniak@fuw.edu.plStephan Elżbieta IP US Stephan@us.edu.plStęgowski Zdzisław AGH FPACS stegowski@novell.ftj.agh.edu.plStolarz Anna HIL UW anna@slcj.uw.edu.plStrojek Izabela IPJ strojek@fuw.edu.plStrzałkowski Adam IP JU ufstrzal@cyf-kr.edu.plStyczeń Jan IFJ PAN Jan.Styczeń@ifj.edu.plSura Józef HIL UW Sura@nov.slcj.uw.edu.plSurowiec Agnieszka IP UMCS a.surowiec@pollub.plSurówka Grzegorz IP JU surowka@th.if.uj.edu.plSworst Rafał IP JU sworst@pisa.if.uj.edu.plSyntfeld Agnieszka IPJ syntfeld@ipj.gov.plSzałański Paweł IP UL pjszalan@uni.lodzSzczurek Antoni IFJ PAN Antoni.Szczurek@ifj.edu.plSzefliński Zygmunt IEP UW szef@fuw.edu.plSzpikowski Stanisław IP UMCS szp@tytan.umcs.lubl<strong>in</strong>.plSzuba Marek PhF WUT cyberman@if.pw.edu.plSzweryn Beata IEP UW szweryn@mimuw.edu.plŚmiechowicz Michał IP JU smiechowicz@pisa.if.uj.edu.plTaczanowski Stefan AGH FPACS taczanowski@novell.ftj.agh.edu.plTańczyk Roman HIL UW tanczyk@nov.slcj.uw.edu.plTargosz Natalia USz natalia.targosz@wmf.univ.szczec<strong>in</strong>.plTraczyk Tomasz PhF WUT ttraczyk@ia.pw.edu.plTrębacz Radosław IP JU rtrebacz@gmail.comTrzcińska Agnieszka HIL UW agniecha@jasio.slcj.uw.edu.plTrzciński Andrzej IPJ trzc<strong>in</strong>sk@fuw.edu.plTuros Małgorzata IP UMCS kleban@kft.umcs.lubl<strong>in</strong>.plTurowiecki Adam IEP UW atr@zfja-gate.fuw.edu.plTymińska Katarzyna IEA kasia.tym<strong>in</strong>ska@gmail.comTys Jan HIL UW tys@nov.slcj.uw.edu.pl253


254Urban Waldemar IEP UW urban@fuw.edu.plWachniew Przemysław AGH FPACS wachniew@novell.ftj.agh.edu.plWalencik Agata IP US awalencik@nuoh.usedu.plWaluś Władysław IP JU wladyslaw.walus@uj.edu.plWarczak Andrzej IP JU ufwarcza@cyf-kr.edu.plWarda Michał IP UMCS Warda@tytan.umcs.lubl<strong>in</strong>.plWasilewski Adam IPJ adamw@ipj.gov.plWerner Tomasz IFT UW Tomasz.Werner@fuw.edu.plWęglorz Wojciech IP US weglorz@nuoh.us.edu.plWęgrzynek Dariusz AGH FPACS dw@agh.edu.plWieloch Andrzej IP JU ufwieloc@cyf-kr.edu.plWilczyński Janusz IPJ wilczynski@ipj.gov.plWilhelmi Zdzisław IEP UW wilhelmi@zfja-gate.fuw.edu.plWilk Grzegorz IPJ wilk@fuw.edu.plWisniowski Marc<strong>in</strong> IP JU wisnia@hades.if.uj.edu.plWiśniewski Krzysztof IEP UW krzysiek@@npdl.fuw.edu.plWitała Henryk IP JU witala@if.uj.edu.plWłodarczyk Zbigniew IP Zbigniew.Wlodarczyk@pu.kielce.plWodecki Andrzej IP UMCS andrzej.wodecki@puw.plWojciechowski Mariusz IP JU Wojciech@if.uj.edu.plWojtasiewicz Andrzej IEP UW wojtas@nov.slcj.uw.edu.plWojtaszek Agnieszka IP wojtaszek@pu.kielce.plWojtkowska Jolanta IPJ jola@<strong>in</strong>dia.ipj.gov.plWolińska-Cichocka Marzena HIL UW mala@slcj.uw.edu.plWolski Roman IFJ PAN Roman.Wolski@ifj.edu.plWosińska Krystyna PhF WUT wos<strong>in</strong>ska@if.pw.edu.plWoźniak Jan AGH FPACS wozniak@ftj.agh.edu.plWójcik