30.04.2015 Views

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> 4<br />

<strong>Trigonometric</strong> <strong>Functions</strong><br />

Section 4.1<br />

Check Point Exercises<br />

1. The radian measure of a central angle is the length of<br />

the intercepted arc, s, divided by the circle’s radius, r.<br />

The length of the intercepted arc is 42 feet: s = 42<br />

feet. The circle’s radius is 12 feet: r = 12 feet. Now<br />

use the formula for radian measure to find the radian<br />

measure of θ .<br />

s 42 feet<br />

θ = = = 3.5<br />

r 12 feet<br />

Thus, the radian measure of θ is 3.5<br />

4. a.<br />

b.<br />

2. a.<br />

b.<br />

c.<br />

3. a.<br />

b.<br />

c.<br />

π radians 60π<br />

60°= 60 °⋅ = radians<br />

180°<br />

180<br />

π<br />

= radians<br />

3<br />

π radians 270π<br />

270°= 270 °⋅ = radians<br />

180°<br />

180<br />

3π<br />

= radians<br />

2<br />

π radians −300π<br />

− 300°= − 300 °⋅ = radians<br />

180°<br />

180<br />

5π<br />

=− radians<br />

3<br />

π π radians 180<br />

o<br />

radians = ⋅<br />

4<br />

4 π radians<br />

180<br />

o<br />

= = 45<br />

o<br />

4<br />

4π<br />

4 π radians 180<br />

o<br />

− radians = − ⋅<br />

3 3 π<br />

4180 ⋅<br />

o<br />

=− =− 240<br />

o<br />

3<br />

180<br />

o<br />

6 radians = 6 radians ⋅<br />

π radians<br />

6⋅180 o<br />

= ≈ 343.8<br />

o<br />

π<br />

c.<br />

d.<br />

5. a. For a 400º angle, subtract 360º to find a positive<br />

coterminal angle.<br />

400 o – 360 o = 40 o<br />

6. a.<br />

b. For a –135º angle, add 360º to find a positive<br />

coterminal angle.<br />

–135 o + 360 o = 225 o<br />

b.<br />

13 π 13 10 3<br />

− 2π<br />

= π − π =<br />

π<br />

5 5 5 5<br />

30 29<br />

− π + 2π<br />

= − π + π =<br />

π<br />

15 15 15 15<br />

489<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

7. a. 855°− 360°⋅ 2 = 855°− 720°= 135°<br />

b.<br />

c.<br />

17π<br />

17π<br />

−2π<br />

⋅ 2= − 4π<br />

3 3<br />

17π 12π 5π<br />

= − =<br />

3 3 3<br />

25π<br />

25π<br />

− + 2π<br />

⋅ 3=− + 6π<br />

6 6<br />

25π 36π 11π<br />

=− + =<br />

6 6 6<br />

8. The formula s = rθ can only be used when θ is<br />

expressed in radians. Thus, we begin by converting<br />

π radians<br />

45° to radians. Multiply by .<br />

180°<br />

π radians 45<br />

45°= 45 °⋅ = π radians<br />

180°<br />

180<br />

π<br />

= radians<br />

4<br />

Now we can use the formula s = rθ to find the<br />

length of the arc. The circle’s radius is 6 inches : r =<br />

6 inches. The measure of the central angle in radians<br />

π π<br />

is : θ = . The length of the arc intercepted by this<br />

4 4<br />

central angle is<br />

⎛π<br />

⎞ 6π<br />

s = rθ<br />

= (6 inches) ⎜ ⎟= inches ≈ 4.71 inches.<br />

⎝ 4⎠<br />

4<br />

9. We are given ω , the angular speed.<br />

ω = 45 revolutions per minute<br />

We use the formula ν = rω<br />

to find v , the linear<br />

speed. Before applying the formula, we must express<br />

ω in radians per minute.<br />

45 revolutions 2 π radians<br />

ω = ⋅<br />

1 minute 1 revolution<br />

90 π radians<br />

=<br />

1 minute<br />

The angular speed of the propeller is 90π radians per<br />

minute. The linear speed is<br />

90π<br />

135 π inches<br />

ν = rω<br />

= 1.5 inches ⋅ = 1 minute minute<br />

The linear speed is 135π inches per minute, which is<br />

approximately 424 inches per minute.<br />

Exercise Set 4.1<br />

1. obtuse<br />

2. obtuse<br />

3. acute<br />

4. acute<br />

5. straight<br />

6. right<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

14.<br />

θ = s 40 inches<br />

4 radians<br />

r<br />

= 10 inches<br />

=<br />

θ = s 30 feet<br />

6 radians<br />

r<br />

= 5 feet<br />

=<br />

s 8 yards 4<br />

θ = = = radians<br />

r 6 yards 3<br />

θ = s 18 yards<br />

2.25 radians<br />

r<br />

= 8 yards<br />

=<br />

θ = s 400 centimeters<br />

4 radians<br />

r<br />

= 100 centimeters<br />

=<br />

θ = s 600 centimeters<br />

6 radians<br />

r<br />

= 100 centimeters<br />

=<br />

π radians<br />

45°= 45°⋅<br />

180°<br />

45π<br />

= radians<br />

180<br />

π<br />

= radians<br />

4<br />

π radians<br />

18°= 18°⋅<br />

180°<br />

18π<br />

= radians<br />

180<br />

π<br />

= radians<br />

10<br />

15.<br />

π radians<br />

135°= 135°⋅<br />

180°<br />

135π<br />

= radians<br />

180<br />

3π<br />

= radians<br />

4<br />

490<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.1<br />

16.<br />

17.<br />

18.<br />

19.<br />

20.<br />

21.<br />

22.<br />

π radians<br />

150°= 150°⋅<br />

180°<br />

150π<br />

= radians<br />

180<br />

5π<br />

= radians<br />

6<br />

π radians<br />

300°= 300°⋅<br />

180°<br />

300π<br />

= radians<br />

180<br />

5π<br />

= radians<br />

3<br />

π radians<br />

330°= 330°⋅<br />

180°<br />

330π<br />

= radians<br />

180<br />

11π<br />

= radians<br />

6<br />

π radians<br />

− 225°= − 225°⋅<br />

180°<br />

225π<br />

=− radians<br />

180<br />

5π<br />

=− radians<br />

4<br />

π radians<br />

− 270°= − 270°⋅<br />

180°<br />

270π<br />

=− radians<br />

180<br />

3π<br />

=− radians<br />

2<br />

π π radians 180<br />

