27.04.2015 Views

Azoxystrobin Activity on Rhizoctonia solani and its Efficacy ... - Iresa

Azoxystrobin Activity on Rhizoctonia solani and its Efficacy ... - Iresa

Azoxystrobin Activity on Rhizoctonia solani and its Efficacy ... - Iresa

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Short Communicati<strong>on</strong><br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> <str<strong>on</strong>g>Activity</str<strong>on</strong>g> <strong>on</strong> Rhizoct<strong>on</strong>ia <strong>solani</strong> <strong>and</strong> <strong>its</strong> <strong>Efficacy</strong><br />

Against Rice Sheath Blight<br />

Subramanian Sundravadana <strong>and</strong> Devadas<strong>on</strong> Alice, Department of Plant Pathology,<br />

Sasthan Kuttalam, Department of Agricultural Entomology, <strong>and</strong> Ramasami<br />

Samiyappan, Center for Plant Protecti<strong>on</strong> Studies; Tamil Nadu Agriculture University,<br />

Coimbatore - 641 003, India<br />

_____________________________________________________________________________<br />

ABSTRACT<br />

Sundravadana, S., Alice, D., Kuttalam, S., <strong>and</strong> Samiyappan, R. 2007. <str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> activity <strong>on</strong><br />

Rhizoct<strong>on</strong>ia <strong>solani</strong> <strong>and</strong> <strong>its</strong> efficacy against rice sheath blight. Tunisian Journal of Plant Protecti<strong>on</strong><br />

2: 79-84.<br />

Sheath blight, caused by Rhizoct<strong>on</strong>ia <strong>solani</strong> is <strong>on</strong>e of the major diseases affecting rice crop. We<br />

investigated the effect of azoxystrobin <strong>on</strong> R. <strong>solani</strong> growth (in vitro) <strong>and</strong> <strong>its</strong> efficacy against rice sheath<br />

blight, under field c<strong>on</strong>diti<strong>on</strong>s. The results revealed that azoxystrobin at 1, 2, <strong>and</strong> 4 ppm, completely<br />

inhibited mycelial growth of R. <strong>solani</strong>. Field study showed that foliar spray of azoxystrobin at 125, 250,<br />

<strong>and</strong> 500 g/ha significantly suppressed (> 64%) the development of sheath blight <strong>and</strong> enhanced yield level<br />

(> 60%). For c<strong>on</strong>trolling sheath blight disease, the optimum rate of azoxystrobin was 125 g/ha. Our<br />

results showed also that there was no residue in rice matrices at harvest time <strong>and</strong> no phytotoxicity at the<br />

highest c<strong>on</strong>centrati<strong>on</strong> of azoxystrobin (500 g/ha).<br />

Key words: <str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g>, chemical c<strong>on</strong>trol, mycelial growth, residue, Rhizoct<strong>on</strong>ia <strong>solani</strong>, rice, sheath<br />

blight<br />

_____________________________________________________________________________<br />

Sheath blight is the most damaging<br />

disease of rice. It has the potential to<br />

cause severe ec<strong>on</strong>omic loss. Heavily<br />

infected plants produced poorly filled<br />

grains (9). The disease is caused by<br />

Rhizoct<strong>on</strong>ia <strong>solani</strong>. Under favorable<br />

c<strong>on</strong>diti<strong>on</strong>s, infected plants build up a huge<br />

populati<strong>on</strong> of fungal sclerotia in the soil<br />

<strong>and</strong> rice cropping becomes unec<strong>on</strong>omic.<br />

Fungicides are comm<strong>on</strong>ly used in fields<br />

where sheath blight is a limiting<br />

Corresp<strong>on</strong>ding author: S. sundravadana<br />

sundravadana@rediffmail.com<br />

Accepted for publicati<strong>on</strong> 29 November 2007<br />

producti<strong>on</strong> factor. The strobilurin<br />

fungicides were introduced recently<br />

against a broad range of pathogens<br />

(Phytophthora capsici, Alternaria<br />

alternata, Ascochyta rabiei, Puccinia<br />

hemerocallidis <strong>and</strong> Phomopsis sp.) (11, 1, 3,<br />

6, 4). These fungicides reduced disease<br />

development <strong>and</strong> subsequent inoculum<br />

producti<strong>on</strong> <strong>and</strong> increased yield. The<br />

objectives of this study were to evaluate in<br />

vitro activity of azoxystrobin against<br />

mycelial growth of R. <strong>solani</strong>, <strong>its</strong> efficacy<br />

