26.04.2015 Views

A 90 nm Communication Technology Featuring SiGe HBT ...

A 90 nm Communication Technology Featuring SiGe HBT ...

A 90 nm Communication Technology Featuring SiGe HBT ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>90</strong> <strong>nm</strong> <strong>Communication</strong> <strong>Technology</strong><br />

<strong>Featuring</strong> <strong>SiGe</strong> <strong>HBT</strong> Transistors,<br />

RF CMOS, Precision R-L-C R C RF<br />

Elements and 1 mm 2 6-T T SRAM Cell<br />

K. Kuhn, M. Agostinelli, , S. Ahmed, S. Chambers, S. Cea, , S. Christensen,<br />

P. Fischer, J. Gong, C. Kardas, , T. Letson, , L. Henning, A. Murthy, , H.<br />

Muthali, , B. Obradovic, , P. Packan, , S. W. Pae, , I. Post, S. Putna, , K. Raol, , A.<br />

Roskowski, , R. Soman, , T. Thomas, P. Vandervoorn, , M. Weiss and I. Young<br />

Logic <strong>Technology</strong> Development<br />

Intel Corporation, Hillsboro, OR 97124, USA<br />

IEDM 2002 1


Outline<br />

• <strong>Technology</strong> Features<br />

• CMOS<br />

• <strong>SiGe</strong>:C <strong>HBT</strong><br />

• Isolation<br />

• Passives<br />

• Validation Vehicles<br />

• Conclusions<br />

IEDM 2002 2


Baseline CMOS<br />

• Shallow Trench Isolation<br />

• CMOS Well Implants<br />

• Thin gate and poly<br />

• Tip implants<br />

• Spacer Formation<br />

• NSD/PSD<br />

• Silicide & contacts<br />

• Metal 1 - 6 Layers<br />

• Metal 7<br />

Integration<br />

<strong>Communication</strong>s<br />

• High resistivity substrate<br />

• Triple Well (deep n-well)<br />

• LP CMOS 15Å (1.2V)<br />

• Analog CMOS 50Å (2.5V)<br />

• <strong>SiGe</strong> <strong>HBT</strong> module<br />

• Poly Resistor<br />

• MIM Capacitor / TF resistor<br />

• Inductors<br />

IEDM 2002 3


Matching Circuit Needs to Device Type<br />

VHS differential<br />

RF power amp<br />

Low-noise amp<br />

Mixer<br />

Op amp<br />

Limiting amp<br />

Switch cap filter<br />

ADC/DAC<br />

Bandgap ref<br />

MUX/DeMUX<br />

VCO<br />

Logic MOS<br />

Analog MOS<br />

?<br />

Precision R<br />

Precision C<br />

Logic and analog MOS are the foundation for the majority of<br />

critical communications circuits<br />

IEDM 2002 4<br />

High-Q L<br />

Varactors<br />

LN BJT<br />