o<br />

radians = ⋅<br />

2 2 π radians<br />

180<br />

o<br />

=<br />

2<br />

= 90 o<br />

π π radians 180<br />

o<br />

radians = ⋅<br />

9 9 π radians<br />

180<br />

o<br />

= = 20<br />

o<br />

9<br />

23.<br />

24.<br />

25.<br />

26.<br />

27.<br />

28.<br />

29.<br />

30.<br />

31.<br />

2π<br />

2 π radians 180<br />

o<br />

radians = ⋅<br />

3 3 π radians<br />

2180 ⋅<br />

o<br />

=<br />

3<br />

= 120 o<br />

3 π radians 180<br />

0<br />

3⋅180 o<br />

⋅ = = 135<br />

o<br />

4 π radians 4<br />

7π<br />

7 π radians 180<br />

o<br />

radians = ⋅<br />

6 6 π radians<br />

7180 ⋅<br />

o<br />

=<br />

6<br />

= 210 o<br />

11 π radians 180<br />

o<br />

11⋅180 o<br />

⋅ = = 330<br />

o<br />

6 π radians 6<br />

180<br />

o<br />

− 3 π radians = −3 π radians ⋅<br />

π radians<br />

=−3180<br />

⋅<br />

o<br />

=−540<br />

o<br />

180<br />

o<br />

−4 π radians ⋅ = −4 ⋅ 180<br />

o<br />

=− 720<br />

o<br />

π radians<br />

π radians<br />

18°= 18°⋅<br />

180°<br />

18π<br />

= radians<br />

180<br />

≈ 0.31 radians<br />

π radians<br />

76°= 76°⋅<br />

180°<br />

76π<br />

= radians<br />

180<br />

≈ 1.33 radians<br />

π radians<br />

− 40°=− 40°⋅<br />

180°<br />

40π<br />

=− radians<br />

180<br />

≈−0.70 radians<br />

491<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

32.<br />

33.<br />

34.<br />

35.<br />

36.<br />

π radians<br />

− 50°=− 50°⋅<br />

180°<br />

50π<br />

=− radians<br />

180<br />

≈−0.87 radians<br />

π radians<br />

200°= 200°⋅<br />

180°<br />

200π<br />

= radians<br />

180<br />

≈ 3.49 radians<br />

π radians<br />

250°= 250°⋅<br />

180°<br />

250π<br />

= radians<br />

180<br />

≈ 4.36 radians<br />

180<br />

o<br />

2 radians = 2 radians ⋅<br />

π radians<br />

2180 ⋅<br />

o<br />

=<br />

π<br />

≈ 114.59<br />

o<br />

180<br />

o<br />

3⋅180 o<br />

3 radians ⋅ = ≈ 171.89<br />

o<br />

π radians π<br />

41.<br />

42.<br />

43.<br />

44.<br />

37.<br />

38.<br />

39.<br />

40.<br />

π π radians 180<br />

o<br />

radians = ⋅<br />

13 13 π radians<br />

180<br />

o<br />

=<br />

13<br />

≈ 13.85 o<br />

π 180<br />

o<br />

180<br />

o<br />

radians ⋅ = ≈ 10.59<br />

o<br />

17 π radians 17<br />

180<br />

o<br />

− 4.8 radians =−4.8 radians ⋅<br />

π radians<br />

−4.8⋅180<br />

o<br />

=<br />

π<br />

≈−275.02<br />

o<br />

180<br />

o<br />

−5.2⋅180<br />

o<br />

−5.2 radians⋅ =<br />

πradians<br />

π<br />

≈− 297.94<br />

o<br />

45.<br />

46.<br />

47.<br />

492<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.1<br />

48.<br />

55.<br />

49.<br />

56.<br />

50.<br />

57. 395°− 360°= 35°<br />

58. 415°− 360°= 55°<br />

59. − 150°+ 360°= 210°<br />

51.<br />

60. − 160°+ 360°= 200°<br />

61. − 765°+ 360°⋅ 3 =− 765°+ 1080°= 315°<br />

62. − 760°+ 360°⋅ 3 =− 760°+ 1080°= 320°<br />

52.<br />

53.<br />

54.<br />

63.<br />

64.<br />

65.<br />

66.<br />

67.<br />

68.<br />

69.<br />

19 π 19 12 7<br />

− 2π<br />

= π − π =<br />

π<br />

6 6 6 6<br />

17 π 17 10 7<br />

− 2π<br />

= π − π =<br />

π<br />

5 5 5 5<br />

23 π 23 23 20 3<br />

−2π<br />

⋅ 2= π − 4π<br />

= π − π =<br />

π<br />

5 5 5 5 5<br />

25 π 25 25 24<br />

−2π<br />

⋅ 2= π − 4π<br />

= π − π =<br />

π<br />

6 6 6 6 6<br />

100 99<br />

− π + 2π<br />

=− π + π =<br />

π<br />

50 50 50 50<br />

80 79<br />

− π + 2π<br />

= − π + π =<br />

π<br />

40 40 40 40<br />

31π<br />

31π<br />

− + 2π<br />

⋅ 3=− + 6π<br />

7 7<br />

31π 42π 11π<br />

=− + =<br />

7 7 7<br />

493<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

38π<br />

38π<br />

70. − + 2π<br />

⋅ 3= − + 6π<br />

9 9<br />

38π 54π 16π<br />

=− + =<br />

9 9 9<br />

71. r = 12 inches, θ = 45°<br />

Begin by converting 45° to radians, in order to use<br />

the formula s = rθ .<br />

π radians π<br />

45°= 45°⋅ = radians<br />

180°<br />

4<br />

Now use the formula s = rθ .<br />

π<br />

s = rθ<br />

= 12⋅ = 3π<br />

inches ≈ 9.42 inches<br />

4<br />

72. r = 16 inches, θ = 60°<br />

Begin by converting 60° to radians, in order to use<br />

the formula s = rθ .<br />

π radians π<br />

60°= 60°⋅ = radians<br />

180°<br />

3<br />

Now use the formula s = rθ .<br />

π 16π<br />

s = rθ<br />

= 16 ⋅ = inches ≈ 16.76 inches<br />

3 3<br />

73. r = 8feet, θ = 225°<br />

Begin by converting 225° to radians, in order to use<br />

the formula s = rθ .<br />

π radians 5π<br />

225°= 225°⋅ = radians<br />

180°<br />

4<br />

Now use the formula s = rθ .<br />

5π<br />

s = rθ<br />

= 8⋅ = 10π<br />

feet ≈ 31.42 feet<br />

4<br />

74. r = 9 yards, θ = 315°<br />

Begin by converting 315° to radians, in order to use<br />

the formula s = rθ .<br />

π radians 7π<br />

315°= 315°⋅ = radians<br />

180°<br />

4<br />

Now use the formula s = rθ .<br />

7π<br />

63π<br />

s = rθ<br />

= 9 ⋅ = yards ≈ 49.48 yards<br />

4 4<br />

75. 6 revolutions per second<br />

6 revolutions 2 π radians 12 π radians<br />

= ⋅ =<br />

1 second 1 revolutions 1 seconds<br />

= 12 π radians per second<br />

77.<br />

78.<br />

79.<br />

80.<br />

81.<br />

4π<br />

2π<br />

− and<br />

3 3<br />

7π<br />

5π<br />