<strong>on</strong> sheath blight incidence under field<br />

c<strong>on</strong>diti<strong>on</strong>s, <strong>and</strong> <strong>its</strong> harvest time residues.<br />

R. <strong>solani</strong> was isolated from infected<br />

rice sheath. Then, the isolate was incubated<br />

<strong>on</strong> potato dextrose agar (PDA) medium at 28<br />

Tunisian Journal of Plant Protecti<strong>on</strong> 79<br />

Vol. 2, No. 2, 2007


± 2°C. The fungicide used in the<br />

experiments is a c<strong>on</strong>centrate suspensi<strong>on</strong> of<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> (Amistar).<br />

A 6 mm diameter agar disk from the<br />

margin of an actively growing culture of R.<br />

<strong>solani</strong> was incubated in Petri dishes<br />

c<strong>on</strong>taining PDA amended with<br />

azoxystrobin at c<strong>on</strong>centrati<strong>on</strong>s of 0, 0.25,<br />

0.5, 1, 2, <strong>and</strong> 4 ppm at 28 ± 2°C, 70% RH<br />

for 3 days. Inhibiti<strong>on</strong> of the radial growth<br />

was expressed in percentage, as indicated<br />

in the following fomula: M i = (M c -M t ) / M c<br />

X 100, with M i = Percent of mycelial<br />

growth inhibiti<strong>on</strong>, M c = C<strong>on</strong>trol col<strong>on</strong>y<br />

diameter, <strong>and</strong> M t = Col<strong>on</strong>y diameter in<br />

medium amended with azoxystrobin.<br />

Sclerotia of 7 day-culture of R. <strong>solani</strong> were<br />

dipped in 100 ml beaker, c<strong>on</strong>taining<br />

different c<strong>on</strong>centrati<strong>on</strong>s (0, 0.25, 0.5, 1, 2,<br />

<strong>and</strong> 4 ppm) of azoxystrobin in an aqueous<br />

soluti<strong>on</strong>, then seeded separately at the<br />

center of each Petri plate c<strong>on</strong>taining 2%<br />

agar <strong>and</strong> incubated at 28 ± 2°C, 70% RH.<br />

Radial growth of mycelia was measured 5<br />

days later.<br />

Field experiment was laid out with<br />

rice (ADT43) under r<strong>and</strong>omized block<br />

design, with three replicati<strong>on</strong>s in 5m x 4m<br />

plots. The efficacy of azoxystrobin at six<br />

c<strong>on</strong>centrati<strong>on</strong>s (0, 31.25, 62.50, 125, 250<br />

<strong>and</strong> 500 g/ha) was evaluated <strong>and</strong> compared<br />

to carbendazim (500 g/ha). Three sprays<br />

were applied, since the initial appearance<br />

of sheath blight <strong>and</strong> following a 15 day<br />

interval. Sheath blight incidence was<br />

evaluated with the Relative Lesi<strong>on</strong> Height<br />

(RLH) (8). Therefore, Percent Disease<br />

Index (PDI) was calculated as indicated<br />

below (12). The phytotoxic effect of<br />

azoxystrobin was recorded <strong>on</strong> plants after<br />

each spray in the field trials. The grain yield<br />

was recorded from individual treatment<br />

<strong>and</strong> expressed in per hectare, as indicated<br />

below:<br />

RLH (%) =<br />

Lesi<strong>on</strong> height (cm)<br />

Plant height (cm)<br />

x 100<br />

PDI =<br />

Sum of numerical rating<br />

Total number of plants observed<br />

x<br />

Maximum disease grade<br />

100<br />

At harvest time, azoxystrobin residues<br />

in rice matrices (grain, straw, husk <strong>and</strong><br />

bran) were determined using high<br />

performance liquid chromatography<br />

(HPLC). The rice matrices were extracted<br />

with acet<strong>on</strong>itrile: water (90:10 v/v) <strong>and</strong><br />

partiti<strong>on</strong>ed with an equivalent volume (100<br />

ml) of dichloromethane plus ½ equivalent<br />

volume of 5% NaCl soluti<strong>on</strong> in a<br />

separating funnel for about 1 min. The<br />

sample extract was cleaned up with a<br />

cartridge (Florisil column clean up), the<br />

cartridge was c<strong>on</strong>diti<strong>on</strong>ed with 5 ml of<br />

hexane: dichloromethane (50:50 v/v)<br />

before sample loading (250 ml) <strong>and</strong><br />

washing with 5 ml of dichloromethane <strong>and</strong><br />

ethyl acetate (90:10 v/v). <str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g><br />