HF BJT<br />

HV BJT<br />

III-V FET<br />

III-V <strong>HBT</strong>


Matching Circuit Needs to Device Type<br />

VHS differential<br />

RF power amp<br />

Low-noise amp<br />

Mixer<br />

Op amp<br />

Limiting amp<br />

Switch cap filter<br />

ADC/DAC<br />

Bandgap ref<br />

MUX/DeMUX<br />

VCO<br />

Logic MOS<br />

Analog MOS<br />

?<br />

Precision R<br />

Precision C<br />

IEDM 2002 5<br />

High-Q L<br />

Varactors<br />

LN BJT<br />

HF BJT<br />

HV BJT<br />

III-V FET<br />

Precision single elements are key to many circuits<br />

III-V <strong>HBT</strong>


Matching Circuit Needs to Device Type<br />

VHS differential<br />

RF power amp<br />

Low-noise amp<br />

Mixer<br />

Op amp<br />

Limiting amp<br />

Switch cap filter<br />

ADC/DAC<br />

Bandgap ref<br />

MUX/DeMUX<br />

VCO<br />

Logic MOS<br />

Analog MOS<br />

?<br />

Precision R<br />

Precision C<br />

Most circuits have multiple implementation paths,<br />

redundancy is important in process definition<br />

IEDM 2002 6<br />

High-Q L<br />

Varactors<br />

LN BJT<br />

?<br />

?<br />

?<br />

HF BJT<br />

?<br />

HV BJT<br />

III-V FET<br />

III-V <strong>HBT</strong>


Matching Circuit Needs to Device Type<br />

VHS differential<br />

RF power amp<br />

Low-noise amp<br />

Mixer<br />

Op amp<br />

Limiting amp<br />

Switch cap filter<br />

ADC/DAC<br />

Bandgap ref<br />

MUX/DeMUX<br />

VCO<br />

Logic MOS<br />

Analog MOS<br />

?<br />

Precision R<br />

Precision C<br />

Specialized BJT devices cover gaps<br />

where MOS falls short<br />

IEDM 2002 7<br />

High-Q L<br />

Varactors<br />

LN BJT<br />

?<br />

?<br />

?<br />

HF BJT<br />

?<br />

HV BJT<br />

III-V FET<br />

III-V <strong>HBT</strong>


Outline<br />

• <strong>Technology</strong> Features<br />

• CMOS<br />

IEDM 2002 8


<strong>90</strong><strong>nm</strong> CMOS<br />

Performance versus Low Power<br />

10000<br />

IOFF (nA/mm)<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

Performance<br />

Devices<br />

Low Power<br />

Devices<br />

0.01<br />

0.5 1.5 2.5 3.5<br />

CV/I (Gate delay in pS)<br />

IEDM 2002 9


FREQUENCY (GHz)<br />

<strong>90</strong><strong>nm</strong> <strong>Communication</strong>s CMOS<br />