− and<br />

6 6<br />

3π<br />

5π<br />

− and<br />

4 4<br />

π 7π<br />

− and<br />

4 4<br />

π 3π<br />

− and<br />

2 2<br />

82. −π and π<br />

83.<br />

84.<br />

55 11π<br />

⋅ 2π<br />

=<br />

60 6<br />

35 7π<br />

⋅ 2π<br />

=<br />

60 6<br />

85. 3 minutes and 40 seconds equals 220 seconds.<br />

220 22π<br />

⋅ 2π<br />

=<br />

60 3<br />

86. 4 minutes and 25 seconds equals 265 seconds.<br />

265 53π<br />

⋅ 2π<br />

=<br />

60 6<br />

87. First, convert to degrees.<br />

1 1 360°<br />

revolution = revolution ⋅<br />

6 6 1 revolution<br />

1<br />

= ⋅ 360 °= 60 °<br />

6<br />

Now, convert 60° to radians.<br />

π radians 60π<br />

60°= 60°⋅ = radians<br />

180°<br />

180<br />

π<br />

= radians<br />

3<br />

Therefore, 1 6 revolution is equivalent to 60° or π<br />

3<br />

radians.<br />

76. 20 revolutions per second<br />

20 revolutions 2 π radians 40 π radians<br />

= ⋅ =<br />

1 second 1 revolution 1 second<br />

= 40 π radians per second<br />

494<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.1<br />

88. First, convert to degrees.<br />

1 1 360<br />

o<br />

revolutions = revolutions ⋅<br />

3 3 1 revolution<br />

1<br />

= ⋅ 360<br />

o<br />

= 120<br />

o<br />

3<br />

Now, convert 120° to radians.<br />

π radians 120π<br />

120°= 120°⋅ = radians<br />

180°<br />

180<br />

2π<br />

= radians<br />

3<br />

Therefore, 1 3 revolution is equivalent to 120° or 2 π<br />

3<br />

radians.<br />

89. The distance that the tip of the minute hand moves is<br />

given by its arc length, s. Since s = rθ , we begin by<br />

finding r and θ . We are given that r = 8 inches. The<br />

minute hand moves from 12 to 2 o'clock, or 1 6 of a<br />

complete revolution. The formula s = rθ can only be<br />

used when θ is expressed in radians. We must<br />

convert 1 revolution to radians.<br />

6<br />

1 1 2 π radians<br />

revolution = revolution ⋅<br />

6 6 1 revolution<br />

π<br />

= radians<br />

3<br />

The distance the tip of the minute hand moves is<br />

⎛π<br />

⎞ 8π<br />

s = rθ<br />

= (8 inches) ⎜ ⎟=<br />

inches<br />

⎝ 3 ⎠ 3<br />

≈ 8.38 inches.<br />

90. The distance that the tip of the minute hand moves is<br />

given by its arc length, s. Since s = rθ , we begin by<br />

finding r and θ . We are given that<br />

r = 6 inches. The minute hand moves from 12 to 4<br />

o’clock, or 1 of a complete revolution. The formula<br />

3<br />

s = rθ can only be used when θ is expressed in<br />

radians. We must convert 1 revolution to radians.<br />

3<br />

1 1 2 π radians<br />

revolution = revolution ⋅<br />

3 3 1 revolution<br />

2π<br />

= radians<br />

3<br />

The distance the tip of the minute hand moves is<br />

⎛2π<br />

⎞ 12π<br />

s = rθ<br />

= (6 inches) ⎜ ⎟=<br />

inches<br />

⎝ 3 ⎠ 3<br />

= 4π<br />

inches ≈12.57 inches.<br />

91. The length of each arc is given by s = rθ . We are<br />

given that r = 24 inches and<br />

θ = 90 ° . The formula s = rθ can only be used when<br />

θ is expressed in radians.<br />

π radians 90π<br />

90°= 90°⋅ = radians<br />

180°<br />

180<br />

π<br />

= radians<br />

2<br />

The length of each arc is<br />

⎛π<br />

⎞<br />

s = rθ<br />

= (24 inches) ⎜ ⎟=<br />

12π<br />

inches<br />

⎝ 2 ⎠<br />

≈ 37.70 inches.<br />

92. The distance that the wheel moves is given by<br />

s = rθ . We are given that r = 80 centimeters and θ<br />

= 60°. The formula s = rθ can only be used when θ<br />

is expressed in radians.<br />

π radians 60π<br />

60°= 60°⋅ = radians<br />

180°<br />

180<br />

π<br />

= radians<br />

3<br />

The length that the wheel moves is<br />

⎛π<br />

⎞ 80π<br />

s = rθ<br />

= (80 centimeters) ⎜ ⎟ = centimeters<br />

⎝ 3⎠<br />

3<br />

≈ 83.78 centimeters.<br />

s<br />

93. Recall that θ = . We are given that<br />

r<br />

s = 8000 miles and r = 4000 miles.<br />

s 8000 miles<br />

θ = = = 2 radians<br />

r 4000 miles<br />

Now, convert 2 radians to degrees.<br />

180<br />

o<br />

2 radians = 2 radians ⋅ ≈ 114.59<br />

o<br />

π radians<br />

s<br />

94. Recall that θ = . We are given that<br />

r<br />

s = 10,000 miles and r = 4000 miles.<br />

s 10,000 miles<br />

θ = = = 2.5 radians<br />

r 4000 miles<br />

Now, convert 2.5 radians to degrees.<br />

180<br />

o<br />

2.5 radians⋅ ≈ 143.24<br />

o<br />

2 π radians<br />

495<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

95. Recall that s = rθ . We are given that<br />

r = 4000 miles and θ = 30°. The formula s = rθ can<br />

only be used when θ is expressed in radians.<br />

π radians 30π<br />

30°= 30°⋅ = radians<br />

180°<br />

180<br />

π<br />

= radians<br />

6<br />

⎛π<br />

⎞<br />

s= rθ<br />

=(4000 miles) ⎜ ⎟ ≈ 2094 miles<br />

⎝ 6 ⎠<br />

To the nearest mile, the distance from A to B is<br />

2094 miles.<br />

96. Recall that s = rθ . We are given that<br />

r = 4000 miles and θ = 10°. We can only use the<br />

formula s = rθ when θ is expressed in radians.<br />

π radians 10π<br />

10°= 10°⋅ = radians<br />

180°<br />

180<br />

π<br />

= radians<br />

18<br />

⎛ π ⎞<br />

s= rθ<br />

=(4000 miles) ⎜ ⎟ ≈ 698 miles<br />

⎝18<br />

⎠<br />

To the nearest mile, the distance from A to B is<br />