Tomasz IP JU twojcik@if.uj.edu.plWrochna Grzegorz IPJ Grzegorz.Wrochna@fuw.edu.plWrońska Aleksandra IP JU wronska@if.uj.edu.plWrzesiński Jacek IFJ PAN Jacek.Wrzes<strong>in</strong>ski@ ifj.edu.plWrzosek Katarzyna HIL UW wrzosek@slcj.uw.edu.plWycech Sławomir IPJ Wycech@fuw.edu.plZabierowski Janusz IPJ janzab@zpk.u.lodz.plZając Krystyna IP UMCS zajac@tytan.umcs.lubl<strong>in</strong>.plZawisza Marc<strong>in</strong> PhF WUT zawisza@if.pw.edu.plZbroszczyk Hanna PhF WUT gos@if.pw.edu.plZejma Jacek IP JU zejma@jetta.if.uj.edu.plZielińska Magdalena HIL UW magda@slcj.uw.edu.plZiębliński Mirosław IFJ PAN Mirosław.Ziebl<strong>in</strong>ski@ifj.edu.plZimnoch Mirosław AGH FPACS zimnoch@agh.edu.plZipper Wiktor IP US zipper@us.edu.plZuzel Grzegorz IP JU Grzegorz.Zuzel@mpi-hd.mpg.deZwięgl<strong>in</strong>ski Bogusław IPJ bzw@fuw.edu.plZych Włodzimierz PhF WUT zych@if.pw.edu.plZychor Izabella IPJ Zychor@ipj.gov.plŻak Andrzej IP UL anzak@uni.lodz.plŻuprański Paweł IPJ zupran@fuw.edu.plŻylicz Jan IEP UW zylicz@fuw.edu.plName First Name Institution E-mailAdamczak Andrzej IFJ PAN Andrzej.Adamczak@ifj.edu.plAdrich Przemysław IP JU adrich@gsi.deAndrzejewski Jozef IP UL jozefan@uni.Łódź.plAugustyniak Witold IPJ witeka@fuw.edu.plBałanda Andrzej IP JU balanda@if.uj.edu.plBanaś Dariusz IP d.banas@pu.kielce.plBaran Andrzej IP UMCS baran@tytan.umcs.lubl<strong>in</strong>.plBartke Jerzy IFJ PAN Jerzy.Bartke@ifj.edu.plBednarczyk Piotr IFJ PAN Piotr.Bednarczyk@ifj.edu.plBerej Waldemar IP UMCS berej@kft.umcs.lubl<strong>in</strong>.plBerłowski Marc<strong>in</strong> IPJ marc<strong>in</strong>.berlowski@fuw.edu


Białkowska Helena IPJ Helena.Bialkowska@fuw.edu.plBiałkowski Edward IFJ PAN Edward.Bialkowski@ifj.edu.plBiegun Aleksandra IFJ PAN Aleksandra.Biegun@ifj.edu.plBłocki Jan IPJ J.Blocki@ipj.gov.plBobyk Andrzej IP UMCS Andrzej.Bobyk@lubman.plBodek Kazimierz IP JU ufbodek@if.uj.edu.plBoimska Bożena IPJ Bozena.Boimska@fuw.edu.plBolewski Andrzej AGH FPACS bolewski@ novell.ftj.agh.edu.plBożek Piotr IFJ PAN Piotr.Bozek@ifj.edu.plBraziewicz Janusz IP janusz.braziewicz@pu.kielce.plBroda Rafał IFJ PAN Rafal.Broda@ifj.edu.plBroniowski Wojciech IP Wojciech.Broniowski@ifj.edu.plBryś Tomasz IP JU tomasz.brys@psi.chBrzychczyk Janusz IP JU ufbrzych@cyf-fr.edu.plBubak Arkadiusz IP US abubak@nuph.us.edu.plBudzanowski Andrzej IFJ PAN Andrzej.Budzanowski@ifj.edu.plCetnar Jerzy AGH FPACS cetnar@novell.ftj.agh.edu.plChmielewska Danuta IPJ danka@ipj.gov.plChoiński Jarosław HIL UW jch@nov.slcj.uw.edu.plChruściel Edward AGH FPACS chrusciel@novell.ftj.agh.edu.plCiechanowski Marek AGH FPACS marek@novell.ftj.agh.edu.plCiepał Izabela IP JU ciepal@wp.plCydzik Izabela HIL UW ice@nov.slcj.uw.edu.plCyz Antoni IFJ PAN Antoni.Cyz@ifj.edu.plCzakański Jacek IP US