RF Performance (Low Power Device)<br />

240<br />

200<br />

160<br />

120<br />

NMOS<br />

F T<br />

F MAX<br />

0 0.5 1 1.5<br />

FREQUENCY (GHz)<br />

PMOS<br />

120<br />

100<br />

F T<br />

80<br />

F MAX<br />

60<br />

0 0.5 1<br />

IDSAT (mA/mm)<br />

IDSAT (mA/mm)<br />

NMOS: 225/143 F T /F<br />

PMOS: 114/70 F T /F<br />

(Vg=0.7V, Vds=1.2V)<br />

/F MAX<br />

/F MAX<br />

IEDM 2002 10


F T : Intrinsic NMOS Performance<br />

FT (GHz)<br />

(CUT-OFF FREQUENCY)<br />

500<br />

200<br />

100<br />

50<br />

20<br />

[6]<br />

[3]<br />

[1]<br />

This work<br />

[4]<br />

[2]<br />

10<br />

0.02 0.05 0.1 0.2 0.5 1.0<br />

L GATE (mm)<br />

IEDM 2002 11


F T : Intrinsic PMOS Performance<br />

500<br />

FT (GHz)<br />

(CUT-OFF FREQUENCY)<br />

200<br />

100<br />

50<br />

20<br />

[8]<br />

[7]<br />

This work<br />

[6]<br />

10<br />

0.02 0.05 0.1 0.2 0.5 1.0<br />

L GATE (mm)<br />

IEDM 2002 12


Fmax: : Layout<br />

• Make R G small<br />

Two-sided gates<br />

Minimize field extension<br />

Contacts close to devices<br />

Multiple fingers<br />

• Minimize pad coupling<br />

HiRES substrates<br />

Isolate/shield signal pads<br />

Use higher-level metal<br />

• Minimize cap/scatter<br />

Isolate gate from drain<br />

Taper source bus<br />

Similar to: L. F. Tiemeijer, et al.<br />

“A record high 150 GHz fmax<br />

realized at 0.18 um gate length<br />

in an industrial RF-CMOS<br />

technology,” IEDM 2001.<br />

IEDM 2002 13


Comparison of CMOS: F T and F MAX<br />

FMAX (GHz)<br />

(MAX OSC. FREQUENCY)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

[1]<br />

[2] This work<br />

[3]<br />

[4]<br />

[5]<br />

0 100 200 300<br />

F T (GHz)<br />

(CUT-OFF FREQUENCY)<br />

IEDM 2002 14


Outline<br />

• <strong>Technology</strong> Features<br />

• CMOS<br />

• <strong>SiGe</strong>:C <strong>HBT</strong><br />

IEDM 2002 15


Criteria for BJT device definition<br />

• Manufacturing simplicity<br />

• Maximum leverage of the main <strong>90</strong><strong>nm</strong><br />

microprocessor process (all tools shared,<br />

no special tools)<br />

• Meets the needs of the circuit design<br />

community<br />

• No impact to CMOS performance<br />

IEDM 2002 16


<strong>SiGe</strong>:C <strong>HBT</strong> Architecture<br />

Extrinsic base implant<br />

2<br />

1<br />

Emitter poly<br />

B<br />

a.<br />

E<br />

<strong>SiGe</strong><br />

C<br />

Quasi-<br />

Self-aligned<br />

B<br />

b.<br />

1<br />

Replacement emitter<br />

pedestal<br />

Spacer<br />

Fully<br />

Self-aligned<br />

Quasi-self-aligned chosen as the better tradeoff<br />

between manufacturing complexity and performance<br />

IEDM 2002 17


<strong>HBT</strong>: <strong>SiGe</strong>:C<br />

Epitaxy<br />

B<br />

Ge<br />

E<br />

C<br />

B<br />

0 20 40 60 80<br />

Depth (nanometers)<br />

G.L. Patton, et al. “<strong>SiGe</strong>-base heterojunction bipolar transistors: physics and<br />

design issues,” Electron Devices Meeting, 19<strong>90</strong>.<br />

L.D. Lanzerotti et al. “Suppression of boron outdiffusion in <strong>SiGe</strong> <strong>HBT</strong>s by<br />

carbon incorporation,” Electron Devices Meeting, 1996<br />

H.J. Osten, et al. “The effect of carbon incorporation on <strong>SiGe</strong> heterobipolar<br />

transistor performance and process margin,” Electron Devices Meeting, 1997.<br />

IEDM 2002 18


Baseline: 130/100 F T /F<br />

/F MAX<br />

H21 and Mason’s gain (dB)<br />

50<br />

40<br />

30<br />

H21<br />

20<br />

Mason’s gain<br />

10<br />

-20dB/dec<br />

0<br />

0.1 1 10 100 1000<br />

FREQUENCY (GHz)<br />

Cum Prob %<br />

95%<br />

<strong>90</strong>%<br />

80%<br />

70%<br />

50%<br />

30%<br />

20%<br />

10%<br />

5%<br />

80<br />

100<br />

OJ<br />

MH<br />

NI<br />

GF<br />

EB<br />

DC<br />

PA<br />

HO<br />

JM<br />

IG<br />

NP<br />

FE<br />

BD<br />

CA<br />

HHHH I<br />

III<br />

AAAAA<br />

HI GO OOOOOOO HHH III J JJJJJJJ GGGGGGG M MMMMMMM AB BBBBBBB N NNNNNNN PE PPPPPPP EEEEEEE DF C DDDDDDD AA FFFFFFF CCCCCCC<br />

