27.04.2015 Views

Biological, Serological, and Molecular Characterization of ... - Iresa

Biological, Serological, and Molecular Characterization of ... - Iresa

Biological, Serological, and Molecular Characterization of ... - Iresa

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Biological</strong>, <strong>Serological</strong>, <strong>and</strong> <strong>Molecular</strong> <strong>Characterization</strong> <strong>of</strong><br />

Pepper mild mottle virus (PMMoV) in Tunisia<br />

Monia Mnari-Hattab <strong>and</strong> Kerim Ezzaier, Laboratoire de Protection des Végétaux,<br />

INRAT, Rue Hédi Karray, 2049 Ariana, Tunisia<br />

ABSTRACT<br />

Mnari-Hattab, M. <strong>and</strong> Ezzaier, K. 2006. <strong>Biological</strong>, serological, <strong>and</strong> molecular characterization<br />

<strong>of</strong> Pepper mild mottle virus (PMMoV) in Tunisia. Tunisian Journal Plant Protection 1: 1-12.<br />

In Tunisia, the main virus disease infecting protected pepper (Capsicum annuum L.) has been Tobacco<br />

mosaic virus (TMV) common strain. The F1 pepper hybrid J-27 carrying the L 1 resistance gene to<br />

TMV was obtained in a local breeding program <strong>and</strong> cultivated for several years. Severe necrosis on<br />

fruits <strong>and</strong> mottling on leaves have been observed. Two isolates called Sah.11-00 <strong>and</strong> Teb.24-00 were<br />

determined as Pepper mild mottle virus (PMMoV) on the basis <strong>of</strong> DAS-ELISA. <strong>Biological</strong><br />

classification based on pathotype-genotype interaction demonstrated that local isolates, Sah.11-00 <strong>and</strong><br />

Teb.24-00, reacted as PMMoV(1-2) specially by their ability to infect Capsicum species containing L 1<br />

<strong>and</strong> L 2 resistance genes <strong>and</strong> their inability to infect tomato species <strong>and</strong> Capsicum genotypes containing<br />

L 3 <strong>and</strong> L 4 genes. Antibodies produced against local isolate Sah.11-00 strongly reacted with its<br />

homologous antigens as well as with the isolate Teb.24-00 <strong>and</strong> reference strains <strong>of</strong> PMMoV. Crossreactions<br />

with TMV common strains were minimized after absorption with heterologous antigens. A<br />

modified procedure involving immunocapture (IC) followed by reverse transcription polymerase chain<br />

reaction (RT-PCR) in a single step reaction was developed for detection <strong>of</strong> PMMoV <strong>and</strong> differentiation<br />

<strong>of</strong> pathotypes using EcoR I restriction enzyme analysis (RFLP). This procedure was proven to be<br />

useful for diagnosis <strong>and</strong> will be helpful for epidemiological investigations. This new occurrence <strong>of</strong><br />

such breaking-resistance isolates <strong>of</strong> PMMoV in Tunisia may create a new challenge for the national<br />

breeding program for multivirus resistance in pepper.<br />

Keywords: Pepper, PMMoV, Tobamoviruses, pathotype, resistance, antibodies, IC-RT-PCR, RFLP<br />

In Tunisia, pepper (Capsicum annuum<br />

L.) is grown in several areas starting from<br />

the North regions to the South in the<br />

oasis. The plains <strong>of</strong> the centre (Kairouan<br />

<strong>and</strong> Sidi Bouzid) <strong>and</strong> the east coastal area<br />

are the main production areas. Pepper is<br />

cultivated under cold plastic tunnels as an<br />

early crop from September to July, <strong>and</strong> as<br />

a full-season vegetable as an open field<br />

crop from March to November. Full<br />

season pepper crop is strongly affected by<br />

Potato virus Y <strong>and</strong> Cucumber mosaic<br />

virus (PVY <strong>and</strong> CMV) which are<br />

Corresponding author: M. Mnari-Hattab<br />

hattab.monia@iresa.agrinet.tn<br />

Accepted for publication 4 May 2006.<br />

estimated to cause up to 50%losses <strong>of</strong><br />

potential production in pepper varieties<br />

cultivated in Tunisia (2, 14, 22). However<br />

these two viruses are less frequent under<br />

cold plastic tunnels (14). The main virus<br />

infecting protected culture is Tobacco<br />

mosaic virus (TMV) common strain (16).<br />

It affects strongly the yield <strong>and</strong> fruit<br />

quality <strong>of</strong> local cultivars Baker <strong>and</strong><br />

Baklouti (14, 22). The F1 pepper hybrid<br />

(J 27) carrying the L1 resistance gene<br />

against the common strain <strong>of</strong> TMV <strong>and</strong><br />

adapted to cold protected crop was<br />

obtained in a local breeding program (14)<br />

<strong>and</strong> cultivated for several years.<br />

Tobamoviruses were mentioned to cause<br />

significant economic losses on infected<br />

pepper in the world (1, 24) <strong>and</strong> especially<br />

Tunisian Journal <strong>of</strong> Plant Protection 1<br />

Vol. 1, No. 1, 2006


in Mediterranean area (12, 30). These<br />

Tobamoviruses causing Pepper mild<br />

mottle virus (PMMoV) disease have been<br />

ordered on the basis <strong>of</strong> their interaction<br />

with the L gene for resistance in pepper<br />

genotype. Based upon their ability to<br />

overcome the resistance conferred by<br />

allelic series <strong>of</strong> Capsicum spp. genes<br />

known as L 1 , L 2 <strong>and</strong> L 3 they have been<br />

designed as pathotypes P 1 , P 1,2 ,<br />

respectively (11). In the Capsicum genus,<br />

four alleles <strong>of</strong> the Tobamovirus resistance<br />

gene L have been discovered. The allele<br />

L 4 confers resistance to the more<br />

aggressive pathotype PMMoV 1,2,3 which<br />

was originally found in some lines <strong>of</strong><br />

Capsicum chacoense <strong>and</strong> was introduced<br />

in the Hungary pepper type “Himes F1”<br />

(24).<br />

In the last five years, severe necrosis<br />

on fruits <strong>and</strong> mottling on leaves similar to<br />

those caused by Tobamoviruses have<br />

been observed on the J27 F1 resistant<br />

hybrid cultivated in the central coastal<br />

area. Paying attention to these<br />

observations, we attempt in our study to<br />

identify <strong>and</strong> characterize this virus using<br />

biological, serological, <strong>and</strong> molecular<br />

tools. Host ranges, serological <strong>and</strong><br />

molecular reactions <strong>of</strong> these isolates were<br />

compared to those <strong>of</strong> reference isolates.<br />

MATERIALS AND METHODS<br />

Virus isolates <strong>and</strong> strains. Two virus<br />

isolates Sah.11-00 <strong>and</strong> Teb.24-00 were<br />

taken in this study with reference isolates<br />

<strong>of</strong> four strains belonging to the<br />

Tobamovirus group, kindly supplied by<br />

Gebre-Selassie from INRA Avignon-<br />

France (1998). They are described in<br />

Table 1. The studied isolates were<br />

collected from J27 pepper hybrid plants<br />

grown under cold plastic tunnels during<br />

early season crop 2000/2001 in two<br />

regions Teboulba <strong>and</strong> Sahline situated in<br />

central coastal area <strong>of</strong> Tunisia. Severe<br />

Table 1. Strains <strong>and</strong> isolates used in this study<br />

Isolates Original host Country Authors<br />

ToMV: SM2 Tomato France Messiaen <strong>and</strong> Maison, 1964 (21)<br />

TMV: Vi 76 Pepper France Gebre-Selassié <strong>and</strong> collaborators (12)<br />