czakansk@us.edu.plCzapliński Wilhelm AGH FPACS czapl<strong>in</strong>ski@novell.ftj.agh.edu.plCzech Bronisław IFJ PAN Bronisław.Czech@ifj.edu.plCzerski Piotr IFJ PAN Piotr.Czerski@ifj.edu.plCzerski Konrad USz czerski@physik.tu-berl<strong>in</strong>.deCzerwiński Eryk IP JU eryk.czerw<strong>in</strong>ski@uj.edu.plCzyżykiewicz Rafał IP JU r.czyzykiewicz@fz-juelich.deDąbrowski Janusz IPJ Dabrnucl@fuw.edu.plDobaczewski Jacek IFT UW Jacek.Dobaczewski@fuw.edu.plDobrowolski Artur IP UMCS arturd@kft.umcs.lubl<strong>in</strong>.plDomańska Grażyna AGH FPACS domanska@novell.ftj.agh.edu.plDorda Jerzy IP US dorda@us.edu.plDroste Chrystian IEP UW droste@zfja-gate.fuw.edu.plDuda Przemysław PhF WUT duda@if.pw.edu.plDudek Wanda PhF WUT wanda@if.pw.edu.plDuliński Marek AGH FPACS dul<strong>in</strong>ski@novell.ftj.agh.edu.plDybczak Adrian IP JU adybczak@gmail.comFidelus Małgorzata IP JU puchala@if.uj.edu.plFlorkowski Wojciech IP Wojciech.Florkowski@ifj.edu.plFornal Bogdan IFJ PAN Bogdan.Fornal@ifj.edu.plFurman Leszek AGH FPACS furman@novell.ftj.agh.edu.plGasik Piotr IEP UW gasik@japc50.fuw.edu.plGawlikowicz Wojciech HIL UW wojtek@slcj.uw.edu.plGaździcki Marek IP marek@ikf.uni-frankfurt.deGil Damian IP JU damian.gil@if.uj.edu.plGładysz-Dziaduś Ewa IFJ PAN Ewa.Gladysz@ifj.edu.plGolak Jacek IP JU ufgolak@cyf-kr.edu.plGorczyca Zbigniew AGH FPACS gorczyca@novell.ftj.agh.edu.plGójska Aneta IPJ gojska@ipj.gov.plGóźdź Andrzej IP UMCS gozdz@tytan.umcs.lubl<strong>in</strong>.plGóźdź Marek IP UMCS mgozdz@kft.umcs.lubl<strong>in</strong>.plGrebieszkow Katarzyna PhF WUT kperl@if.pw.edu.plGrębosz Jerzy IFJ PAN Jerzy.Grebosz@ifj.edu.plGrodner Ernest IEP UW egrodner@npdaxp.fuw.edu.plGrzeszczuk Andrzej IP US grzeszcz@us.edu.plHaensel Paweł CAC haensel@camk.edu.plHawranek Piotr IP JU hawranek@if.uj.edu.plHechner Dorota HIL UW dorotah@slcj.uw.edu.plHodana Małgorzata IP JU m.hodana@gmail.com255


256Holeczek Jacek IP US holeczek@us.edu.plIlkiv Ir<strong>in</strong>a IPJ ir<strong>in</strong>a.ilkiv@fuw.edu.plIwanicki Jędrzej HIL UW iwanicki@slcj.uw.edu.plJakiel Jacek IFJ PAN Jacek.Jakiel@ifj.edu.plJanas Zenon IEP UW janas@mimuw.edu.plJanczyszyn Jerzy AGH FPACS janczyszyn@novell.ftj.agh.edu.plJanusz Michał IP JU m.janusz80@wp.plJany Benedykt IP JU b.jany@fz-juelich.deJaracz Piotr IEP UW pja@fuw.edu.plJarczyk Lucjan IP JU jarczyk@if.uj.edu.plJaskóła Marian IPJ jaskola@fuw.edu.plJastrzębski Jerzy HIL UW jastj@nov.slcj.uw.edu.plJaworski Grzegorz PhF WUT tatrofil@slcj.uw.edu.plJeżabek Marek IFJ PAN Marek.Jezabek@ifj.edu.plJodłowski Paweł AGH FPACS jodlowski@novell.ftj.agh.edu.plKaczarowski Rościslaw IPJ slawek@<strong>in</strong>dia.ipj.gov.plKaczmarczyk Maria IP UL marykacz@uni.