698 miles.<br />

97. Linear speed is given by ν = rω<br />

. We are given that<br />

π<br />

ω = radians per hour and<br />

12<br />

r = 4000 miles. Therefore,<br />

⎛ π ⎞<br />

ν = rω<br />

= (4000 miles) ⎜ ⎟<br />

⎝ 12 ⎠<br />

4000π<br />

= miles per hour<br />

12<br />

≈ 1047 miles per hour<br />

The linear speed is about 1047 miles per hour.<br />

98. Linear speed is given by ν = rω<br />

. We are given that<br />

r = 25 feet and the wheel rotates at 3 revolutions per<br />

minute. We need to convert 3 revolutions per minute<br />

to radians per minute.<br />

3 revolutions per minute<br />

2π<br />

radians<br />

= 3 revolutions per minute ⋅ 1 revolution<br />

= 6π<br />

radians per minute<br />

ν = rω = (25 feet)(6 π) ≈ 471 feet per minute<br />

The linear speed of the Ferris wheel is about<br />

471 feet per minute.<br />

99. Linear speed is given by ν = rω<br />

. We are given that<br />

r = 12 feet and the wheel rotates at 20 revolutions per<br />

minute.<br />

20 revolutions per minute<br />

2π<br />

radians<br />

= 20 revolutions per minute⋅<br />

1 revolution<br />

= 40π<br />

radians per minute<br />

ν = rω = (12 feet)(40 π)<br />

≈ 1508 feet per minute<br />

The linear speed of the wheel is about<br />

1508 feet per minute.<br />

100. Begin by converting 2.5 revolutions per minute to<br />

radians per minute.<br />

2.5 revolutions per minute<br />

2π<br />

radians<br />

= 2.5 revolutions per minute ⋅ 1 revolution<br />

= 5π<br />

radians per minute<br />

The linear speed of the animals in the outer rows is<br />

ν = rω = (20 feet)(5 π) ≈ 100 feet per minute<br />

The linear speed of the animals in the inner rows is<br />

ν = rω = (10 feet)(5 π) ≈ 50 feet per minute<br />

The difference is 100π − 50π = 50π<br />

feet per minute<br />

or about 157.08 feet per minute.<br />

101. – 112. Answers may vary.<br />

113.<br />

114.<br />

115.<br />

116.<br />

496<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.2<br />

117. does not make sense; Explanations will vary. Sample<br />

explanation: Angles greater than π will exceed a<br />

straight angle.<br />

118. does not make sense; Explanations will vary. Sample<br />

explanation: It is possible for π to be used in an<br />

angle measured using degrees.<br />

119. makes sense<br />

120. does not make sense; Explanations will vary. Sample<br />

explanation: That will not be possible if the angle is a<br />

multiple of 2 π .<br />

121. A right angle measures 90° and<br />

π<br />

90<br />

≈ °= radians 1.57 radians.<br />

2<br />

3<br />

If θ = radians = 1.5 radians, θ is smaller than a<br />

2<br />

right angle.<br />

122. s = rθ<br />

Begin by changing θ = 20° to radians.<br />

π π<br />

20°= 20°⋅ = radians<br />

180°<br />

9<br />

π<br />

100= r 9<br />

900<br />

r = ≈ 286 miles<br />

π<br />

To the nearest mile, a radius of 286 miles should be<br />

used.<br />

123. s = rθ<br />

Begin by changing θ = 26° to radians.<br />

124.<br />

π 13π<br />

26°= 26°⋅ = radians<br />

180°<br />

90<br />

13π<br />

s=4000⋅<br />

90<br />

≈ 1815 miles<br />

To the nearest mile, Miami, Florida is 1815 miles<br />

north of the equator.<br />

125. domain: { x −1≤ x ≤ 1}<br />

or [ − 1,1]<br />

range: { y −1≤ y ≤ 1}<br />

or [ − 1,1]<br />

126.<br />

1 3<br />

x =− ; y =<br />

2 2<br />

1<br />

−<br />

x 2 1 1 3 3<br />

= = − =− =−<br />

y 3 3 3 3 3<br />

2<br />

Section 4.2<br />

Check Point Exercises<br />

1.<br />

P ⎛<br />

⎜<br />

⎝<br />

sin t<br />

3 1<br />

,<br />

2 2<br />

= y =<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

2<br />

cost<br />

= x =<br />

3<br />

2<br />

1<br />

2<br />

3<br />

2<br />

y<br />

tan t = = =<br />

x<br />

1<br />

csct<br />

= = 2<br />

y<br />

1 2 3<br />

sect<br />

= =<br />

x 3<br />

cot t = x = 3<br />

y<br />

3<br />

3<br />

2. The point P on the unit circle that corresponds to<br />

t = π has coordinates (–1, 0). Use x = –1 and y = 0 to<br />

find the values of the trigonometric functions.<br />

sinπ<br />

= y = 0<br />

cosπ<br />

= x = −1<br />

y 0<br />

tanπ<br />

= = = 0<br />

x −1<br />

1 1<br />

secπ<br />

= = = −1<br />

x −1<br />

x −1<br />

cotπ<br />

= = = undefined<br />

y 0<br />

1 1<br />

cscπ<br />

= = = undefined<br />

y 0<br />

497<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

3.<br />

π ⎛ 1 1 ⎞<br />

t = , P⎜ , ⎟<br />

4 ⎝ 2 2 ⎠<br />

π 1<br />

csc = =<br />

4 y<br />

2<br />

π 1<br />

sec = =<br />

4 x<br />

2<br />

π x<br />

cot = =<br />

4 y<br />

= 1<br />

1<br />

y<br />

1<br />

2<br />

⎛ π ⎞ ⎛π<br />

⎞<br />

4. a. sec⎜− = sec = 2<br />

4<br />

⎟ ⎜<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

5.<br />

b.<br />

⎛ π ⎞ ⎛π<br />

⎞ 2<br />

sin ⎜− sin<br />

4<br />

⎟ =− ⎜ =−<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ 2<br />

2<br />

sinθ<br />

tanθ<br />

= =<br />

3<br />

cosθ<br />

5<br />

3<br />

2 3 2<br />

= ⋅ =<br />

3 5 5<br />

2 5 2 5<br />

= ⋅ =<br />

5 5 5<br />

1 1 3<br />

cscθ<br />

= = =<br />

sinθ<br />

2 2<br />

3<br />

1 1 3<br />

secθ<br />

= = =<br />

cosθ<br />

5 5<br />

3<br />

3 5 3 5<br />

= ⋅ =<br />

5 5 5<br />

1 1 5<br />

cotθ<br />

= = =<br />