GO<br />

IH<br />

JM<br />

NA<br />

BP<br />

EC<br />

DF<br />

HI<br />

OJ<br />

MN<br />

BC<br />

F<br />

120<br />

140<br />

300 mm BASELINE LOT, WIW and<br />

WTW F T VARIATION (GHz)<br />

IEDM 2002 19


No CMOS Degradation<br />

IOFF [LOG (nA/ /µM)]<br />

-4.0<br />

-4.5<br />

-5.0<br />

-5.5<br />

-6.0<br />

-6.5<br />

-7.0<br />

-7.5<br />

-8.0<br />

-8.5<br />

-9.0<br />

NMOS WITH <strong>HBT</strong><br />

POR NMOS<br />

-6.0<br />

0.60 0.80 1.00 1.20 1.40 -7.0<br />

1.60<br />

IDSAT [mA/µm]<br />

IOFF [LOG (nA/ /µM)]<br />

-4.0<br />

-5.0<br />

-8.0<br />

-9.0<br />

-10.0<br />

-11.0<br />

-12.0<br />

-0.15<br />

-0.25<br />

•NMOS and PMOS<br />

I ON versus I OFF<br />

characteristics are<br />

not degraded by<br />

<strong>HBT</strong> integration<br />

PMOS WITH <strong>HBT</strong><br />

POR PMOS<br />

-0.35<br />

-0.45<br />

IDSAT [mA/µm]<br />

-0.55<br />

-0.65<br />

IEDM 2002 20


BJT Yield issues: impact of volume<br />

Incoming to EPI<br />

OLD Process<br />

Start of epi dep<br />

NEW Process<br />

Start of epi dep<br />

Increased wafer<br />

volume generated<br />

Ge deposits on<br />

chamber walls:<br />

Fixed with purges<br />

and pre-coats<br />

OLD Process<br />

After epi dep<br />

NEW Process<br />

After epi dep<br />

IEDM 2002 21


Outline<br />

• <strong>Technology</strong> Features<br />

• CMOS<br />

• <strong>SiGe</strong>:C <strong>HBT</strong><br />

• Isolation<br />

IEDM 2002 22


Isolation: P-P<br />

versus P+ epi (with DNW)<br />

-20<br />

Guard ring on p+ epi (LoRes)<br />

-40<br />

Guard ring on p- (HiRes)<br />

S21 (dB)<br />

-60<br />

-80<br />

DNW on<br />

P- (HiRes)<br />

DNW on<br />

P+ epi<br />

(LowRes)<br />

-100<br />

10 MHz 100 MHz 1 GHz 10 GHz 100 GHz<br />

FREQUENCY<br />

S21 = forward transmission gain/loss<br />

IEDM 2002 23


Substrates: Latch-up, P-P<br />

versus P+ epi<br />

|CROSSTALK in dB|<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

24-36<br />

Ω-cm<br />

5.5 µm epi<br />

on p+<br />

24-36<br />

Ω-cm<br />

10 µm epi<br />

on p+<br />

25-45<br />

Ω-cm<br />

Non-epi<br />

13<br />

11<br />

9<br />

7<br />

5<br />

LATCH-UP<br />

OVERVOLTAGE<br />

Merrill, R.B.; Young, W.M.; Brehmer, K. Effect of substrate<br />

material on crosstalk in mixed analog/digital integrated circuits<br />

Electron Devices Meeting, 1994.<br />

IEDM 2002 24


Substrates: Latch-up, P-P<br />

versus P+ epi<br />

with and without DNW<br />

HOLDING VOLTAGE (V)<br />

3.0<br />

2.0<br />

1.0<br />

P-<br />

(50 ohm-cm)<br />

P+ epi<br />

DNW (magenta)<br />

No DNW (cyan)<br />

0.4 77 100 0.4 77 100<br />

N+ TO PWELL TAP<br />

DISTANCE (microns)<br />

IEDM 2002 25


Outline<br />

• <strong>Technology</strong> Features<br />

• CMOS<br />

• <strong>SiGe</strong>:C <strong>HBT</strong><br />

• Isolation<br />

• Passives<br />

IEDM 2002 26


MIM Capacitor<br />

1.10<br />

M7<br />

SiN<br />

V6<br />

Ta<br />

M6<br />

M7<br />

V6<br />

NORMALIZED<br />

CAPACITANCE<br />

1.05<br />