PMMoV (1-2): Adam Pepper France Gebre-Selassié <strong>and</strong> collaborators (12)<br />

PMMoV (1-2-3): Eve Pepper France Gebre-Selassié <strong>and</strong> collaborators (12)<br />

Sah.11-00 Pepper Tunisia This work<br />

Teb.24-00 Pepper Tunisia This work<br />

necrotic symptoms on fruits <strong>and</strong> mottling<br />

have been observed on leaves <strong>of</strong> J27<br />

infected plants. All reference <strong>and</strong> local<br />

isolates were long-term stored by<br />

desiccation <strong>of</strong> small amounts <strong>of</strong> leaf<br />

materials <strong>of</strong> pepper over calcium chloride<br />

(CaCl 2 ) at 4°C according to the method<br />

described by Bos (3).<br />

<strong>Biological</strong> tests. Fresh collected or<br />

calcium chloride conserved dried leaves<br />

were ground in 0.03 M phosphate buffer<br />

(pH 7.2) <strong>and</strong> containing 0.2% Sodium<br />

diethyldithiocarbamate (Na-DIECA) at<br />

the rate 1:4. Activated charcoal (75<br />

mg/ml buffer) <strong>and</strong> celite were added to<br />

the extract. Inoculation was made by<br />

rubbing the extract on 5-leaf stage plants<br />

for each isolate tested. The isolates were<br />

cloned after two successive passages on<br />

Nicotiana glutinosa. A single local lesion<br />

was used to propagate the virus in each<br />

time. Virus cultures were maintained in<br />

Tunisian Journal <strong>of</strong> Plant Protection 2<br />

Vol. 1, No. 1, 2006


pepper J27 F1 hybrid <strong>and</strong> propagated on<br />

Nicotiana benthamiana. Inoculated<br />

pepper plants <strong>and</strong> other indicator plants<br />

were subsequently transferred into an<br />

insect pro<strong>of</strong> glasshouse with temperature<br />

ranging from 25 to 28°C during day <strong>and</strong><br />

from 12 to 15°C at night. Host range tests<br />

were performed with two to four plants<br />

per species (Table 3). Symptoms were<br />

scored four to five weeks after<br />

inoculation. Back inoculation to at least<br />

two plants <strong>of</strong> Datura stramonium or N.<br />

glutinosa from non-inoculated leaves was<br />

made.<br />

<strong>Serological</strong> tests. <strong>Serological</strong> assays<br />

were carried out using the st<strong>and</strong>ard<br />

s<strong>and</strong>wich DAS ELISA according to Clark<br />

<strong>and</strong> Adams (1977) on pepper samples<br />

showing virus like symptoms to check for<br />

common viruses TMV, PVY, CMV <strong>and</strong><br />

for new virus infection with PMMoV.<br />

Indirect ELISA test was performed<br />

according to Lommel <strong>and</strong> collaborators<br />

(19) to determine the obtained antibody<br />

titer. The antibodies used to detect PVY<br />

were locally produced in the laboratory <strong>of</strong><br />

plant protection at INRAT; those used to<br />

detect CMV were kindly supplied by Drs<br />

Marchoux <strong>and</strong> Gebre-Selassie from<br />

INRA Avignon. PMMoV sera were<br />

purchased from BIO-RAD Phytodiagnostics<br />

(France) <strong>and</strong> used according<br />

to the manufacturer’s conditions.<br />

Virus purification <strong>and</strong> antiserum<br />

production. The isolate Sah.11-00 was<br />

purified according to the method<br />

described by Gebre-Selassie <strong>and</strong><br />

Marchoux (11). N. benthamiana was used<br />

for propagating the virus. Systemically<br />

infected leaves were homogenized in 0.5<br />

M phosphate buffer pH 7.2 (Na 2 HPO 4 -<br />

KH 2 PO 4 ) containing 1% (v/v) <strong>of</strong> 2-<br />

mercaptoethanol with the ratio <strong>of</strong> 100 g<br />

leaf material per 200 ml <strong>of</strong> buffer. The<br />

homogenate was clarified by adding 8%<br />

(v/v) n-butanol using centrifugation at a<br />

low speed centrifugation at 10,000 x g for<br />

30 min. PEG 6,000 <strong>and</strong> NaCl were added<br />

to the supernatant in order to give a final<br />

concentration <strong>of</strong> 3% <strong>and</strong> 1% (w/v),<br />

respectively. A second precipitation by<br />

PEG was performed with Triton X-100<br />

being added (5% v/v) to the supernatant.<br />

Virus particles were further purified by<br />

two cycles <strong>of</strong> differential centrifugation:<br />

90,000 x g for 90 min <strong>and</strong> 10,000 x g for<br />

15 min. The obtained pellet was<br />

resuspended in a 1 mM EDTA buffer, pH<br />

7.2. Purified virus was stored at –18°C<br />

until use.<br />

Virus concentration <strong>and</strong> purification<br />

yield were estimated using a specific<br />

extinction coefficient (A 0.1% 1 cm at 260<br />

ηm) = 3.18 (30).<br />

A rabbit was immunized by injecting<br />

0.5 mg <strong>of</strong> purified virus emulsified with<br />

an equal volume <strong>of</strong> Freund’s complete<br />

adjuvant. Four intramuscularly injections<br />

were performed at one-week interval <strong>and</strong><br />

three more injections two week spaced.<br />

Bleedings started one month after the first<br />

immunization.<br />

Absorption <strong>of</strong> serum. IgGs <strong>of</strong> the<br />

obtained antiserum were purified by<br />

chromatography column sepharose CL-<br />

4B protein A (from Pharmacia) <strong>and</strong><br />

absorbed according to Dijkstra <strong>and</strong> Jager<br />

(10) against virus-free plant material <strong>and</strong><br />

SM2 TMV strain. Sap extracts from<br />

virus-free plants (N. benthamiana) <strong>and</strong><br />

SM2 infected plants were squeezed<br />

through cheesecloth <strong>and</strong> diluted 20 times<br />

in PBS-T. Antibodies were diluted in the<br />

obtained plant sap. The mixture was<br />

incubated for one hour at 37°C <strong>and</strong><br />