tanθ<br />

2 2<br />

5<br />

6.<br />

7. a.<br />

1 π<br />

sin t = , 0 ≤ t <<br />

2 2<br />

2 2<br />

sin t+ cos t = 1<br />

2<br />

⎛1<br />

⎞ +<br />

2 =<br />

⎜ cos 1<br />

2<br />

⎟ t<br />

⎝ ⎠<br />

2 1<br />

cos t = 1−<br />

4<br />

3 3<br />

cost<br />

= =<br />

4 2<br />

π<br />

Because 0 ≤ t < , cos t is positive.<br />

2<br />

b.<br />

5π ⎛π ⎞ π<br />

cot = cot π cot 1<br />

4<br />

⎜ + = =<br />

4<br />

⎟<br />

⎝ ⎠ 4<br />

⎛ 9π<br />

⎞ ⎛ 9π<br />

⎞<br />

cos ⎜− cos 4π<br />

4<br />

⎟= ⎜− +<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

7π<br />

= cos 4<br />

=<br />

π<br />

8. a. sin ≈ 0.7071<br />

4<br />

2<br />

2<br />

b. csc 1.5 ≈ 1.0025<br />

Exercise Set 4.2<br />

1. The point P on the unit circle has coordinates<br />

⎛ 15 8 ⎞<br />

⎜−<br />

,<br />

17 17<br />

⎟<br />

⎝ ⎠ . Use 15 8<br />

x =− and y = to find the<br />

17 17<br />

values of the trigonometric functions.<br />

8<br />

sin t = y =<br />

17<br />

15<br />

cost<br />

= x = −<br />

17<br />

8<br />

y 17 8<br />

tan t = = = −<br />

15<br />

x − 15<br />

17<br />

1 17<br />

csct<br />

= =<br />

y 8<br />

1 17<br />

sect<br />

= = −<br />

x 15<br />

x 15<br />

cot t = = −<br />

y 8<br />

498<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.2<br />

2. The point P on the unit circle has coordinates<br />

⎛ 5 12⎞<br />

⎜−<br />

, −<br />

13 13<br />

⎟<br />

⎝ ⎠ Use 5 12<br />

x =− and y =− to find the<br />

13 13<br />

values of the trigonometric functions.<br />

12<br />

sin t = y = −<br />

13<br />

5<br />

cost<br />

= x =−<br />

13<br />

12<br />

y −<br />

13 12<br />

tan t = = =<br />

5<br />

x − 5<br />

13<br />

1 13<br />

csct<br />

= = −<br />

y 12<br />

1 13<br />

sect<br />

= =−<br />

x 5<br />

x 5<br />

cot t = =<br />

y 12<br />

3. The point P on the unit circle that corresponds to<br />

t = − π<br />

4 has coordinates ⎛ 2 2 ⎞<br />

, −<br />

. Use x =<br />

⎜ 2 2 ⎟<br />

⎝ ⎠<br />

2<br />

and y =− to find the values of the trigonometric<br />

2<br />

functions.<br />

sin t = y = −<br />

2<br />

2<br />

cost<br />

= x =<br />

2<br />

2<br />

2<br />

y −<br />

2<br />

tan t = =<br />

x 2<br />

2<br />

=−1<br />

1<br />

csct<br />

= = −<br />

y<br />

2<br />

1<br />

sect<br />

= =<br />

x<br />

2<br />

x<br />

cot t = = −1<br />

y<br />

2<br />

2<br />

4. The point P on the unit circle that corresponds to<br />

3π<br />

⎛ 2 2 ⎞<br />

t = has coordinates<br />

− , . Use<br />

4<br />

⎜ 2 2 ⎟<br />

⎝ ⎠<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

x =−<br />

2 2<br />

and y = to find the values of the<br />

2 2<br />

trigonometric functions.<br />

sin t = y =<br />

2<br />

2<br />

cost<br />

= x =−<br />

2<br />

2<br />

2<br />

y 2<br />

tan t = =<br />

x 2<br />

−<br />

2<br />

=−1<br />

1<br />

csct<br />

= =<br />

y<br />

2<br />

1<br />

sect<br />

= = −<br />

x<br />

2<br />

x<br />

cot t = = −1<br />

y<br />

π 1<br />

sin = 6 2<br />

π 3<br />

sin = 3 2<br />

5π 3<br />

cos =− 6 2<br />

2π 1<br />

cos =− 3 2<br />

0<br />

tan π= = 0<br />

−1<br />

0<br />

tan 0 = = 0<br />

1<br />

7π 1<br />

csc = =− 2<br />

6 −<br />

1<br />

2<br />

12.<br />

13.<br />

4π<br />

1 −2 3<br />

csc = = 3 − 3<br />

3<br />

2<br />

3<br />

2<br />

11π 1 2 3<br />

sec = = 6 3<br />

499<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

14.<br />

5π 1<br />

sec = = 2<br />

3<br />

1<br />

2<br />

24. a.<br />

11π<br />

− 3<br />

tan = = −<br />

6 3<br />

1<br />

2<br />

3<br />

2<br />

15.<br />

16.<br />

17.<br />

18.<br />

19. a.<br />

3π sin =− 1<br />

2<br />

3π cos = 0<br />

2<br />

3π sec = undefined<br />

2<br />

3π tan = undefined<br />

2<br />

b.<br />

20. a.<br />

b.<br />

21. a.<br />

π 3<br />

cos = 6 2<br />

⎛ π ⎞ π 3<br />

cos⎜− cos<br />

6<br />

⎟ = =<br />

⎝ ⎠ 6 2<br />

π 1<br />

cos = 3 2<br />

⎛ π ⎞ π 1<br />

cos⎜− cos<br />

3<br />

⎟= =<br />

⎝ ⎠ 3 2<br />

5π 1<br />

sin = 6 2<br />

25.<br />

26.<br />

b.<br />

⎛ 11π<br />

⎞ 11π<br />

3<br />

tan ⎜− tan<br />

6<br />

⎟= − =<br />

⎝ ⎠ 6 3<br />

8 15<br />

sin t = , cost<br />

=<br />

17 17<br />

8<br />

17 8<br />

tan t = =<br />

15<br />

15<br />

17<br />

17<br />

csct<br />

=<br />

8<br />

17<br />

sect<br />

=<br />

15<br />

15<br />

cot t =<br />

8<br />

3 4<br />

sin t = , cos t =<br />

5 5<br />

3<br />

5 3<br />

tan t = =<br />

4<br />

4<br />

5<br />

5<br />

csct<br />

=<br />

3<br />

5<br />

sect<br />

=<br />

4<br />

4<br />

cot t =<br />

3<br />

b.<br />

22. a.<br />

b.<br />

23. a.<br />

⎛ 5π<br />

⎞ 5π<br />

1<br />

sin ⎜− sin<br />

6<br />

⎟ =− = −<br />

⎝ ⎠ 6 2<br />

2π 3<br />

sin = 3 2<br />

⎛ 2π<br />

⎞ 2π<br />

3<br />

sin ⎜− sin<br />

3<br />

⎟ =− =−<br />

⎝ ⎠ 3 2<br />

3<br />

2<br />

1<br />

2<br />

5π<br />

−<br />

tan = = − 3<br />

3<br />

27.<br />

1 2 2<br />

sin t = , cos t =<br />

3 3<br />

1<br />

3 2<br />

tan t = =<br />

2 2 4<br />

3<br />

csct<br />

= 3<br />

3 2<br />

sect<br />

=<br />

4<br />

cot t = 2 2<br />

b.<br />

⎛ 5π<br />

⎞ 5π<br />

tan ⎜− = − tan = 3<br />

3<br />

⎟<br />

⎝ ⎠ 3<br />