was eluted from the cartridge using 5 ml of<br />

dichloromethane <strong>and</strong> ethyl acetate (70:30<br />

v/v). The elute was evaporated (<strong>on</strong> a rotary<br />

evaporator at 40°C) to near dryness <strong>and</strong><br />

redissolved the residue in a 10 ml of<br />

acet<strong>on</strong>itrile <strong>and</strong> an aliquot (20 µl) was<br />

injected into the HPLC. <str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> was<br />

separated <strong>on</strong> a Lichro sphere ® 60-RP<br />

column using a mobile phase of<br />

acet<strong>on</strong>itrile: water (80:20 v/v) at a flow<br />

rate of 1 ml/min <strong>and</strong> at a wavelength of<br />

255 ηm. A recovery assay was carried out<br />

using rice matrices plus 0.05, 0.1 or 0.2<br />

ppm of azoxystrobin.<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> at three c<strong>on</strong>centrati<strong>on</strong>s<br />

(1, 2 <strong>and</strong> 4 ppm) effectively inhibited in<br />

vitro mycelial growth of R. <strong>solani</strong>.<br />

Tunisian Journal of Plant Protecti<strong>on</strong> 80<br />

Vol. 2, No. 2, 2007


Whereas, at 0.25 <strong>and</strong> 0.5 ppm mycelial<br />

growth inhibiti<strong>on</strong> over c<strong>on</strong>trol ranges from<br />

33 to 39% from mycelia <strong>and</strong> 66 to 81%<br />

from sclerotia (Table 1). Similarly,<br />

azoxystrobin inhibited the spore<br />

germinati<strong>on</strong> <strong>and</strong> mycelial growth of<br />

Alternaria alternata <strong>and</strong> Cladosporium<br />

macrocarpum <strong>on</strong> wheat <strong>and</strong> Ascochyta<br />

rabiei <strong>on</strong> chickpea (1, 3). Strobilurins have<br />

been shown to inhibit the germinati<strong>on</strong> <strong>and</strong><br />

pre-penetrati<strong>on</strong> growth of several plant<br />

pathogenic fungi (10).<br />

Table 1. Effect of azoxystrobin <strong>on</strong> the in vitro mycelial growth of R. <strong>solani</strong><br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> (ppm)<br />

From mycelia<br />

(mm)<br />

Mycelial growth<br />

Inhibiti<strong>on</strong><br />

over c<strong>on</strong>trol (%)<br />

From<br />

sclerotia<br />

(mm)<br />

Inhibiti<strong>on</strong><br />

over c<strong>on</strong>trol<br />

(%)<br />

0.25 60.23c 33.08 25.21c 66.00<br />

0.5 54.67b 39.26 13.90b 81.26<br />

1.0 0.00a 100.00 0.00a 100.00<br />

2.0 0.00a 100.00 0.00a 100.00<br />

4.0 0.00a 100.00 0.00a 100.00<br />

C<strong>on</strong>trol 90.00d - 84.20d -<br />

* In a column, means followed by a comm<strong>on</strong> letter are not significantly different at the 5% level by DMRT<br />

Table 2. <strong>Efficacy</strong> of azoxystrobin <strong>on</strong> sheath blight incidence <strong>and</strong> grain yield of rice<br />

Fungicide dose (g/ha)<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> 31.25<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> 62.5<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> 125<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> 250<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> 500<br />

Carbendazim 500<br />

2.22a<br />

(8.55)<br />

Percent Diseases Index (%)<br />

Time after transplanting (days)<br />

30 45 60 75<br />

2.20a 14.23d 32.81d 42.21d<br />

(7.95) (22.06) (34.85) (40.44)<br />

2.20a 12.36c 29.40c 38.45c<br />

(7.95) (20.46) (32.71) (38.19)<br />

2.20a 7.82a 15.63a 23.53a<br />

(7.95) (15.98) (22.88) (28.51)<br />

2.20a 7.35a 15.36a 23.12a<br />

(7.95) (15.44) (22.66) (28.21)<br />

2.21a 7.35a 15.00a 23.10a<br />

(7.75) (15.44) (22.35) (28.19)<br />

9.23b<br />

(17.48)<br />

25.35b<br />

(30.36)<br />

33.25b<br />

(34.98)<br />

Disease<br />

reducti<strong>on</strong> over<br />

c<strong>on</strong>trol (%)<br />

Yield<br />

(q/ha)<br />

8.84 40.42<br />

19.30 45.92<br />

64.98 62.49<br />

69.23 62.52<br />

69.23 62.58<br />

36.20 55.32<br />

2.20a 21.44e 47.71e 67.40e<br />

C<strong>on</strong>trol<br />

- 33.21<br />

(8.37) (27.53) (43.68) (55.54)<br />

∗ In a column, means followed by a comm<strong>on</strong> letter are not significantly different at the 5% level by<br />