1.00<br />

0.95<br />

0.<strong>90</strong><br />

R38<br />

R58<br />

R60<br />

R68<br />

RB4<br />

RC1<br />

RC9<br />

BASELINE TREND<br />

IEDM 2002 27


TTF seconds<br />

(0.2%C at Bias=0V, 1MHz)<br />

1.E+09<br />

1.E+07<br />

1.E+05<br />

1.E+03<br />

1.E+01<br />

MIM Capacitor BiasTemp. Reliability (T=125C)<br />

0 5 10 15 20 25 30<br />

Bias (V)<br />

317 years<br />

< MIM Cap<br />

Bias Temp.<br />

MIM Cap<br />

CV ><br />

NORMALIZED<br />

CAPCITANCE<br />

1.002<br />

1.0015<br />

1.001<br />

1.0005<br />

1<br />

0.9995<br />

15 -10 -5 0 5 10 15<br />

Bias (V)<br />

IEDM 2002 28


MIM Capacitor Reliability<br />

OLD Process ><br />

Cum %<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

Cum Prob %<br />

99.9%<br />

99%<br />

<strong>90</strong>%<br />

50%<br />

10%<br />

After Stress<br />

Before Stress<br />

0.01 0.1 1 10 100<br />

Qbd (C/cm2)<br />

< New Process<br />

1%<br />

A=5.2k um 2 A=26k um 2 A=130k um 2<br />

0.1%<br />

1.E-07 1.E-06 1.E-05 1.E-04<br />

MIM CAP LEAKAGE AT HIGH BIAS [A]<br />

IEDM 2002 29


Hi-Q Q Inductor Library Templates<br />

PEAK Q<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

This work<br />

0 0.5 1 1.5 2 2.5<br />

INDUCTANCE (nH)<br />

Literature<br />

Focusing on lower L, Hi-Q inductors to support 10/40G circuits<br />

IEDM 2002 30


Hi-Q Q Inductor Library Templates<br />

60<br />

PEAK Q<br />

70<br />

60<br />

50<br />

40<br />

30<br />

PEAK Q<br />

40<br />

20<br />

0 20 40 60<br />

FREQUENCY OF PEAK Q (GHz)<br />

20<br />

10<br />

0 0.5 1 1.5 2 2.5<br />

This work<br />

INDUCTANCE (nH)<br />

IEDM 2002 31


Measuring Q<br />

0.4<br />

0.2<br />

0.0<br />

Imaginary<br />

Short<br />

De-embedded<br />

-0.2<br />

-0.4<br />

Real<br />

1 GHz<br />

10 GHz<br />

S_dev(1,1)<br />

S_open(1,1)<br />

S_short(1,1)<br />

S_dev_final(1,1)<br />

As Measured<br />

Q =<br />

- Im (Y11)<br />

Re (Y11)<br />

Open<br />

FREQUENCY<br />

(250.0MHz to 50.25GHz)<br />

IEDM 2002 32


Measured versus simulated Q<br />

Inductor Dimension:<br />

Do = 154 um W = 12 um<br />

S = 1 um T = 1.5<br />

20<br />

10<br />

Simulated<br />

Q<br />

0<br />

-10<br />

Measured<br />

1GHz 10 GHz<br />

FREQUENCY<br />

IEDM 2002 33


Hi-Q Q Inductors and substrates<br />

PEAK Q<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

50 ohm-cm<br />

w/o parasitic<br />

control<br />

P+epi<br />

w/o parasitic<br />

control<br />

50 ohm-cm<br />

with parasitic<br />

control<br />

P+ epi<br />

with parasitic<br />

control<br />

0.1 1 10 100<br />

FREQUENCY (GHz)<br />

IEDM 2002 34


Outline<br />

• <strong>Technology</strong> Features<br />

• CMOS<br />

• <strong>SiGe</strong>:C <strong>HBT</strong><br />

• Isolation<br />

• Passives<br />

• Validation Vehicles<br />

• Conclusions<br />

IEDM 2002 35


Validation vehicles<br />

GHz<br />

10<br />

9<br />

10GHz<br />

LC-VCO<br />

Tuning<br />

Curve<br />

8<br />

0.5 1.0 1.5<br />

VCTL<br />

A large variety of learning vehicles are being supported<br />