500<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.2<br />

28.<br />

29.<br />

30.<br />

2 5<br />

sin t = , cost<br />

=<br />

3 3<br />

2<br />

3 2 5<br />

tan t = =<br />

5<br />

5<br />

3<br />

3<br />

csct<br />

=<br />

2<br />

3 5<br />

sect<br />

=<br />

5<br />

5<br />

cot t =<br />

2<br />

6 π<br />

sin t = , 0 ≤ t <<br />

7 2<br />

2 2<br />

sin t+ cos t = 1<br />

2<br />

⎛6<br />

⎞ +<br />

2<br />

t =<br />

⎜ cos 1<br />

7<br />

⎟<br />

⎝ ⎠<br />

2 36<br />

cos t = 1−<br />

49<br />

13 13<br />

cost<br />

= =<br />

49 7<br />

π<br />

Because 0 ≤ t < , cost<br />

is positive.<br />

2<br />

7 π<br />

sin t = , 0 ≤ t <<br />

8 2<br />

2 2<br />

sin t+ cos t = 1<br />

2<br />

⎛7<br />

⎞ +<br />

2<br />

t =<br />

⎜<br />

8<br />

⎟<br />

⎝ ⎠<br />

cos 1<br />

2 49<br />

cos t = 1−<br />

64<br />

31.<br />

32.<br />

33.<br />

34.<br />

39 π<br />

sin t = , 0 ≤ t <<br />

8 2<br />

2 2<br />

sin t+ cos t = 1<br />

2<br />

⎛ 39 ⎞<br />

+<br />

2 =<br />

cos t 1<br />

⎜<br />

8 ⎟<br />

⎝ ⎠<br />

2 39<br />

cos t = 1−<br />

64<br />

25 5<br />

cost<br />

= =<br />

64 8<br />

π<br />

Because 0 ≤ t < , cost<br />

is positive.<br />

2<br />

21 π<br />

sin t = , 0 ≤ t <<br />

5 2<br />

2 2<br />

sin t+ cos t = 1<br />

2<br />

⎛ 21 ⎞<br />

+<br />

2 =<br />

cos t 1<br />

⎜<br />

5 ⎟<br />

⎝ ⎠<br />

2 21<br />

cos t = 1−<br />

25<br />

4 2<br />

cost<br />

= =<br />

25 5<br />

π<br />

Because 0 ≤ t < , cos t is positive.<br />

2<br />

⎛ 1 ⎞<br />

sin1.7csc1.7 = sin1.7⎜<br />

= 1<br />

sin1.7<br />

⎟<br />

⎝ ⎠<br />

⎛ 1 ⎞<br />

cos 2.3 sec 2.3 = cos 2.3⎜<br />

= 1<br />

cos 2.3<br />

⎟<br />

⎝ ⎠<br />

15 15<br />

cost<br />

= =<br />

64 8<br />

π<br />

Because 0 ≤ t < , cos t is positive.<br />

2<br />

35.<br />

36.<br />

2 π 2 π<br />

sin + cos = 1 by the Pythagorean identity.<br />

6 2<br />

2 π 2 π<br />

sin + cos = 1 because<br />

3 3<br />

2 2<br />

sin t+ cos t = 1.<br />

37.<br />

2 π 2 π<br />

2 2<br />

sec − tan = 1 because 1+ tan t = sec t.<br />

3 3<br />

38.<br />

2 π 2 π<br />

csc − cot = 1 because<br />

6 6<br />

2 2<br />

1+ cot t = csc t.<br />

501<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

39.<br />

40.<br />

41.<br />

42.<br />

43.<br />

44.<br />

45.<br />

9π ⎛π ⎞ π 2<br />

cos = cos 2π<br />

cos<br />

4<br />

⎜ +<br />

4<br />

⎟= =<br />

⎝ ⎠ 4 2<br />

9π ⎛π ⎞ π<br />

csc = csc 2π<br />

csc 2<br />

4<br />

⎜ + = =<br />

4<br />

⎟<br />

⎝ ⎠ 4<br />

⎛ 9π ⎞ ⎛ 9π ⎞ 7π<br />

2<br />

sin ⎜− sin 4π<br />

sin<br />

4<br />

⎟= ⎜− + = = −<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ 4 2<br />

⎛ 9π ⎞ ⎛ 9π ⎞ 7π<br />

sec⎜− sec 4π<br />

sec 2<br />

4<br />

⎟= ⎜− + = =<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ 4<br />

5π ⎛π ⎞ π<br />

tan = tan π tan 1<br />

4<br />

⎜ + = =<br />

4<br />

⎟<br />

⎝ ⎠ 4<br />

5π ⎛π ⎞ π<br />

cot = cot π cot 1<br />

4<br />

⎜ + = =<br />

4<br />

⎟<br />

⎝ ⎠ 4<br />

⎛ 5π ⎞ ⎛3π ⎞ 3π<br />

cot ⎜− cot 2π<br />

cot 1<br />

4<br />

⎟= ⎜ − = = −<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ 4<br />

⎛ π ⎞ ⎛ π ⎞<br />

51. cos ⎜− − 1000π<br />

cos 2π<br />

4<br />

⎟ = ⎜− +<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

7π<br />

= cos 4<br />

2<br />

=<br />

2<br />

⎛ π ⎞ ⎛ π ⎞<br />

52. cos ⎜− − 2000π<br />

cos 2π<br />

4<br />

⎟ = ⎜− +<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

7π<br />

= cos 4<br />

2<br />

=<br />

2<br />

53. a.<br />

b.<br />

3π 2<br />

sin = 4 2<br />

11π ⎛3π ⎞ 3π<br />

2<br />

sin = sin 2π<br />

sin<br />

4<br />

⎜ +<br />

4<br />

⎟ = =<br />

⎝ ⎠ 4 2<br />

46.<br />

⎛ 9π ⎞ ⎛ 9π ⎞ 3π<br />

tan ⎜− tan 3π<br />

tan 1<br />

4<br />

⎟ = ⎜− + = = −<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ 4<br />

54. a.<br />

3π 2<br />

cos =− 4 2<br />

⎛π<br />

⎞ π<br />

47. − tan ⎜ + 15π<br />

=− tan = −1<br />

4<br />

⎟<br />

⎝ ⎠ 4<br />

b.<br />

11π ⎛3π ⎞ 3π<br />

2<br />

cos = cos 2π<br />

cos<br />

4<br />

⎜ +<br />

4<br />

⎟= =−<br />

⎝ ⎠ 4 2<br />

⎛π<br />

⎞ π<br />

48. − cot ⎜ + 17π<br />

=− cot = −1<br />

4<br />

⎟<br />

⎝ ⎠ 4<br />

⎛ π ⎞ ⎛ π ⎞<br />

49. sin ⎜− − 1000π<br />

sin 2π<br />

4<br />

⎟= ⎜− +<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

7π<br />

= sin 4<br />

2<br />

=−<br />

2<br />

⎛ π ⎞ ⎛ π ⎞<br />

50. sin ⎜− − 2000π<br />

sin 2π<br />

4<br />

⎟= ⎜− +<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

7π<br />

= sin 4<br />

2<br />

=−<br />

2<br />

π<br />

55. a. cos = 0<br />

2<br />

b.<br />

π<br />

56. a. sin = 1<br />

2<br />

b.<br />

9π<br />

⎛π<br />

⎞<br />

cos = cos 4<br />

2<br />

⎜ + π<br />

2<br />

⎟<br />

⎝ ⎠<br />

⎡π<br />

⎤<br />

= cos ⎢ + 2(2 π )<br />

2<br />

⎥<br />

⎣ ⎦<br />

π<br />

= cos 2<br />

= 0<br />

9π ⎛π ⎞ π<br />

sin = sin 4π<br />

sin 1<br />

2<br />

⎜ + = =<br />

2<br />

⎟<br />

⎝ ⎠ 2<br />

502<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.2<br />

0<br />

π<br />

57. a. tanπ = = 0<br />

69. cot ≈ 3.7321<br />

−1<br />

12<br />

b. tan17π = tan( π + 16 π)<br />

π<br />

70. cot ≈ 5.6713<br />

= tan[ π + 8(2 π)]<br />

18<br />

= tanπ<br />