centrifuged at 8,000 x g for 20 min. The<br />

supernatant (absorbed antiserum) was<br />

used in indirect ELISA.<br />

<strong>Molecular</strong> tests.<br />

Oligonucleotide primers. In this<br />

investigation, the set <strong>of</strong> PMMoV specific<br />

primers P12/3 (5’-ACAgCgTTTggATCTTAgTAT-3’)<br />

<strong>and</strong> P12/3A (5’-<br />

gTgCggTCTTAATAACCTCA-3’) were<br />

used (28).<br />

IC-RT-PCR. Immunocapture (IC) was<br />

performed according to Wetzel <strong>and</strong><br />

collaborators (31). Each PCR tube (0.2 ml<br />

Biozym) was incubated 3 hours at 37°C<br />

with 100 µl <strong>of</strong> PMMoV or TMV<br />

antiserum diluted in carbonate buffer pH<br />

9.6 as used in ELISA test, then washed<br />

Tunisian Journal <strong>of</strong> Plant Protection 3<br />

Vol. 1, No. 1, 2006


three times with 150 µl <strong>of</strong> PBST at pH<br />

7.4 (137 mM NaCl, 1.5 mM KH 2 PO 4, 8<br />

mM Na 2 HPO 4, 2.7 mM KCl) containing<br />

0.05 % (v/v) Tween 20. The plant<br />

samples infected by PMMoV <strong>and</strong> TMV<br />

were ground in ELISA extraction buffer<br />

(PBST containing 2% (w/v) <strong>of</strong><br />

Polyvinylpyrrolidon <strong>and</strong> 0.2 % (w/v) <strong>of</strong><br />

bovine serum albumin). The homogenate<br />

was spun at 2,000 x g for 5 min at 4°C.<br />

Hundred microliters <strong>of</strong> the supernatant<br />

were added to coated tubes <strong>and</strong> submitted<br />

to an immunocapture phase for 2 hours at<br />

30°C. Then, they were washed 3 times<br />

with PBST buffer <strong>and</strong> one more with<br />

sterile bidistilled water. The detection<br />

method was based on one-tube RT-PCR<br />

assays using Titan kit from Roche<br />

diagnostics (Penzberg, Germany)<br />

according to manufacturer's conditions. A<br />

mix <strong>of</strong> 50 µl was prepared as following:<br />

0.2 mM <strong>of</strong> each dATP, dCTP, dGTP,<br />

dTTP. 0.4 µM <strong>of</strong> each primer; 5mM<br />

DTT; 10 µl <strong>of</strong> (5 x RT-PCR) buffer<br />

containing 1.5 mM MgCl 2 <strong>and</strong> 1 µl <strong>of</strong><br />

AMV <strong>and</strong> Exp<strong>and</strong> High fidelity PCR<br />

system. The volume <strong>of</strong> mix was adjusted<br />

with sterile bidistilled water <strong>and</strong> added to<br />

each coated tube.<br />

The amplification was carried out in a<br />

Biometra Uno II programmed for one<br />

cycle <strong>of</strong> 50°C for 30 min <strong>and</strong> a second<br />

cycle <strong>of</strong> 94°C for 2 min followed by 35<br />

cycles (denaturing at 94°C for 30 s,<br />

annealing at 50°C for 1 min <strong>and</strong> extension<br />

at 68°C for 1 min) <strong>and</strong> terminated with a<br />

final extension cycle at 68 °C for 10 min.<br />

IC-RT-PCR-RFLP. RFLP analysis<br />

was performed for Sah.11-00 <strong>and</strong> Teb.24-<br />

00 isolates <strong>and</strong> reference strains PMMoV<br />

(1-2) <strong>and</strong> PMMoV (1-2-3) by digesting<br />

the amplified product obtained from IC-<br />

RT-PCR with primers P12/3 <strong>and</strong> P12/3A<br />

with EcoR I enzyme according to<br />

manufacturers conditions. PCR products<br />

<strong>and</strong> digested fragments were run in a 1%<br />

(w/v) agarose gel contained ethidium<br />

bromide in TAE buffer (40 mM Trisacetate,<br />

1 mM EDTA) under a 100 mA<br />

<strong>and</strong> were visualized with a UV<br />

transilluminator at 312 nm.<br />

Absorbance at 405 nm<br />

RESULTS<br />

Purification <strong>and</strong> serology. Concentration<br />

<strong>of</strong> purified virus <strong>of</strong> isolate<br />

Sah.11-00 was estimated to 0.4 g/kg plant<br />

tissues. DAS-ELISA tests demonstrated<br />

that extracts from Sah.11-00 <strong>and</strong> Teb.24-<br />

00 infected plants strongly reacted with<br />

antiserum produced against PMMoV<br />

from Bio-Rad but neither against PVY,<br />

CMV nor TMV antiserum. The titre <strong>of</strong><br />

our anti-PMMoV antiserum when tested<br />

by indirect ELISA was found to rise to<br />

10 –5 against homologous antigens <strong>and</strong><br />

other PMMoV strains, 10 -4 against TMV<br />

strains Vi76 <strong>and</strong> SM2 whereas it was<br />

around 10 -3 against healthy plant sap (Fig.<br />

1).<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 -3 10 -4 10 -5 10 -6 10 -7<br />

Dilution <strong>of</strong> antibodies<br />

Sah.11-00<br />

PMMoV(1,2,3)<br />

PMMoV(1,2)<br />

SM2<br />

Vi76<br />

T(-):N. Benthamiana<br />

Fig. 1. Reactivities in indirect ELISA <strong>of</strong> purified<br />

antibodies at different concentrations with their<br />

homologous antigens (local isolate Sah.11-00),<br />

heterologous antigens (reference PMMoV strains<br />

<strong>and</strong> common strain <strong>of</strong> TMV) <strong>and</strong> with healthy plant.<br />

Absorbed antibodies with healthy<br />

plant still produce a good homologous<br />

reaction with Sah.11-00 <strong>and</strong> against<br />

PMMoV (1,2) but they still cross-reacted<br />

with the common strain <strong>of</strong> TMV (Vi 76<br />

<strong>and</strong> SM2) (Fig. 2). These absorbed IgGs<br />

were secondly absorbed with SM2. They<br />

still produce a good reaction with Sah11-<br />

00 but did not react positively with<br />

healthy plant or with SM2 infected plant<br />

(data not shown).<br />

Tunisian Journal <strong>of</strong> Plant Protection 4<br />

Vol. 1, No. 1, 2006


A b s o r b a n c e a t 4 0 5 n m<br />

Reactions on various indicator<br />

plants. Sah.11-00 <strong>and</strong> Teb.24-00 isolates<br />

were inoculated as described previously<br />

on a range <strong>of</strong> indicator plants <strong>and</strong> at the<br />