DMRT<br />

* Values in parentheses are arcsine–transformed values<br />

In c<strong>on</strong>trol plots, sheath blight<br />

incidence increased progressively from<br />

PDI 2.20 (30 days) to PDI 67.40 (75 days).<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> at 31.25 <strong>and</strong> 62.5 g/ha<br />

slightly suppressed the sheath blight<br />

development, whereas at 125, 250 <strong>and</strong> 500<br />

g/ha, it reduced more than 64% disease<br />

incidence <strong>and</strong> increased more than 60%<br />

rice yield (Table 2). Since there were no<br />

significant differences am<strong>on</strong>g 125, 250 <strong>and</strong><br />

500 g/ha rates in term of decline sheath<br />

blight incidence <strong>and</strong> yield resp<strong>on</strong>se, we<br />

c<strong>on</strong>sider 125 g /ha as the optimum rate for<br />

sheath blight c<strong>on</strong>trol. Besides, all<br />

azoxystrobin c<strong>on</strong>centrati<strong>on</strong>s did not<br />

produce any phytotoxic effect. Therefore,<br />

Tunisian Journal of Plant Protecti<strong>on</strong> 81<br />

Vol. 2, No. 2, 2007


foliar applicati<strong>on</strong> of azoxystrobin<br />

effectively c<strong>on</strong>trol the diseases incidence<br />

like the agents of southern stem rot<br />

(Sclerotium rolfsii), head blight (Fusarium<br />

graminearum), <strong>and</strong> leather rot<br />

(Phytophthora cactorum) (14, 5, 13).<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> means recovery from<br />

three fortified (0.05, 0.1 <strong>and</strong> 0.2 ppm) rice<br />

matrices (grain, straw, husk <strong>and</strong> bran) were<br />

86.96%, 84.71% <strong>and</strong> 82.36%, respectively<br />

(Table 3). Therefore, under the specified<br />

c<strong>on</strong>diti<strong>on</strong>s no interfering peaks were<br />

observed <strong>on</strong> the chromatogram of the<br />

samples. The instrument did not detect<br />

residues of azoxystrobin even at the<br />

highest applied c<strong>on</strong>centrati<strong>on</strong>. Then, we<br />

can suppose that the residues of<br />

azoxystrobin in rice matrices were below<br />

the limit of detecti<strong>on</strong> of the instrument<br />

(0.004 µg/g of sample). C<strong>on</strong>sidering the<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency<br />

(EPA), the maximum residue lim<strong>its</strong><br />

(MRLs) for azoxystrobin in rice grain,<br />

straw <strong>and</strong> hulls are, respectively 5, 12 <strong>and</strong><br />

20 ppm (7). Therefore, it seems that<br />

azoxystrobin in our trials was rapidly<br />

metabolized in rice plants. Chen et al. (2)<br />

obtained a similar result in Chinese<br />

cabbage. Hence, foliar applicati<strong>on</strong> of<br />

azoxystrobin to c<strong>on</strong>trol sheath blight is<br />

very unlikely to cause acute <strong>and</strong> chr<strong>on</strong>ic<br />

health risk.<br />

Table 3. Recovery percentage of azoxystrobin in fortified rice samples<br />

Rice matrice<br />

<str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g> recovery (%)<br />

0.05 ppm 0.1 ppm 0.2 ppm<br />

Mean<br />

recovery<br />

(%)<br />

Recovery<br />

factor<br />

(RF)<br />

Grains 80.12 82.86 97.91 86.96 1.15<br />

Straw 85.12 81.32 87.69 84.71 1.18<br />

Bran & Husk 80.00 84.90 82.18 82.36 1.21<br />

* Determinability of the instrument = 0.004 µg/g of sample.<br />

____________________________________________________________________________<br />

RESUME<br />

Sundravadana S., Alice D., Kuttalam S., et Samiyappan R. 2007. Activité de l’azoxystrobine sur<br />

Rhizoct<strong>on</strong>ia <strong>solani</strong> et s<strong>on</strong> efficacité c<strong>on</strong>tre la brûlure de la gaine foliaire du riz. Tunisian Journal of<br />