71. sin( −t) − sin t = −sin t− sin t = − 2sin t =− 2a<br />

= 0<br />

72. tan( −t) − tan t = −tan t− tan t = − 2 tan t = − 2c<br />

π 0<br />

58. a. cot = = 0<br />

2 1<br />

73. 4cos( −t) − cos t = 4cost− cost = 3cost = 3b<br />

15π ⎛π ⎞ π<br />

b. cot = cot + 7π<br />

= cot = 0<br />

2<br />

⎜<br />

2<br />

⎟<br />

74. 3cos( −t) − cost = 3cost− cost = 2cost = 2b<br />

⎝ ⎠ 2<br />

75. sin( t+ 2 π) − cos( t+ 4 π) + tan( t+<br />

π)<br />

7π 2<br />

59. a. sin =−<br />

= sin( t) − cos( t) + tan( t)<br />

4 2<br />

= a− b+<br />

c<br />

47π<br />

⎛7π<br />

⎞<br />

b. sin = sin + 10π<br />

76. sin( t+ 2 π) + cos( t+ 4 π) − tan( t+<br />

π)<br />

4<br />

⎜<br />

4<br />

⎟<br />

⎝ ⎠<br />

= sin( t) + cos( t) −tan( t)<br />

⎡7π<br />

⎤<br />

= sin ⎢ + 5( 2π<br />

)<br />

= a+ b−c<br />

4<br />

⎥<br />

⎣ ⎦<br />

7π<br />

77. sin( −t−2 π) −cos( −t−4 π) −tan( −t−π)<br />

= sin 4<br />

= − sin( t+ 2 π) − cos( t+ 4 π) + tan( t+<br />

π)<br />

2<br />

=−sin( t) − cos( t) + tan( t)<br />

=−<br />

2<br />

=−a− b+<br />

c<br />

7π 2<br />

78. sin( −t− 2 π) + cos( −t−4 π) −tan( −t−π)<br />

60. a. cos = 4 2<br />

= − sin( t+ 2 π) + cos( t+ 4 π) + tan( t+<br />

π)<br />

=− sin( t) + cos( t) + tan( t)<br />

47π ⎛7π ⎞ 7π<br />

2<br />

b. cos = cos + 10π<br />

= cos =<br />

=− a+ b+<br />

c<br />

4<br />

⎜<br />

4<br />

⎟<br />

⎝ ⎠ 4 2<br />

79. cost+ cos( t+ 1000 π) −tan t− tan( t+<br />

999 π)<br />

61. sin 0.8 ≈ 0.7174<br />

− sin t+ 4sin( t−1000 π )<br />

= cost+ cost−tan t−tan t− sin t+<br />

4sin t<br />

≈ 62. cos 0.6 0.8253<br />

= 2cost− 2tant+<br />

3sint<br />

63. tan 3.4 0.2643<br />

= 3a+ 2b−<br />

≈ 2c<br />

64. tan ≈ 3.7 0.6247<br />

80. − cost+ 7cos( t+ 1000 π) + tan t+ tan( t+<br />

999 π)<br />

65. csc 1 1.1884<br />

+ sin ≈ t+ sin( t−1000 π )<br />

=− cost+ 7 cost+ tan t+ tan t+ sin t+<br />

sin t<br />

66. sec ≈ 1 1.8508<br />

= 6cost+ 2tant+<br />

2sint<br />

π = 2a+ 6b+<br />

2c<br />

67. cos ≈ 0.9511<br />

10<br />

3π 68. sin ≈ 0.8090<br />

10<br />

503<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

81. a.<br />

b.<br />

c.<br />

82. a.<br />

b.<br />

c.<br />

⎡ 2π<br />

⎤<br />

H = 12 + 8.3sin ⎢ (80 −80)<br />

365<br />

⎥<br />

⎣<br />

⎦<br />

= 12 + 8.3sin 0 = 12 + 8.3(0)<br />

= 12<br />

There are 12 hours of daylight in Fairbanks on<br />

March 21.<br />

⎡ 2π<br />

⎤<br />

H = 12 + 8.3sin ⎢ (172 −80)<br />

365<br />

⎥<br />

⎣<br />

⎦<br />

≈ 12 + 8.3sin1.5837<br />

≈ 20.3<br />

There are about 20.3 hours of daylight in<br />

Fairbanks on June 21.<br />

⎡ 2π<br />

⎤<br />

H = 12 + 8.3sin ⎢ (355 −80)<br />

365<br />

⎥<br />

⎣<br />

⎦<br />

≈ 12 + 8.3sin 4.7339<br />

≈ 3.7<br />

There are about 3.7 hours of daylight in<br />

Fairbanks on December 21.<br />

⎡ 2π<br />

⎤<br />

H = 12 + 24sin ⎢ (80 −80)<br />

365<br />

⎥<br />

⎣<br />

⎦<br />

12 + 24sin 0 = 12 + 24(0) = 12<br />

There are 12 hours of daylight in San Diego on<br />

March 21.<br />

⎡ 2π<br />

⎤<br />

H = 12 + 24sin ⎢ (172 −80)<br />

365<br />

⎥<br />

⎣<br />

⎦<br />

≈ 12 + 24sin1.5837<br />

≈ 14.3998<br />

There are about 14.4 hours of daylight in San<br />

Diego on June 21.<br />

⎡ 2π<br />

⎤<br />

H = 12 + 24sin ⎢ (355 −80)<br />

365<br />

⎥<br />

⎣<br />

⎦<br />

≈ 12 + 24sin 4.7339<br />

≈ 9.6<br />

There are about 9.6 hours of daylight in San<br />

Diego on December 21.<br />

83. a. For t = 7,<br />

π π<br />

E = sin ⋅ 7 = sin = 1<br />

14 2<br />

For t = 14,<br />

π<br />

E = sin ⋅ 14 = sinπ<br />

= 0<br />

14<br />

For t = 21,<br />

π 3π<br />

E = sin ⋅ 21 = sin = −1<br />

14 2<br />

For t = 28,<br />

π<br />

E = sin ⋅ 28 = sin 2π<br />

= sin 0 = 0<br />

14<br />

For t = 35,<br />

π 5π π<br />

E = sin ⋅ 35 = sin = sin = 1<br />

14 2 2<br />

Observations may vary.<br />

b. Because E(35) = E(7) = 1, the period is<br />

35 – 7 = 28 or 28 days.<br />

84. a. At 6 A.M., t = 0.<br />

π<br />

H = 10 + 4sin ⋅0<br />

6<br />

= 10+ 4sin0= 10+ 4⋅ 0=<br />

10<br />

The height is 10 feet.<br />

At 9 A.M., t = 3.<br />

π<br />

H = 10 + 4sin ⋅3<br />

6<br />

π<br />

= 10 + 4sin = 10 + 4(1) = 14<br />

2<br />

The height is 14 feet.<br />

At noon, t = 6.<br />

π<br />

H = 10 + 4sin ⋅6<br />

6<br />

= 10 + 4sinπ<br />

= 10 + 4⋅ 0 = 10<br />

The height is 10 feet.<br />

At 6 P.M., t = 12.<br />

π<br />

H = 10 + 4sin ⋅12<br />

6<br />

= 10 + 4sin 2π<br />

= 10 + 4⋅ 0 = 10<br />

The height is 10 feet.<br />

At midnight, t = 18.<br />

504<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.2<br />

π<br />

H = 10 + 4sin ⋅18<br />

6<br />

= 10 + 4sin 3π<br />

= 10 + 4sinπ<br />

= 10 + 4⋅ 0 = 10<br />

The height is 10 feet.<br />

At 3 A.M., t = 21.<br />

π<br />

H = 10 + 4sin ⋅21<br />

6<br />

7π<br />

3π<br />

= 10 + 4sin = 10 + 4sin<br />

2 2<br />

= 10 + 4( − 1) = 6<br />

The height is 6 feet.<br />

b. The sine function has a minimum at 3 π . Thus,<br />

2<br />

π 3π<br />

we find a low tide at t = or<br />

6 2<br />

t = 9. This value of t corresponds to 3 P.M. For t<br />

= 9,<br />

π<br />

h = 10 + 4sin ⋅9<br />

6<br />

3π<br />

= 10 + 4sin = 10 + 4( − 1) = 6<br />

2<br />

The height is 6 feet. From part a, the height at 3<br />