same time to a pepper host range with<br />

known pathotype-genotype interaction <strong>of</strong><br />

Tobamoviruses (Table 2).<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

2x10 -3 10 -3 1/2x10 -3 1/4x10 -3<br />

Dilution <strong>of</strong> antibodies<br />

Sahline11-00<br />

T(-)<br />

Vi 76<br />

SM2<br />

PMMoV(1,2)<br />

Fig. 2. Reactivities in indirect ELISA <strong>of</strong> absorbed<br />

IgGs at different concentrations with their<br />

homologous antigen (Sah11-00), with strain<br />

PMMoV(1,2), with TMV common strain (Vi76 <strong>and</strong><br />

SM2) <strong>and</strong> with healthy plant (Nicotiana<br />

benthamiana)<br />

Reactions <strong>of</strong> tested plants are<br />

summarized in Table 3. Three weeks after<br />

inoculation, our two isolates reacted as<br />

following:<br />

- D. stramonium, N. tabacum Xanthi–nc<br />

<strong>and</strong> N. glutinosa displayed small necrotic<br />

local lesions,<br />

- N. tabacum cv Samsun did not show<br />

neither local nor systemic symptoms <strong>and</strong><br />

the virus could not be detected from<br />

newly developed leaves,<br />

- N. occidentalis displayed a systemic<br />

mosaic <strong>and</strong> leaf deformation,<br />

- N. benthamiana reacted with systemic<br />

chlorosis, leaf deformation <strong>and</strong> growth<br />

reduction,<br />

- Physalis floridana showed systemic<br />

mottling <strong>and</strong> some leaf deformation.<br />

Symptoms were more severe in the case<br />

<strong>of</strong> rise <strong>of</strong> temperature,<br />

- Lycopersicon esculentum F1 hybrid<br />

Razan was immune to the virus as proven<br />

by back-inoculation,<br />

- Solanum melongena on which only faint<br />

chlorotic local lesions appeared but the<br />

virus could not be detected neither from<br />

inoculated nor from non-inoculated<br />

leaves.<br />

Typing on various Capsicum<br />

genotypes. Reactions on Capsicum<br />

species were carefully observed in order<br />

to classify the isolates studied on the basis<br />

<strong>of</strong> virus-host genotype interactions.<br />

- On local pepper varieties Baker <strong>and</strong><br />

Baklouti inoculated leaves were fallen<br />

down one week after inoculation, plants<br />

developed systemic chlorosis, mottling<br />

<strong>and</strong> leaf rugosity, some necrosis may<br />

appear on the stems.<br />

- Hybrid J27 showed no local symptoms,<br />

systemic infection started by vein clearing<br />

followed by systemic necrotic spots <strong>and</strong><br />

mottling.<br />

- Hybrids Roda/Drago (L 1 ) <strong>and</strong> Greygo<br />

(L 2 ) displayed a systemic mottling two<br />

weeks after inoculation.<br />

- Hybrids Novi (L 3 ), Rapires (L 3 ), Cuzco<br />

(L 4 ), Himes (L 4 ) <strong>and</strong> C. chacoense<br />

PI260429 (L 4 ) displayed local necrotic<br />

lesions five days after inoculation which<br />

then started to enlarge <strong>and</strong> coalesce. The<br />

ultimate stage is the falling down <strong>of</strong> the<br />

inoculated leaves. No virus activity was<br />

detected on top leaves, i.e. no symptoms<br />

<strong>and</strong> no infection as verified by back<br />

inoculation.<br />

IC-RT-PCR for detection <strong>of</strong><br />

PMMoV. IC-RT-PCR test was applied to<br />

common strain <strong>of</strong> TMV, to our isolates <strong>of</strong><br />

PMMoV Sah.11-00 <strong>and</strong> Teb.24-00, to<br />

reference strains PMMoV (1-2), PMMoV<br />

(1-2-3), <strong>and</strong> to healthy sample. The size<br />

<strong>of</strong> the amplified product was as expected<br />

around 836 bp with local isolates <strong>and</strong><br />

reference strains <strong>of</strong> PMMoV but neither<br />

with TMV (Vi 76) (lane 2) nor with<br />

healthy sample (lane 7) (Fig. 3).<br />

Differentiation <strong>of</strong> PMMoV strains<br />

with IC-RT-PCR-RFLP. RFLP analysis<br />

was performed to Sah.11-00, to Teb.24-<br />

Tunisian Journal <strong>of</strong> Plant Protection 5<br />

Vol. 1, No. 1, 2006


00 isolates <strong>and</strong> PMMoV (1-2) <strong>and</strong><br />

PMMoV (1-2-3) by digesting the<br />

amplified fragment obtained from IC-RT-<br />

PCR with primer pair P12/3 <strong>and</strong> P12/3A.<br />

Restriction digestion with EcoR I enzyme<br />

yielded one single fragment with<br />

PMMoV (1-2), Sah.11-00 <strong>and</strong> Teb.24-00,<br />

whereas it produces two fragments <strong>of</strong> 260<br />

bp <strong>and</strong> 570 bp with PMMoV (1-2-3)<br />

reference strain (Fig 4).<br />

Table 2. Pepper host range used in biological tests, genotypes <strong>and</strong> origins<br />

Host Genotype Origins<br />

C. annuum: cv Baker L 0 : Hamza, INRAT unpublished data<br />

C. annuum: cv Baklouti L 0 : Hamza, INRAT unpublished data<br />

Hamza, N., INRAT, Tunisia.<br />

C. annuum: J27 F1 Hyb L 1 : Hamza <strong>and</strong> collaborators (14)<br />

C. annuum: Greygo L 2 : Kalman <strong>and</strong> collaborators (17)<br />

C. annuum: Rapires F1 Hyb L 3 : Kalman <strong>and</strong> collaborators (17)<br />

Gáborjányi.,Vezprém university,<br />

Georgikon Faculty <strong>of</strong><br />

Agricultural Science, Hungary.<br />

C. annuum: Himes F1 Hyb L 4 : Sagi <strong>and</strong> Salamon (24)<br />

C. annuum: Novi L 3 : Palloix, personal communication<br />

C. chacoense: PI 260429 L 4 : Boukema (4) <strong>and</strong> Gebre-Selassie <strong>and</strong><br />

collaborators (12)<br />

Palloix,.A.,INRA-Montfavet.<br />

France.<br />

C. annuum: Roda/Drago<br />

(P824) F1 Hyb<br />

C. annuum: Cuzco (BK162) F1<br />

Hyb<br />

L 1<br />

L 4<br />

Syngenta<br />

1 2 3 4 5 6 7 8<br />

800 pb<br />

Fig. 3. One percent agarose gel<br />

electrophoresis analysis <strong>of</strong> IC-RT-PCR<br />

product obtained after amplification with<br />

primers pair P12/3 <strong>and</strong> P12/3A. IC-RT-PCR<br />

product from Vi76 (Lane 2); PMMoV (1-2)<br />

(Lane 3); PMMoV (1-2-3) (Lane 4);<br />

Sah.11-00 (Lane 5); Teb.24-00 (Lane 6);<br />

healthy sample (Lane 7). <strong>Molecular</strong> weight<br />

marker Gene Ruler 100 base pair ladder<br />

plus from Roche (Lanes 1 <strong>and</strong> 8).<br />

Tunisian Journal <strong>of</strong> Plant Protection 6<br />

Vol. 1, No. 1, 2006


1 2 3 4 5<br />

800 pb<br />

570 bp<br />

260 bp<br />

Fig. 4. One percent agarose gel<br />

electrophoresis analysis <strong>of</strong> EcoR I<br />

restriction analysis <strong>of</strong> IC-RT-PCR<br />

product obtained after amplification<br />

with primers pair P12/3 <strong>and</strong><br />

P12/3A. PMMoV(1-2) (Lane 2);<br />

Sah.11-00 (Lane 3);Teb.24-00<br />

(Lane 4) <strong>and</strong> PMMoV(1-2-3) (Lane<br />

5). <strong>Molecular</strong> weight marker Gene<br />

Ruler 100 base pair ladder plus<br />

from Roche (Lane 1).<br />

DISCUSSION<br />

DAS-ELISA tests showed that Sah.11-<br />

00 <strong>and</strong> Teb.24-00 isolates were<br />

determined as PMMoV. The antibodies<br />

produced against purified isolate Sah.11-<br />

00 were used in indirect ELISA tests.<br />

They reacted strongly with PMMoV<br />

strains, less with TMV, <strong>and</strong> only slightly<br />

with healthy plant. Our produced<br />

immunogen was probably not totally<br />

pure. Indeed, we did not perform any<br />

gradient step at the end <strong>of</strong> purification;<br />

this can explain the reaction against<br />

healthy plant sap.<br />

The obtained cross reaction against<br />

the common strain <strong>of</strong> TMV can be<br />

explained by the close serological<br />

properties <strong>of</strong> PMMoV to some viruses<br />

belonging to Tobamovirus group, mainly<br />

TMV <strong>and</strong> ToMV as reported by Wetter<br />

<strong>and</strong> Conti (29) <strong>and</strong> Gebre-Selassie <strong>and</strong><br />