Plant Protecti<strong>on</strong> 2: 79-84.<br />

La brûlure de la gaine foliaire, causée par Rhizoct<strong>on</strong>ia <strong>solani</strong>, est l’une des principales maladies du riz.<br />

Nous av<strong>on</strong>s étudié l’effet de l’azoxystrobine sur la croissance in vitro de R. <strong>solani</strong> et s<strong>on</strong> efficacité c<strong>on</strong>tre<br />

cette maladie en plein champ. Les résultats <strong>on</strong>t révélé que l’azoxystrobine à 1, 2 et 4 ppm, inhibe<br />

complètement la croissance mycélienne de R. <strong>solani</strong>. L’étude au champ a m<strong>on</strong>tré que la pulvérisati<strong>on</strong><br />

foliaire de l’azoxystrobine à 125, 250 et 500 g/ha supprime significativement (> 64%) le développement<br />

de la brûlure de la gaine foliaire et augmente le rendement (> 60%). Pour c<strong>on</strong>trôler cette maladie, la dose<br />

optimale d’azoxystrobine était de 125 g/ha. Nos résultats <strong>on</strong>t indiqué aussi qu’il n’y avait pas de résidus<br />

dans les plantes du riz au moment de la récolte et pas de phytotoxicité avec la plus haute c<strong>on</strong>centrati<strong>on</strong><br />

d’azoxystrobine (500 g/ha).<br />

Mots clés : <str<strong>on</strong>g>Azoxystrobin</str<strong>on</strong>g>e, brûlure de la gaine foliaire, croissance mycélienne, lutte chimique, résidus,<br />

Rhizoct<strong>on</strong>ia <strong>solani</strong>, riz<br />

_____________________________________________________________________________<br />

Tunisian Journal of Plant Protecti<strong>on</strong> 82<br />

Vol. 2, No. 2, 2007


____________________________________________________________________________<br />

.2007<br />

ملخص<br />

صندرافادانا،‏ سوبرامانيان ودافاداصون أليس وساسثان كوتالام وراماسامي سامييابان.‏<br />

على الفطر Rhizoct<strong>on</strong>ia <strong>solani</strong> ونجاعته ضد لفحة الغمد الورقي للأرز.‏<br />

تأثير الأزوكسيستروبين<br />

Tunisian Journal of Plant Protecti<strong>on</strong><br />

2: 79-84.<br />

تع د لفحة الغمد الورقي التي يحدثها الفطر Rhizoct<strong>on</strong>ia <strong>solani</strong> من أهم الأمراض التي تصيب الأرز.‏ تمت دراسة تأثير<br />

R. <strong>solani</strong><br />

الأزوكسيستروبين<br />

في<br />

الأزوكسيستروبين بتراكيز<br />

نمو الفطر<br />

في البلور<br />

ونجاعته ضد هذا المرض في الحقل.‏<br />

أظهرت النتائج أن<br />

جزء بالمليون يثبط كليا النمو الغزلي للفطر.‏ وبينت الدراسة في الحقل أن الرش<br />

125 و 250 و<br />

1 و 2 و 4<br />

الورقي بالأزوكسيستروبين بالجرعات<br />

الإنتاجية وتزيد<br />

500 غ/هك تحد معنويا<br />

كانت الجرعة المثلى لمكافحة هذا المرض<br />

(>64%) من تطور لفحة الغمد الورقي<br />

أظهرت نتائجنا كذلك<br />

عدم وجود<br />

125 غ/هك.‏<br />

.(60%


13. Rebollar-Alviter, A., Madden, L. V., Ellis, M.A.,<br />

2005. <strong>Efficacy</strong> of azoxystrobin, pyraclostrobin,<br />

potassium phosphite <strong>and</strong> mefenoxam for c<strong>on</strong>trol<br />

of strawberry leather rot caused by Phytophthora<br />

cactorum. Online. Plant Health Progress<br />

[doi:10.1094/PHP-2005-0107-01-RS]<br />

14. Rideout, S. L., Brenneman, T. B., <strong>and</strong> Culbreath,<br />

A. K. 2002. Peanut disease management utilizing<br />

an in-furrow treatment of azoxystrobin. Plant<br />

Health Progress [DOI: 10.1094/PHP-2002-0916-<br />

01-RS].<br />

----------------------<br />

Tunisian Journal of Plant Protecti<strong>on</strong> 84<br />

Vol. 2, No. 2, 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!