Łódź.plKadziołka Mariola IP US marioloa@nuoh.us.edu.plKalita Stefan AGH FPACS kalita@novell.ftj.agh.edu.plKamińska Agnieszka IFJ PAN Agnieszka.Kam<strong>in</strong>ska@ifj.edu.plKamiński Grzegorz IFJ PAN Grzegorz.Kam<strong>in</strong>ski@ifj.edu.plKamiński Wiesław IP UMCS kam<strong>in</strong>ski@neuron.umcs.lubl<strong>in</strong>.plKamys Bogusław IP JU ufkamys@cyf-kr.edu.plKarabowicz Radosław IP JU r.karabowicz@if.uj.edu.plKarcz Waldemar IFJ PAN Waldemar.Karcz@ifj.edu.plKarny Marek IEP UW karny@mimuw.edu.plKeeley Nicholas IPJ keeley@fuw.edu.plKicińska-Habior Marta IEP UW marta@fuw.edu.plKikoła Daniel PhF WUT kikola@if.pw.edu.plKilian Krzysztof HIL UW kilian@nov.slcj.uw.edu.plKirejczyk Marek IEP UW mkir@fuw.edu.plKisiel Jan IP US kisielj@us.edu.plKisiel Adam PhF WUT kisiel@if.pw.edu.plKisieliński Maciej HIL UW kisiel@slcj.uw.edu.plKistryn Małgorzata IFJ PAN Malgorzata.Kistryn@ifj.edu.plKistryn Stanisław IP JU skistryn@if.uj.edu.plKlaja Paweł IP JU klajus@poczta.onet.plKleban Małgorzata IP UMCS kleban@kft.umcs.lubl<strong>in</strong>.plKliczewski Stanisław IFJ PAN Stanislaw.Kliczewski@ifj.edu.plKlimkiewicz Adam IP JU A.klimkiewicz@gsi.deKłos Barbara IP US Barbara.Klos@us.edu.plKmiecik Maria IFJ PAN Maria.Kmiecik@ifj.edu.plKomraus Józef IP US komraus@us.edu.plKonefał Adam IP US akonefal@us.edu.plKopeć Mariusz AGH FPACS mariusz@novell.ftj.agh.edu.plKordyasz Andrzej HIL UW kord@slcj.uw.edu.plKorejewo Andrzej IP UL akorejewo@kfj.fic.uni.Łódź.plKorgul Agnieszka IEP UW korgul@fuw.edu.plKorman Andrzej IPJ aak@fuw.edu.plKorus Adam AGH FPACS korus@novell.ftj.agh.edu.plKowal Michał IPJ michal.kowal@fuw.edu.plKowalczyk Michał IEP UW Michal.Kowalczyk@fuw.edu.plKowalczyk Anna IP JU kowalczyk@pisa.if.uj.edu.plKowalski Marek IFJ PAN Marek.Kowalski@ifj.edu.plKowalski Seweryn IP US skowalsk@us.edu.plKownacki Jan HIL UW JKO@nov.slcj.uw.edu.plKozela Adam IFJ PAN Adam.Kozela@ifj.edu.plKozik Ewa IFJ PAN Ewa.Kozik@ifj.edu.plKozik Tomasz IP JU ufkozik@cyf-kr.edu.plKozłowska Beata IP US bkozlows@us.edu.plKozłowski Tadeusz IPJ kozlowski@ipj.gov.plKożuch Anna IP JU annakozuch@wp.plKraśkiewicz Jerzy IP UMCS Jerzy.Kraskiewicz@umcs.lubl<strong>in</strong>.pl


Krauze Maciej IP US meszik@nuph.us.edu.plKreft Andrzej AGH FPACS kreft@novell.ftj.agh.edu.plKról Adam IP UL adamkrol@uni.Łódź.plKrólas Wojciech IFJ PAN Wojciech.Krolas@ifj.edu.plKrzemień Wojciech IP JU wojciech.krzemien@if.uj.edu.plKuc Tadeusz AGH FPACS kuc@novell.ftj.agh.edu.plKulessa Re<strong>in</strong>hard IP JU kulessa@if.uj.edu.plKulessa Paweł IFJ PAN Pawel.Kulessa@ifj.edu.plKupczak Radomir PhF WUT kupczak@if.pw.edu.plKupść Andrzej IPJ Andrzej.Kupsc@tsl.uu.seKurashvili Podist IPJ podist.kurashvili@fuw.edu.plKurcewicz Jan IEP UW jkurc@fuw.edu.plKurcewicz Wiktor IEP UW kurcewic@mimuw.edu.plKurpeta Jan IEP UW jkurpeta@mimuw.edu.plKuźniak Marc<strong>in</strong> IP JU kuzniak@if.uj.edu.plLach Małgorzata IFJ PAN Malgorzata.Lach@ifj.edu.plLankosz Marek AGH FPACS lankosz@novell.ftj.agh.edu.plLenda Andrzej AGH FPACS lenda@novell.ftj.agh.edu.plLesiak Mariola IP JU m.lesiak@fz-juelich.deLeszczyński Piotr PhF WUT leszczu@if.pw.edu.plLubiński Piotr CAC piotr@camk.edu.plŁasoń Lech IP JU llason@uni.