Marchoux (11). <strong>Serological</strong> identification<br />

<strong>of</strong> species, which are related, might<br />

lead to ambiguous results especially<br />

within the Tobamovirus genus.<br />

Differentiation problems resulted from<br />

heterologous reactions <strong>of</strong> antisera<br />

detecting conserved epitopes (18). Our<br />

results demonstrated that after<br />

absorption with virus-free plant, the<br />

obtained IgGs still produce a good<br />

reaction with their homologous antigens<br />

but reacted with TMV strains (Vi 76 <strong>and</strong><br />

SM2) (Fig. 2). This absorption allowed<br />

to discard the antibodies produced<br />

against plant proteins. The double<br />

absorption with sap <strong>of</strong> healthy plant <strong>and</strong><br />

with SM2 infected plant gave better<br />

reaction with Sah. 11-00 <strong>and</strong> minimize<br />

there activities with TMV common<br />

strains (data not shown).<br />

Subgrouping <strong>of</strong> PMMoV isolates is<br />

important for elucidation <strong>of</strong> PMMoV<br />

epidemiology <strong>and</strong> for practical detection<br />

<strong>of</strong> PMMoV pathotypes. Classification<br />

system based on virus-host genotype<br />

interactions in which pathogenicity or<br />

virulence <strong>of</strong> strain is expressed in Arabic<br />

numerals relating to L-genes resistance<br />

in Capsicum sp. was used (Table 2).<br />

According to the obtained results (Table<br />

3) <strong>and</strong> to the descriptions <strong>of</strong> Gebre-<br />

Selassie <strong>and</strong> collaborators (12) <strong>and</strong><br />

Gebre-Selassie <strong>and</strong> Marchoux (11)<br />

Sah.11-00 <strong>and</strong> Teb.24-00 isolates<br />

behaved like the PMMoV pathotype 1-2,<br />

by their ability to infect Capsicum<br />

species J27 <strong>and</strong> Greygo hybrids F1<br />

carrying respectively L 1 <strong>and</strong> L 2<br />

resistance gene <strong>and</strong> their inability to<br />

infect L. esculentum genotype <strong>and</strong><br />

especially by their capacity to induce<br />

hypersensitive reaction on Capsicum<br />

genotypes carrying L 4 genes (PI260429,<br />

Himes <strong>and</strong> Cuzco) <strong>and</strong> on Capsicum<br />

genotypes carrying L 3 genes (Rapires<br />

<strong>and</strong> Novi).<br />

RT-PCR methods have been<br />

reported for detecting plant viruses<br />

within many genera such as Potyvirus,<br />

Tobamovirus, Luteovirus <strong>and</strong><br />

Cucumovirus (6, 7, 9, 13, 15, 18, 23, 26,<br />

28). RT-PCR-RFLP has been also used<br />

to differentiate pathotype <strong>of</strong> PMMoV<br />

Tunisian Journal <strong>of</strong> Plant Protection 7<br />

Vol. 1, No. 1, 2006


Table 3. Comparative host range <strong>of</strong> local strains to reference strain<br />

Host range Genotype Sah.11-00 Teb.24-00 PMMoV (1-2): Adam<br />

Capsicum annuum cv Baker<br />

Capsicum annuum cv Baklouti<br />

Capsicum annuum cv J27<br />

Capsicum annuum Hyb F1 Drago/Roda<br />

Capsicum annuum Hyb F1 Greygo<br />

Capsicum annuum Hyb F1 Novi<br />

Capsicum annuum Hyb F1 Rapires<br />

Capsicum annuum Hyb F1 Himes<br />

Capsicum annuum Hyb F1 Cuzco<br />

Capsicum chacoense PI 260429<br />

Lycopersicon esculentum Hyb F1 Razan<br />

Nicotiana tabacum cv Xanthi- nc.<br />

Nicotiana tabacum cv Samsun<br />

Nicotiana benthamiana<br />

Nicotiana glutinosa<br />

Nicotiana occidentalis<br />

Physalis floridana<br />

Solanum melongena F1 cv Black enorma<br />

Datura stramonium<br />

L 0<br />

L 0<br />

L 1<br />

L 1<br />

L 2<br />

L 3<br />

L 3<br />

L 4<br />

L 4<br />

L 4<br />

- / S<br />

- / S<br />

- / S<br />

-/ S<br />

-/ S<br />

L / -<br />

L / -<br />

L / -<br />

L / -<br />

L / -<br />

-* / -<br />

L / -<br />

l /-<br />

-* / S<br />

L / -<br />

-* / S<br />

-* / S<br />

L / -<br />

L / -<br />

- / S<br />

- / S<br />

-/ S<br />

- / S<br />

- / S<br />

L /(-/s)<br />

L / -<br />

L / -<br />

L / -<br />

-* / -<br />

L / -<br />

l / (s/-)<br />

Explanation <strong>of</strong> symbols: local reaction /systemic reaction; L: necrotic local lesions; l: latent local infection; S:<br />

Systemic symptoms; s: latent systemic infection; -: no infection as verified by back inoculation. -*: infection not<br />

tested; ( ) symbols between brackets refer to inconsistent or erratic symptoms depending on growing conditions.<br />

-* / S<br />

L / -*<br />

-* / S<br />

-* / S<br />

L / -<br />

L / -<br />

(18, 26, 28). These methods based on<br />

RT-PCR encountered several problems<br />

in epidemiological research <strong>of</strong> the viral<br />

diseases. RNA extraction is troublesome<br />

<strong>and</strong> molecules are also readily degraded<br />

due to the ubiquitous presence <strong>of</strong> RNase.<br />

In contrast, the IC-RT-PCR method<br />

avoided the extraction <strong>of</strong> viral or plant<br />

total RNA, <strong>and</strong> was easily carried out in<br />

a single tube. Such procedures have been<br />

developed for detecting many plant<br />

viruses including Grapevine leafrollassociated<br />

virus 1, Pepino mosaic virus<br />

<strong>and</strong> Plum pox virus (5, 20, 25, 31). Here,<br />

we applied IC-RT-PCR <strong>and</strong> IC-RT-PCR-<br />

RFLP procedure respectively for<br />

detecting PMMoV <strong>and</strong> for pathotypes<br />

identification. In IC-RT-PCR, we found<br />

that a single strong b<strong>and</strong> <strong>of</strong> about 830<br />

nucleotides could easily be amplified<br />

from plant saps containing PMMoV<br />

Tunisian isolates <strong>and</strong> reference isolates<br />

(Fig. 3). This result confirms those<br />

obtained by Velasco <strong>and</strong> collaborators<br />

(28) using total RNA in RT-PCR test.<br />

Results also showed that a single<br />

strong b<strong>and</strong> <strong>of</strong> about 830 nucleotides was<br />

amplified from plant saps containing<br />

PMMoV(1-2) <strong>and</strong> local isolates, whereas<br />

two b<strong>and</strong>s <strong>of</strong> about 570 <strong>and</strong> 260 bp where<br />

obtained from plant saps containing<br />

PMMoV(1-2-3) when digested with EcoR<br />

I (Fig. 4). From sequence alignment <strong>of</strong><br />

fragments obtained using the primer pair<br />

(P12/3 <strong>and</strong> P12/3A); Velasco <strong>and</strong><br />

collaborators (28) demonstrated that the<br />

pathotypes (1-2) <strong>and</strong> (1-2-3) are<br />

differentiated by the absence <strong>of</strong> EcoR I<br />

restriction site in the first one. Restriction<br />

patterns <strong>of</strong> EcoR I enzyme were then<br />

sufficient to differentiate pathotypes <strong>of</strong><br />

tested species. Pattern shown in Fig. 4 fits<br />

well with the assignment <strong>of</strong> the local<br />

isolates <strong>and</strong> the reference strain<br />

Tunisian Journal <strong>of</strong> Plant Protection 8<br />

Vol. 1, No. 1, 2006


PMMoV(1-2) into the pathotype (1-2).<br />

Whereas the pattern obtained with<br />

reference strain <strong>of</strong> PMMoV(1-2-3)<br />

demonstrated the presence <strong>of</strong> the EcoR I<br />

restriction site which confirms its<br />

assignment to pathotype (1-2-3).<br />

Moreover IC-RT-PCR-RFLP confirms<br />

that PMMoV reference isolates<br />

Adam <strong>and</strong> Eve belonged respectively to<br />

the pathotypes (1-2) <strong>and</strong> (1-2-3) as<br />

reported by Gebre-Selassie <strong>and</strong> Marchoux<br />

(11) using biological classification.<br />

<strong>Characterization</strong> <strong>of</strong> the two local isolates<br />