Illustrated is an LC-VCO from a 10G SerDes test circuit<br />

IEDM 2002 36


Intel CMOS 10G SerDes Test Circuit<br />

Transmit PLL – Measured Jitter<br />

Meets jitter<br />

transfer function<br />

specification ><br />

This work<br />

OC-192<br />

OC-192 Specification is integral<br />

under curve = 100 mUI;<br />

Actual performance is 40 mUI<br />

~ 2X better<br />

IEDM 2002 37


Conclusions<br />

• Manufacturable communications process<br />

integrated into <strong>90</strong><strong>nm</strong> digital CMOS<br />

• RF NMOS devices at 225/140 F T /F<br />

• RF PMOS devices at 114/70 F T /F<br />

/F MAX<br />

/F MAX<br />

• Baseline <strong>HBT</strong> device at 130/100 F T /F<br />

/F MAX<br />

• Reliable 1.15 fF/mm 2 Cu-MIM and resistor<br />

• Hi-Q Q inductors<br />

IEDM 2002 38


Acknowledgment<br />

The authors gratefully acknowledge the<br />

many people at Intel who contributed to this<br />

work, including individuals from the<br />

following organizations:<br />

– PTD Process and Design Groups<br />

– Sort Test <strong>Technology</strong> Development<br />

– Quality and Reliability Engineering<br />

– <strong>Technology</strong> Computer Aided Design<br />

IEDM 2002 39


References<br />

1. Tiemeijer, L.F.; Boots, H.M.J.; Havens, R.J.; Scholten, A.J.; de Vreede, P.H.W.; Woerlee, P.H.; Heringa, A.; Klaassen, D.B.M.<br />

A record high 150 GHz fmax realized at 0.18 um gate length in an industrial RF-CMOS technology<br />

Electron Devices Meeting, 2001. IEDM Technical Digest. International , 2001. Page(s): 10.4.1 -10.4.4<br />

2. Hirose, T.; Momiyama, Y.; Kosugi, M.; Kano, H.; Watanabe, Y.; Sugii, T. A 185 GHz fmax SOI DTMOS with a new metallic<br />

overlay-gate for low-power RF applications. Electron Devices Meeting, 2001. IEDM Technical Digest. International , 2001.<br />

Page(s): 33.5.1 -33.5.3<br />

3. Matsumoto, T.; Maeda, S.; Ota, K.; Hirano, Y.; Eikyu, K.; Sayama, H.; Iwamatsu, T.; Yamamoto, K.; Katoh, T.; Yamaguchi, Y.;<br />

Ipposhi, T.; Oda, H.; Maegawa, S.; Inoue, Y.; Inuishi, M. 70 <strong>nm</strong> SOI-CMOS of 135 GHz fmax with dual offset-implanted<br />

source-drain extension structure for RF/analog and logic applications. Electron Devices Meeting, 2001. IEDM Technical<br />

Digest. International , 2001. Page(s): 10.3.1 -10.3.4<br />

4. Zamdmer, N.; Ray, A.; Plouchart, J.-O.; Wagner, L.; Fong, N.; Jenkins, K.A.; Jin, W.; Smeys, P.; Yang, I.; Shahidi, G.;<br />

Assaderghi, F. A 0.13- um SOI CMOS technology for low-power digital and RF applications VLSI <strong>Technology</strong>, 2001.<br />

Digest of Technical Papers. 2001 Symposium on , 2001. Page(s): 85 -86<br />

5. Momiyama, Y.; Hirose, T.; Kurata, H.; Goto, K.; Watanabe, Y.; Sugii, T. A 140 GHz ft and 60 GHz fmax DTMOS integrated<br />

with high-performance SOI logic technology. Electron Devices Meeting, 2000. IEDM Technical Digest. International , 2000.<br />

Page(s): 451 -454<br />

6. Momose, H.S.; Morifuji, E.; Yoshitomi, T.; Ohguro, T.; Saito, M.; Iwai, H. Cutoff frequency and propagation delay time of<br />