Łódź.plŁasoń Lech IP UL llanos@uni.Łódź.plŁojek Konrad IP JU lojek@netmail.if.uj.edu.plŁojewski Zdzislaw IP UMCS loe@tytan.umcs.lubl<strong>in</strong>.plŁukasik Jerzy IFJ PAN Jerzy.Lukasik@ifj.edu.plMagiera Andrzej IP JU magiera@if.uj.edu.plMagierski Piotr PhF WUT magiersk@if.pw.edu.plMaj Adam IFJ PAN Adam.Maj@ifj.edu.plMajka Zbigniew IP JU ufmajka@cyf-kr.edu.plMarc<strong>in</strong>kowska Zuzanna IEA zussska@gmail.comMarganiec Justyna IP UJ justmarg@uni.Łódź.plMariański Bohdan IPJ bohdan@fuw.edu.plMatulewicz Tomasz IEP UW Tomasz.Matulewicz@fuw.edu.plMazurek Katarzyna IFJ PAN Katarzyna.Mazurek@ifj.edu.plMelnychuk Dimitro IPJ dimam@fuw.edu.plMęczyński Witold IFJ PAN Witold.Meczynski@ifj.edu.plMichalska Beata IP JU michalskabeata@poczta.onet.plMiernik Krzysztof IEP UW kmiernik@fuw.edu.plMierzejewski Jan HIL UW jmierz@slcj.uw.edu.plMierzyński Paweł IP UMCS PMIERZYN@tytan.umcs.lubl<strong>in</strong>.plMisiaszek Marc<strong>in</strong> IP JU misiaszek@zefir.if.uj.edu.plMiskiewicz Marek IP UMCS miskiewicz@kft.umcs.lubl<strong>in</strong>.plMiszczak Jan HIL UW miszczak@nov.slcj.uw.edu.plMorek Tomasz IEP UW morek@npdaxp.fuw.edu.plMoskal Paweł IP JU ufmoskal@if.uj.edu.plMrówczyński Stanisław IP mrow@fuw.edu.plMuntian Igor IPJ Mountian@fuw.edu.plMyalski Szymon IFJ PAN Szymon.Myalski@ifj.edu.plNapiorkowski Paweł HIL UW pjn@slcj.uw.edu.plNazarewicz Witold IFT UW witek@utk.eduNerlo-Pomorska Bożena IP UMCS Bozena.Pomorska@umcs.lubl<strong>in</strong>.plNęcki Jarosław AGH FPACS necki@novell.ftj.agh.edu.plNguyen D<strong>in</strong>h Chau AGH FPACS chau@novell.ftj.agh.edu.plNiedzielska Małgorzata IP US niedziel@nuoh.us.edu.plNowak Marek IP UMCS nowakm@golem.umcs.lubl<strong>in</strong>.plOkołowicz Jacek IFJ PAN Jacek.Okolowicz@ifj.edu.plOlbratowski Przemysław IFT UW Przemyslaw.Olbratowski@fuw.edu.plOlejniczak Urszula IP UL ulkaol@uni.Łódź.plOleniacz Janusz PhF WUT oleniacz@if.pw.edu.plOlko Paweł IFJ PAN Pawel.Olko@ifj.edu.plOsoba Wojciech IP US osoba@us.edu.plOstachowicz Jerzy AGH FPACS ostachowicz@novell.ftj.agh.edu.pl257