<strong>and</strong> the reference strains using both<br />

pathotyping <strong>and</strong> IC-RT-PCR-RFLP<br />

showed a good correlation between both<br />

methods. Both appeared to be reliable.<br />

However pathotyping was timeconsuming,<br />

whereas IC-RT-PCR-RFLP<br />

method was efficient, time saving <strong>and</strong><br />

could be widely used for identification on<br />

a larger scale.<br />

Based upon biological, serological,<br />

<strong>and</strong> IC-RT-PCR-RFLP reactions, we can<br />

conclude that Sah.11-00 <strong>and</strong> Teb.24-00<br />

can be assigned as isolates belonging to<br />

the strain (1-2) <strong>of</strong> PMMoV. This finding<br />

demonstrates the occurrence <strong>of</strong> this<br />

breaking-resistance pathotype in pepper<br />

crops in Tunisia. To our knowledge this<br />

virus has not been described in Tunisia<br />

<strong>and</strong> our investigation reports for the first<br />

time the natural occurrence <strong>of</strong> PMMoV in<br />

this country. This new occurrence may<br />

create a new challenge for the Tunisian<br />

breeding program for multivirus<br />

resistance in pepper (14).<br />

To get more information concerning<br />

the prevalence <strong>of</strong> PMMoV pathotypes,<br />

continuous surveys from year to year in<br />

different crops <strong>and</strong> locations will be<br />

required. The possible presence <strong>of</strong><br />

pathotype (1-2-3) must be checked on a<br />

larger scale in Tunisian farms in order to<br />

pertinently introduce efficient resistant L 3<br />

gene against PMMoV (1-2). The<br />

introduction <strong>of</strong> suitable resistance gene in<br />

plants will <strong>of</strong>fer a powerful <strong>and</strong> accurate<br />

tool to avoid PMMoV (1-2) infection<br />

especially in early-protected pepper crops<br />

<strong>of</strong> central coastal regions <strong>and</strong> possibly in<br />

regions where this virus could be<br />

identified.<br />

ACKNOWLEDGEMENTS<br />

Authors gratefully acknowledge Drs. Gebre-<br />

Selassie <strong>and</strong> Georges Marchoux (INRA Montfavet)<br />

for kindly providing reference strains <strong>and</strong> CMV<br />

antibodies, Drs. Alain Palloix (INRA Montfavet),<br />

R. Gaborjanyi, <strong>and</strong> G. Kazinczi (University <strong>of</strong><br />

Veszpraém, Hungary) for kindly providing<br />

Capsicum species carrying resistance gene <strong>and</strong> Dr.<br />

Naceur Hamza (INRA Tunisia) for kindly<br />

providing local pepper varieties <strong>and</strong> hybrids.<br />

RESUME<br />

Mnari-Hattab M. et Ezzaier K. 2006. Caractérisation biologique, sérologique et moléculaire du<br />

virus de la marbrure légère du piment (PMMoV) en Tunisie. Tunisian Journal Plant Protection<br />

1: 1-12.<br />

En Tunisie, la souche commune du virus de la mosaïque du tabac (Tobacco mosaic virus TMV) sur<br />

piment (Capsicum annuum L.) est la cause de la maladie virale la plus rép<strong>and</strong>ue en culture protégée.<br />

L’hybride F1 J-27 porteur du gène de résistance L 1 vis-à-vis des souches communes de TMV a été<br />

obtenu dans le cadre d'un programme d’amélioration du piment en Tunisie et a été cultivé pendant<br />

plusieurs années. Des symptômes de nécroses sévères sur les fruits et des mosaïques sur les feuilles ont<br />

été observés. Deux isolats appelés Sah.11-00 et Teb.24-00 ont été identifiés en ELISA en utilisant un<br />

kit d’anticorps commercial spécifique vis-à-vis du virus de la marbrure légère du piment (Pepper mild<br />

mottle virus PMMoV). La caractérisation biologique basée sur l’interaction pathotype-génotype<br />

démontre l’appartenance des isolats tunisiens au PMMoV pathotype (1,2). En effet, les isolats Sah.11-<br />

00 et Teb. 24-00 infectent les génotypes du piment porteurs des gènes de résistance L 1 et L 2 et n’infecte<br />

pas ceux porteurs des gènes L 3 et L 4 ainsi que l'espèce de tomate. Un antisérum a été préparé à partir de<br />

l’isolat Sah.11-00. En ELISA, les anticorps obtenus détectent l’antigène homologue, l’isolat Teb.24-00<br />

et les antigènes des souches de référence du PMMoV. L’élimination par absorption des anticorps<br />

Tunisian Journal <strong>of</strong> Plant Protection 9<br />

Vol. 1, No. 1, 2006


éagissant avec les extraits de plantes saines a permis d’obtenir un réactif très fiable de détection du<br />

PMMoV. Une procédure modifiée basée sur l’immunocapture (IC) suivie d’une RT-PCR en une seule<br />

étape a été développée pour l’identification du PMMoV et la différentiation des pathotypes en<br />

analysant les fragments obtenus après RFLP. Cette procédure, fiable, rapide et facile à mettre en<br />

pratique pour le diagnostic, pourrait être d’une gr<strong>and</strong>e utilité pour les études épidémiologiques futures.<br />

La nouvelle présence en Tunisie du pathotype 1-2 du PMMoV devra obligatoirement être prise en<br />

compte par les sélectionneurs et se traduire par une réorientation de leur programme d’amélioration du<br />

piment pour la résistance aux maladies virales.<br />

Mots clefs: Piment, PMMoV, Tobamovirus, pathotype, résistance, anticorps, IC-RT-PCR, RFLP<br />

ملخص<br />

مناري-حطاب،‏ منية وآريم الزائر.‏ التشخيص البيولوجي والسر ولوجي وعبر البيولوجيا الجزئية<br />

التبقع المرمري الخفيف للفلفل (PMMoV) في تونس.‏<br />

لفيروس<br />

.Tunisian Journal <strong>of</strong> Plant Protection 1: 1-12<br />

.2006<br />

تعتبر السلالات العادية لفيروس تبرقش الدخان (TMV) السبب الرئيسي للأمراض الفيروسية للفلفل<br />

(.L annuum الأآثر تواجدا في البيوت المحمية في تونس.‏ أنتج الهجين J27 الحامل لجين المقاومة الفيروسية<br />