1.5-<strong>nm</strong> gate oxide CMOS. Electron Devices, IEEE Transactions on , Volume: 48 Issue: 6 , June 2001. Page(s): 1165 –1174<br />

7. Lee, K.F.; Yan, R.H.; Jeon, D.Y.; Kim, Y.O.; Tennant, D.M.; Westerwick, E.H.; Early, K.; Chin, G.M.; Morris, M.D.; Johnson,<br />

R.W.; Liu, T.M.; Kistler, R.C.; Voshchenkov, A.M.; Swartz, R.G.; Ourmazd, A. 0.1 mu m p-channel MOSFETs with 51 GHz fT.<br />

Electron Devices Meeting, 1992. Technical Digest., International , 1992. Page(s): 1012 -1014<br />

8. Taur, Y.; Wind, S.; Mii, Y.J.; Lii, Y.; Moy, D.; Jenkins, K.A.; Chen, C.L.; Coane, P.J.; Klaus, D.; Bucchignano, J.; Rosenfield,<br />

M.; Thomson, M.G.R.; Polcari, M. High performance 0.1 um CMOS devices with 1.5 V power supply. Electron Devices<br />

Meeting, 1993. Technical Digest., International , 1993. Page(s): 127 -130<br />

IEDM 2002 40


References<br />

9. Min Park; Seonghearn Lee; Hyun Kyu Yu; Kee Soo Nam Optimization of high Q CMOS-compatible<br />

microwave inductors using silicon CMOS technology. Radio Frequency Integrated Circuits (RFIC)<br />

Symposium, 1997., IEEE , 1997. Page(s): 181 -184<br />

10. Jenei, S.; Decoutere, S.; Maex, K.; Nauwelaers, B. Add-on Cu/SiLK/sup TM/ module for high Q<br />

inductors. IEEE Electron Device Letters , Volume: 23 Issue: 4 , April 2002. Page(s): 173 -175<br />

11. Xiao Huo; Chen, K.J.; Chan, P.C.H. High-Q copper inductors on standard silicon substrate with a<br />

low-k BCB dielectric layer. Radio Frequency Integrated Circuits (RFIC) Symposium, 2002 IEEE , 2002<br />

Page(s): 403 -406<br />

12.Hongrui Jiang; Yeh, J.-L.A.; Ye Wang; Norman Tien Electromagnetically shielded high-Q CMOScompatible<br />

copper inductors. Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC.<br />

2000 IEEE International , 2000. Page(s): 330 -331<br />

13. Patton, G.L.; Stork, J.M.C.; Comfort, J.H.; Crabbe, E.F.; Meyerson, B.S.; Harame, D.L.; Sun, J.Y.-C.<br />

<strong>SiGe</strong>-base heterojunction bipolar transistors: physics and design issues Electron Devices Meeting,<br />

19<strong>90</strong>.<br />

14. Lanzerotti, L.D.; St. Amour, A.; Liu, C.W.; Sturm, J.C. Si/Si1-x-y/Gex/Cy/Si heterojunction bipolar<br />

transistors Electron Devices Meeting, 1994 and Lanzerotti, L.D.; Sturm, J.C.; Stach, E.; Hull, R.;<br />

Buyuklimanli, T.; Magee, C. Suppression of boron outdiffusion in <strong>SiGe</strong> <strong>HBT</strong>s by carbon incorporation<br />

Electron Devices Meeting, 1996<br />

15. Osten, H.J.; Lippert, G.; Knoll, D.; Barth, R.; Heinemann, B.; Rucker, H.; Schley, P. The effect of carbon<br />

incorporation on <strong>SiGe</strong> heterobipolar transistor performance and process margin Electron Devices<br />

Meeting, 1997.<br />

IEDM 2002 41


A soft copy of this and other recent Intel<br />

presentations can be found at:<br />

www.intel.com/research/silicon<br />

IEDM 2002 42

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!