258Otw<strong>in</strong>owski Jacek IP JU otw<strong>in</strong>ow@psja1.if.uj.edu.plPalacz Marc<strong>in</strong> HIL UW palacz@slcj.uw.edu.plPałka Marek IP JU marcus.fm@wp.plParkhomenko Oleksander IPJ shura@fuw.edu.plPatyk Zygmunt IPJ Patyk@fuw.edu.plPawlak Tomasz PhF WUT Pawlak@if.pw.edu.plPawła Tomasz IFJ PAN Tomasz.Pawlat@ifj.edu.plPawłowski Piotr IFJ PAN Piotr.Pawlowski@ifj.edu.plPerkowski Jarosław IP UL jarekper@uni.Łódź.plPeryt Wiktor PhF WUT peryt@if.pw.edu.plPetryka Leszek AGH FPACS petryka@novell.ftj.agh.edu.plPfűtzner Marek IEP UW pfutzner@mimuw.edu.plPiasecki Ernest HIL UW Piasecki@fuw.edu.plPiasecki Krzysztof IEP UW krzysztof.piasecki@fuw.edu.plPieńkowski Ludwik HIL UW pienkowsk@jasio.slcj.uw.edu.plPietrow Marek IP UMCS mrk@kft.umcs.lubl<strong>in</strong>.plPiskor-Ignatowicz Cezary IP JU c.piskor-ignatowicz@fz-juelich.dePiskor-Ignatowicz Borys IP JU piskor@if.uj.edu.plPluta Jan PhF WUT pluta@if.pw.edu.plPłaneta Roman IP JU ufplanet@cyf-kr.edu.plPłochocki Andrzej IEP UW plohocki@mimuw.edu.plPodkopal Paweł IP JU p.podkopal@fz-juelich.dePolaczek-Grelik K<strong>in</strong>ga IP US polaczek@nuoh.us.edu.plPomorski Krzysztof IP UMCS Krzysztof.Pomorski@umcs.lubl<strong>in</strong>.plPopiel Eustachy IP US popiel@us.edu.plPróchniak Leszek IP UMCS Leszek.prochniak@umcs.lubl<strong>in</strong>.plPrzerwa Joanna IP JU j.przerwa@fz-juelich.dePrzygoda Witold IP JU przygoda@if.uj.edu.plPulut Jacek IP JU pulut@if.uj.edu.plPysz Krzysztof IFJ PAN Krzysztof.Pysz@ifj.edu.plRedlich Krzysztof UWr redlich@rose.ift.uni.wroc.plRejdych Barbara IP JU brejdych@gmail.comRohoziński Grzegorz IFT UW Stanislaw-G.Rohoz<strong>in</strong>ski@fuw.edu.plRosiek Janusz AGH FPACS rosiek@novell.ftj.agh.edu.plRozmej Piotr UZG P.Rozmej@if.uz.zGóra.plRozpędzik Dagmara IP JU dagmara.rozpedzik@if.uj.edu.plRożynek Jacek IPJ Rozynek@fuw.edu.plRóżański Kazimierz AGH FPACS rozanski@novell.ftj.agh.edu.plRuchowska Ewa IPJ ewa@<strong>in</strong>dia.ipj.gov.plRudy Zbigniew IP JU ufrudy@cyf-kr.edu.plRusek Krzysztof IPJ rusek@fuw.edu.plRybczyński Maciej IP Maciej.Rybczynski@pu.kielce.plRybicki Andrzej IFJ PAN Andzrej.Rybicki@ifj.edu.plRzadkiewicz Jacek IPJ jacek@ipj.gov.plRząca-Urban Teresa IEP UW rzaca@@fuw.edu.plSalabura Piotr IP JU Salabura@if.uj.edu.plSankowska Iwona IEP UW zalewska@npdaxp.fuw.edu.plSatuła Wojciech IFT UW Wojciech.Satula@fuw.edu.plSchmidt Katarzyna IP US kschmidt@nuph.us.edu.plSeyboth Peter IP pxs@mppmu.mpg.deSieja Kamila IP UMCS ksieja@hektor.umcs.lubl<strong>in</strong>.plSiemaszko Marek IP US siemaszk@us.edu.plSiemiarczuk Teodor IPJ Teodor.Siemiarczuk@fuw.edu.plSikora Brunon IEP UW sikora@npdaxp.fuw.edu.plSimon Anna IP JU simon@if.uj.edu.plSiudak Reg<strong>in</strong>a IFJ PAN Reg<strong>in</strong>a.Siudak@ifj.edu.plSiwek-Wilczyńska Krystyna IEP UW siwek@npdaxp.fuw.edu.plSkalski Janusz IPJ jskalski@fuw.edu.plSkibiński Roman IP JU skib<strong>in</strong>sk@if.uj.edu.plSkrzypczak Ewa IEP UW Ewa.Skrzypczak@fuw.edu.plSkwira-Chalot Izabela IEP UW skwira@npdaxp.fuw.edu.plSkwirczyńska Irena IFJ PAN Irena.Skwirczynska@ifj.edu.plSłodkowski Marc<strong>in</strong> PhF WUT slodkow@if.pw.edu.pl