للسلالات العادية لفيروس TMV خلال برنامج وطني لتحسين الفلفل بتونس ووقع إآثاره طيلة سنوات عديدة.‏ آما<br />

لوحظت أعراض موت موضعي حاد على ثمار الفلفل و تبرقش على الأوراق.‏ فوقع التوصل إلى عزل وتشخيص سلالتين<br />

من فيروس التبقع المرمري الخفيف للفلفل (PMMoV) وذلك بطريقة تفاعل الأمصال<br />

سميتا<br />

ELISA باستعمال مجموعة تجارية للأجسام المضادة خاصة بتشخيص هذا الفيروس.‏ اظهر التشخيص الببيولوجي<br />

المعتمد على تفاعل النمط المرضي مع النمط الوراثي،‏ أن السلالات التونسية تنتمي إلى صنف<br />

،PMMoV حيث تصيب الفلفل الحامل لجينات مقاومة ولا تصيب الفلفل الحامل لجينات آما أنها لا<br />

تصيب نوع الطماطم.‏ وقع تحضير مصلا مضادا باستعمال سلالة وباعتماد طريقة ،ELISA تبين أن<br />

الأجسام المضادة لهذه السلالة تكشف على المادة الوراثية المماثلة على سلالة Teb24-00 وعلى المادات الوراثية<br />

للسلالات المرجعية لفيروس .PMMoV ومكًّن استبعاد الأجسام المضادة المتفاعلة مع مستخرجات النباتات السليمة من<br />

الحصول على مستحضر صالح لتشخيص فيروس .PMMoV ووقع استعمال طريقة بيولوجيا جزيئية محورة تعتمد على<br />

طريقة الحبس المناعي (IC) تليها طريقة RT-PCR في مرحلة واحدة لتشخيص فيروس PMMoV والتفريق بين<br />

الأنماط المرضية بتحليل الشظايا المتحصل عليها بعد استعمال طريقة .RFLP ويمكن أن تكون هذه الطريقة الدقيقة<br />

والسريعة والسهلة الاستعمال في التشخيص مفيدة جدا في الدراسة الوبائية لهذا الفيروس مستقبلا.‏ وتجدر الإشارة إلى<br />

وجوب الأخذ بعين الاعتبار لدى محسّني النبات بتونس،‏ تواجد هذا النمط المرضي لفيروس PMMoV(1,2) حتى يقع<br />

إعادة توجيه برامجهم البحثية في مجال التحسين الوراثي للفلفل في مقاومة الأمراض الفيروسية.‏<br />

(Capsicum<br />

L 1<br />

(1,2) لفيروس<br />

و L 4 L 3<br />

.Sah11-00<br />

و L 2 L 1<br />

و Teb24-00 Sah11-00<br />

آلمات مفاتيح:‏ فلفل،‏ ،PMMoV توباموفيروس،‏ نمط ممرض،‏ مقاومة،‏ أجسام مضادة،‏ RFLP ،IC-RT-PCR<br />

LITTERATURE CITED<br />

1. Alonso, E., Garcia-Luque, I., Avila-Rincon, M.J.,<br />

Wicke, B., Serra, M.T., <strong>and</strong> Diaz-Ruiz J.R. 1989.<br />

A Tobamovirus causing heavy losses in protected<br />

pepper crops in Spain. Journal <strong>of</strong> Phytopathology<br />

125: 67-76.<br />

2. Ben M’hadeb, M., Mnari-Hattab, M., Gharbi, J.,<br />

& Aouni, M. 2002. Détection du virus de la<br />

mosaïque du concombre par symptomatologie,<br />

par sérologie et par RT-PCR dans le Sahel<br />

tunisien. Page 88. Recueil des 2ème Journées de<br />

l’Association Tunisienne de Biotechnologie. 20-<br />

23 Décembre 2002. Hammamet, Tunisie.<br />

3. Bos, L. 1969. Experience with a collection <strong>of</strong><br />

plant viruses in leaf materiel dried <strong>and</strong> stored<br />

over calcium chloride <strong>and</strong> a discussion <strong>of</strong><br />

literature on virus preservation. Meded Fac<br />

L<strong>and</strong>bouw Wet Rijksuniv Gent 34: 875-887.<br />

4. Boukema, I.W. 1980. Allelism <strong>of</strong> genes controlling<br />

resistance to TMV in Capsicum.<br />

Euphytica 29: 433-439.<br />

5. Bousalem, S., Dallot, S., <strong>and</strong> Guyader, S. 2000.<br />

The use <strong>of</strong> phylogenetic data to develop<br />

molecular tools for the detection <strong>and</strong> genotyping<br />

<strong>of</strong> Yam mosaic virus. Potential application in<br />

molecular epidemiology. Journal <strong>of</strong> Virological<br />

Methods 90: 25–36.<br />

6. Celix, A., Lopez, A.S., Almarza, N., Guillamon,<br />

Ma., <strong>and</strong> Cerezo, E.R. 1996. Characterisation <strong>of</strong><br />

cucurbit yellow stunting disorder virus, a Bemisia<br />

tabaci transmitted Closterovirus. Phytopathology<br />

86: 1370-1376.<br />

Tunisian Journal <strong>of</strong> Plant Protection 10<br />

Vol. 1, No. 1, 2006


7. Choi, S.K., Choi, J.K., Park, W.M., <strong>and</strong> Ryu,<br />

H.K. 1999. RT-PCR detection <strong>and</strong> identification<br />

<strong>of</strong> three species <strong>of</strong> cucumoviruses with a genus<br />

specific single pair <strong>of</strong> primers. Journal <strong>of</strong><br />

Virological Methods 83: 67-73.<br />

8. Clark, M.F. <strong>and</strong> Adams, A.N. 1977.<br />

Characteristics <strong>of</strong> the microplate method <strong>of</strong><br />

enzyme linked immunosorbent assay for the<br />

detection <strong>of</strong> plant viruses. Journal <strong>of</strong> General<br />

Virology 34: 475-483<br />

9. Colinet, D., Kummert, J., Lepoivre, P., <strong>and</strong><br />

Semal, J. 1994. Identification <strong>of</strong> distinct<br />

Potyviruses in mixedly infected sweet potato by<br />

the polymerase chain reaction with degenerate<br />

primers. Phytopathology 84: 65-69.<br />

10. Dijkstra, J. <strong>and</strong> de-Jager, C. P. 1998. Practical<br />

plant virology: protocols <strong>and</strong> exercises. Springer-<br />

Verlag, Heidelberg, New York, USA, 459 pp.<br />

11. Gebre-Selassié, K. <strong>and</strong> Marchoux, G. 1991.<br />

Identification <strong>and</strong> characterization <strong>of</strong><br />

Tobamovirus strains infecting L resistant<br />

genotypes <strong>of</strong> peppers in France. Journal <strong>of</strong><br />

Phytopathology 131: 275-289.<br />

12. Gebre-Selassié, K., Dumas, de Vaulx,<br />

Marchoux, G., & Pochard, E. 1981. Le virus de la<br />

mosaïque du tabac chez le piment. I Apparition<br />

en France du pathotype P1-2. Agronomie 1: 853-<br />

858.<br />

13. Gibbs, A. <strong>and</strong> Mackenzie, A. 1997. A primer<br />

pair for amplifying part <strong>of</strong> the genome <strong>of</strong> all<br />

potyvirids by RT-PCR. Journal <strong>of</strong> Virological<br />

Methods 63: 9–16.<br />

14. Hamza, N., Mnari-Hattab, M., <strong>and</strong> Ezzaier, K.<br />

1998. Breeding pepper cultivars for multivirus<br />

resistance in Tunisia. Pages 88. In Proceedings <strong>of</strong><br />

the X th EUCARPIA Meeting on Genetics <strong>and</strong><br />

Breeding <strong>of</strong> Capsicum <strong>and</strong> Eggplant, September<br />

7- 11, 1998, Avignon, France.<br />

15. Jacobi, V., Bach<strong>and</strong>, G.D., Hamelin, R.C., <strong>and</strong><br />

Castello, J.D. 1998. Development <strong>of</strong> a multiplex<br />

immunocapture RT-PCR assay for detection <strong>and</strong><br />

differentiation <strong>of</strong> tomato <strong>and</strong> tobacco mosaic<br />

Tobamoviruses. Journal <strong>of</strong> Virological Methods<br />

74: 167-178.<br />

16. Jammeli, A. 1986. Le virus de la mosaïque du<br />

tabac (V.M.T) dans les cultures de piment abritées<br />

en Tunisie: Ecologie et détermination des<br />

souches. Mémoire de fin d’études de troisième<br />

cycle de l’INAT, Tunisie, 99 pp.<br />

17. Kalman, D., Palkovics, L., <strong>and</strong> Gaborjanyi, R.<br />

2001. Characteristics <strong>of</strong> a Hungarian Pepper mild<br />

mottle tobamovirus (PMMoV) isolate. Pages 252-<br />

255. Proceedings <strong>of</strong> the XI th EUCARPIA<br />

Meeting on Genetics <strong>and</strong> breeding <strong>of</strong> Capsicum<br />

<strong>and</strong> Eggplant, April 9-13, 2001, Antalya Turkey<br />

18. Letschert, B., Adam, G., Lesemann, D.-E.,<br />

Willingmann, P., <strong>and</strong> Heinze, C. 2002. Detection<br />

<strong>and</strong> differentiation <strong>of</strong> serologically cross-reacting<br />

Tobamoviruses <strong>of</strong> economical importance by RT-<br />

PCR <strong>and</strong> RT-PCR-RFLP. Journal <strong>of</strong> Virological<br />

Methods 106: 1-10.<br />

19. Lommel, S., M.C., Cain, A.H., <strong>and</strong> Morris, T.J.<br />

1982. Evaluation <strong>of</strong> indirect enzyme linked<br />

immunosorbent assay for the detection <strong>of</strong> plant<br />

virus. Phytopathology 72: 1018-1022<br />

20. Mansilla, C., Sanchez, F., <strong>and</strong> Ponz, F. 2003.<br />

The diagnosis <strong>of</strong> the tomato variant <strong>of</strong> pepino<br />

mosaic virus: an IC-RT-PCR approach. European<br />

Journal <strong>of</strong> Plant Patholology 109: 139-146.<br />

21. Messiaen, C.M. & Maison, P. 1964. Sensibilité<br />

ou hypersensibilité au virus de la mosaïque du<br />

tabac, suivant les souches de virus, les espèces ou<br />

les variétés de plantes-hôtes et les conditions<br />

d’expériences. Compte Rendus de l’Académie<br />

d’agriculture de France tome L n° 18: 1196-1203.<br />

22. Mnari-Hattab, M., Ezzaier, K., Gebre-Selassie,<br />

K., Marchoux, G., <strong>and</strong> Gognalon, P. 1999.<br />

Surveys <strong>of</strong> viruses affecting pepper (Capsicum<br />

annuum L.) in Tunisia. Pages 143-144.<br />

Proceedings <strong>of</strong> the 7 th International plant virus<br />

epidemiology symposium on Plant virus<br />

epidemiology: Current status <strong>and</strong> future<br />

prospects. April 11-17, 1999, Almeria, Spain.<br />

23. Robertson, N.L., French, R., <strong>and</strong> Gray, S.M.<br />

1991. Use <strong>of</strong> group-specific primers <strong>and</strong> the<br />

polymerase chain reaction for the detection <strong>and</strong><br />

identification <strong>of</strong> luteoviruses. Journal <strong>of</strong> General<br />

Virology 72: 1473–1477.<br />

24. Sagi, Z. S. <strong>and</strong> Salamon, P. 1998. Breeding<br />

white sweet pepper hybrids armed with the<br />

tobamovirus resistant allele L 4 . Page 173.<br />

Proceedings <strong>of</strong> the X th EUCARPIA Meeting on<br />

Genetics <strong>and</strong> Breeding <strong>of</strong> Capsicum <strong>and</strong><br />

Eggplant. September 7- 11, 1998, Avignon,<br />

France.<br />

25. Sefc, K.M., Leonhardt, W., <strong>and</strong> Steinkellner, H.<br />

2000. Partial sequence identification <strong>of</strong><br />

grapevine-leafroll-associated virus-1 <strong>and</strong><br />

development <strong>of</strong> a highly sensitive IC-RT-PCR<br />

detection method. Journal <strong>of</strong> Virological Methods<br />

86:101–106.<br />

26. Tenllado, F., Garcia-Luque, I., Serra, M.T. <strong>and</strong><br />

Diaz Ruiz, J.R. 1994. Rapid detection <strong>and</strong><br />

differentiation <strong>of</strong> Tobamoviruses infecting L-<br />

resistant genotypes <strong>of</strong> pepper by RT-PCR <strong>and</strong><br />

restriction analysis. Journal <strong>of</strong> Virological<br />

Methods 47: 165-174.<br />

27. Tobias, I., Rast, A.T.B., <strong>and</strong> Maat, D.Z. 1982.<br />

Tobamoviruses <strong>of</strong> pepper, eggplant <strong>and</strong> tobacco:<br />

comparative host reactions <strong>and</strong> serological<br />

relationships. Netherl<strong>and</strong>s Journal <strong>of</strong> Plant<br />

Pathology 88: 257-268<br />

28. Velasco, L., Janssen, D., Ruiz-Garcia, L.,<br />

Segundo, E., <strong>and</strong> Cuadrado, I.-M., 2002. The<br />

complete nucleotide sequence <strong>and</strong> development<br />

<strong>of</strong> a differential detection assay for a pepper mild<br />

mottle virus (PMMoV) isolate that overcomes L 3<br />

resistance in pepper. Journal <strong>of</strong> Virological<br />

Tunisian Journal <strong>of</strong> Plant Protection 11<br />

Vol. 1, No. 1, 2006


Methods 106: 135-140<br />

29. Wetter, C. <strong>and</strong> Conti, M. 1988. Pepper mild<br />

mottle virus. CMI/AAB Descriptions <strong>of</strong> Plant<br />

Viruses N°330.<br />

30. Wetter, C., Conti, M., Altschuh, D., Tabillion,<br />

R., <strong>and</strong> Van Regenmortel, M.H.V. 1984. Pepper<br />

mild mottle virus, a Tobamovirus infecting pepper<br />

cultivars in Sicily. Phytopathology 74: 405-410.<br />

31. Wetzel, T., C<strong>and</strong>resse, T., Macquaire, G.,<br />

Ravelon<strong>and</strong>ro, M., <strong>and</strong> Dunez, J. 1992. A highly<br />

sensitive immunocapture polymerase chain<br />

reaction method for plum pox potyvirus<br />

detection. Journal <strong>of</strong> Virological Methods 39: 27–<br />

37.<br />

________________<br />

Tunisian Journal <strong>of</strong> Plant Protection 12<br />

Vol. 1, No. 1, 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!