Słowiński Bronisław PhF WUT slowb@if.pw.edu.plSmolańczuk Robert IPJ smolan@fuw.edu.plSmoliński Tytus IP JU t.smol<strong>in</strong>ski@fz-juelich.deSmyrski Jerzy IP JU smyrski@if.uj.edu.plSobczak Kamil IP UJ ksobczak@uni.Łódź.plSobiczewski Adam IPJ sobicz@fuw.edu.plSos<strong>in</strong> Zbigniew IP JU ufsos<strong>in</strong>@cyf-kr.edu.plSrebrny Julian HIL UW Julian.Srebrny@poczta.tp.plSrokowski Tomasz IFJ PAN Tomasz.Srokowski@ifj.edu.plStaranowicz Agnieszka PhF WUT starana@if.pw.edu.plStaszczak Andrzej IP UMCS STAS@tytan.umcs.plStaszel Paweł IP JU ufstasze@if.uj.edu.plSteczkiewicz Olga HIL UW osteczk@nov.slcj.uw.edu.plStefanek Grzegorz IP Grzegorz.Stefanek@pu.kielce.plStepaniak Joanna IPJ Joanna.Stepaniak@fuw.edu.plStephan Elżbieta IP US Stephan@us.edu.plStęgowski Zdzisław AGH FPACS stegowski@novell.ftj.agh.edu.plStolarz Anna HIL UW anna@slcj.uw.edu.plStrojek Izabela IPJ strojek@fuw.edu.plStrzałkowski Adam IP JU ufstrzal@cyfr-kr.edu.plStyczeń Jan IFJ PAN Jan.Styczeń@ifj.edu.plSura Józef HIL UW Sura@nov.slcj.uw.edu.plSurowiec Agnieszka IP UMCS a.surowiec@pollub.plSurówka Grzegorz IP JU surowka@th.if.uj.edu.plSworst Rafał IP JU sworst@pisa.if.uj.edu.plSyntfeld Agnieszka IPJ syntfeld@ipj.gov.plSzałański Paweł IP UL pjszalan@uni.ŁódźSzczurek Antoni IFJ PAN Antoni.Szczurek@ifj.edu.plSzefliński Zygmunt IEP UW szef@fuw.edu.plSzpikowski Stanisław IP UMCS szp@tytan.umcs.lubl<strong>in</strong>.plSzuba Marek PhF WUT cyberman@if.pw.edu.plSzweryn Beata IEP UW szweryn@mimuw.edu.plŚmiechowicz Michał IP JU smiechowicz@pisa.if.uj.edu.plTaczanowski Stefan AGH FPACS taczanowski@novell.ftj.agh.edu.plTańczyk Roman HIL UW tanczyk@nov.slcj.uw.edu.plTargosz Natalia USz natalia.targosz@wmf.univ.szczec<strong>in</strong>.plTraczyk Tomasz PhF WUT ttraczyk@ia.pw.edu.plTrębacz Radosław IP JU rtrebacz@gmail.comTrzcińska Agnieszka HIL UW agniecha@jasio.slcj.uw.edu.plTrzciński Andrzej IPJ trzc<strong>in</strong>sk@fuw.edu.plTuros Małgorzata IP UMCS kleban@kft.umcs.lubl<strong>in</strong>.plTurowiecki Adam IEP UW atr@zfja-gate.fuw.edu.plTymińska Katarzyna IEA kasia.tym<strong>in</strong>ska@gmail.comTys Jan HIL UW tys@nov.slcj.uw.edu.plUrban Waldemar IEP UW urban@fuw.edu.plWachniew Przemysław AGH FPACS wachniew@novell.ftj.agh.edu.plWalencik Agata IP US awalencik@nuoh.usedu.plWaluś Władysław IP JU wladyslaw.walus@uj.edu.plWarczak Andrzej IP JU ufwarcza@cyf-kr.edu.plWarda Michał IP UMCS Warda@tytan.umcs.lubl<strong>in</strong>.plWasilewski Adam IPJ adamw@ipj.gov.plWerner Tomasz IFT UW Tomasz.Werner@fuw.edu.plWęglorz Wojciech IP US weglorz@nuoh.us.edu.plWęgrzynek Dariusz AGH FPACS dw@agh.edu.plWieloch Andrzej IP JU ufwieloc@cyf-kr.edu.plWilczyński Janusz IPJ wilczynski@ipj.gov.plWilhelmi Zdzisław IEP UW wilhelmi@zfja-gate.fuw.edu.plWilk Grzegorz IPJ wilk@fuw.edu.plWisniowski Marc<strong>in</strong> IP JU wisnia@hades.if.uj.edu.plWiśniewski Krzysztof IEP UW krzysiek@@npdl.fuw.edu.plWitała Henryk IP JU witala@if.uj.edu.plWłodarczyk Zbigniew IP Zbigniew.Wlodarczyk@pu.kielce.plWodecki Andrzej IP UMCS andrzej.wodecki@puw.pl259


260Wojciechowski Mariusz IP JU Wojciech@if.uj.edu.plWojtasiewicz Andrzej IEP UW wojtas@nov.slcj.uw.edu.plWojtaszek Agnieszka IP wojtaszek@pu.kielce.plWojtkowska Jolanta IPJ jola@<strong>in</strong>dia.ipj.gov.plWolińska-Cichocka Marzena HIL UW mala@slcj.uw.edu.plWolski Roman IFJ PAN Roman.Wolski@ifj.edu.plWosińska Krystyna PhF WUT wos<strong>in</strong>ska@if.pw.edu.plWoźniak Jan AGH FPACS wozniak@ftj.agh.edu.plWójcik Tomasz IP JU twojcik@if.uj.edu.plWrochna Grzegorz IPJ Grzegorz.Wrochna@fuw.edu.plWrońska Aleksandra IP JU wronska@if.uj.edu.plWrzesiński Jacek IFJ PAN Jacek.Wrzes<strong>in</strong>ski@ ifj.edu.plWrzosek Katarzyna HIL UW wrzosek@slcj.uw.edu.plWycech Sławomir IPJ Wycech@fuw.edu.plZabierowski Janusz IPJ janzab@zpk.u.Łódź.plZając Krystyna IP UMCS zajac@tytan.umcs.lubl<strong>in</strong>.plZawisza Marc<strong>in</strong> PhF WUT zawisza@if.pw.edu.plZbroszczyk Hanna PhF WUT gos@if.pw.edu.plZejma Jacek IP JU zejma@jetta.if.uj.edu.plZielińska Magdalena HIL UW magda@slcj.uw.edu.plZiębliński Mirosław IFJ PAN Mirosław.Ziebl<strong>in</strong>ski@ifj.edu.plZimnoch Mirosław AGH FPACS zimnoch@agh.edu.plZipper Wiktor IP US zipper@us.edu.plZuzel Grzegorz IP JU Grzegorz.Zuzel@mpi-hd.mpg.deZwięgl<strong>in</strong>ski Bogusław IPJ bzw@fuw.edu.plZych Włodzimierz PhF WUT zych@if.pw.edu.plZychor Izabella IPJ Zychor@ipj.gov.plŻak Andrzej IP UL anzak@uni.Łódź.plŻuprański Paweł IPJ zupran@fuw.edu.plŻylicz Jan IEP UW zylicz@fuw.edu.pl


AGH FPACS - AGH University of Science & Technology,Faculty of Physics & Applied Computer Science, KrakówCAC - Copernicus Astronomical Center, WarszawaHIL UW - Heavy Ion Laboratory, Warsaw UniversityIEP UW - Institute of Experimental Physics, Warsaw UniversityIFJ PAN - Institute of Nuclear Physics, Polish Academy of Science, KrakówIP- Institute of Physics, Świętokrzyska Academy, KielceIP JU - Institute of Physics Jagiellonian University, KrakówIP UL - Faculty of Physics and Applied Informatics, University of ŁódźIP UMCS - Institute of Physics, Maria Curie-Skłodowska University, Lubl<strong>in</strong>IP US - Institute of Physics, University of Silesia, KatowiceITP UW - Institute of Theoretical Physics, Warsaw UniversityIPJ- A. Sołtan Institute for Nuclear Studies, ŚwierkPhF WUT - Physics Faculty, Warsaw University of TechnologyUZG- University of Zielona GóraUSz- University of Szczec<strong>in</strong>UWr - University of Wrocław261


262

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!