A.M. is also 6 feet. Thus, low tide is at<br />

3 A.M. and 3 P.M.<br />

The sine function has a maximum at 2<br />

π . Thus,<br />

π π<br />

we find a high tide at t = or t = 3. This<br />

6 2<br />

value of t corresponds to 9 a.m. From part a, the<br />

height at 9 A.M. is 14 feet. Because the sine has<br />

a period of we also find a maximum at 5 π<br />

2π .<br />

2<br />

π 5π<br />

We find another high tide at t = or t = 15.<br />

6 2<br />

This value of t corresponds to 9 P.M. Thus, high<br />

tide is at 9 A.M. and 9 P.M.<br />

c. The period of 2π the sine function is or on the<br />

interval [0, 2 π ] . The cycle of the sine function<br />

π 5π<br />

π<br />

starts at t = or t = 0, and ends at 2<br />

6 2<br />

6 t = π<br />

or t = 12. Thus, the period is 12 hours, which<br />

means high and low tides occur every 12 hours.<br />

85. – 96. Answers may vary.<br />

97. makes sense<br />

98. does not make sense; Explanations will vary.<br />

Sample explanation: sin t cannot be less than − 1.<br />

10<br />

Note that − ≈ − 1.58 < − 1.<br />

2<br />

99. does not make sense; Explanations will vary.<br />

Sample explanation: Cosine is not an odd function.<br />

100. makes sense<br />

101. t is in the third quadrant therefore sin t < 0,<br />

tan t > 0, and cot t > 0.<br />

Thus, only choice (c) is true.<br />

102.<br />

1<br />

f( x) = sin x and f( a)<br />

=<br />

4<br />

f( a) + f( a+ 2 π) + f( a+ 4 π) + f( a+<br />

6 π)<br />

⎛1<br />

⎞<br />

= 4 f( a) = 4⎜<br />

1 because sin x has a<br />

4<br />

⎟=<br />

⎝ ⎠<br />

period of 2 π.<br />

1<br />

103. f( x) = sin x and f( a)<br />

=<br />

4<br />

f( a) + 2 f( − a) = f( a) −2 f( a)<br />

1 ⎛1⎞<br />

= −2<br />

4 ⎜<br />

4 ⎟<br />

⎝ ⎠<br />

1<br />

=−<br />

4<br />

f(–a) = –f(a) because sin (–x) = –sin x.<br />

Sine is an odd function.<br />

104. The height is given by<br />

h = 45 + 40 sin(t – 90°)<br />

h (765 ° ) = 45 + 40sin(765°− 90 ° )<br />

≈ 16.7<br />

You are about 16.7 feet above the ground.<br />

105. First find the hypotenuse.<br />

2 2 2<br />

c = a + b<br />

2 2 2<br />

c = 5 + 12<br />

2<br />

c = 25 + 144<br />

2<br />

c = 169<br />

c = 13<br />

Next write the ratio.<br />

a 5<br />

c = 13<br />

505<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

106. First find the hypotenuse.<br />

2 2 2<br />

c = a + b<br />

2 2 2<br />

c = 1 + 1<br />

2<br />

c = 1+<br />

1<br />

2<br />

c = 2<br />

c = 2<br />

Next write the ratio and simplify.<br />

a 1<br />

c = 2<br />

1 2<br />

= ⋅<br />

2 2<br />

2<br />

=<br />

2<br />

2 2 2 2<br />

+ = +<br />

2 2<br />

⎛a⎞ ⎛b⎞<br />

a b<br />

107. ⎜<br />

c<br />

⎟ ⎜<br />

c<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ c c<br />

2 2<br />

a + b<br />

=<br />

2<br />

c<br />

2 2 2<br />

Since c = a + b , continue simplifying by<br />

2 2<br />

substituting c for a + b<br />

2 .<br />

2 2 2 2<br />

⎛a⎞ ⎛b⎞<br />

a b<br />

⎜<br />

c<br />

⎟ + ⎜<br />

c<br />

⎟ = +<br />

2 2<br />

⎝ ⎠ ⎝ ⎠ c c<br />

2 2<br />

a + b<br />

=<br />

2<br />

c<br />

2<br />

c<br />

2 2<br />

a + b<br />

=<br />

2<br />

c<br />

2<br />

c<br />

=<br />

2<br />

c<br />

= 1<br />

Section 4.3<br />

Check Point Exercises<br />

2 2 2<br />

1. Use the Pythagorean Theorem, c = a + b , to find<br />

c.<br />

a = 3, b = 4<br />

2 2 2 2 2<br />

c = a + b = 3 + 4 = 9+ 16=<br />

25<br />

c = 25 = 5<br />

Referring to these lengths as opposite, adjacent, and<br />

hypotenuse, we have<br />

opposite 3<br />

sinθ<br />

= =<br />

hypotenuse 5<br />

adjacent 4<br />

cosθ<br />

= =<br />

hypotenuse 5<br />

opposite 3<br />

tanθ<br />

= =<br />

adjacent 4<br />

hypotenuse 5<br />

cscθ<br />

= =<br />

opposite 3<br />

hypotenuse 5<br />

secθ<br />

= =<br />

adjacent 4<br />

adjacent 4<br />

cotθ<br />

= =<br />

opposite 3<br />

2. Use the Pythagorean Theorem,<br />

2 2 2<br />

c = a + b , to find<br />

b.<br />

2 2 2<br />

a + b = c<br />

2 2 2<br />

1 + b = 5<br />

2<br />

1+ b = 25<br />

2<br />

b = 24<br />

b = 24 = 2 6<br />

Note that side a is opposite θ and side b is adjacent<br />

to θ .<br />

opposite 1<br />

sinθ<br />

= =<br />

hypotenuse 5<br />

adjacent 2 6<br />

cosθ<br />

= =<br />

hypotenuse 5<br />

opposite 1 6<br />

tanθ<br />

= = =<br />

adjacent 2 6 12<br />

hypotenuse 5<br />

cscθ<br />

= = = 5<br />

opposite 1<br />

hypotenuse 5 5 6<br />

secθ<br />

= = =<br />

adjacent 2 6 12<br />

adjacent 2 6<br />

cotθ<br />

= = = 2 6<br />

opposite 1<br />

506<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.3<br />

3. Apply the definitions of these three trigonometric functions.<br />

length of hypotenuse<br />

csc 45°=<br />

length of side opposite 45°<br />

2<br />

= = 2<br />

1<br />

length of hypotenuse<br />

sec45°=<br />

length of side adjacent to 45°<br />

2<br />

= = 2<br />

1<br />

length of side adjacent to 45°<br />

cot 45°=<br />

length of side opposite 45°<br />

1<br />

= = 1<br />

1<br />

4.<br />

length of side opposite 60°<br />

tan 60°=<br />

length of side adjacent to 60°<br />

3<br />

= = 3<br />

1<br />

length of side opposite 30°<br />

tan 30°=<br />

length of side adjacent to 30°<br />

1 1 3 3<br />

= = ⋅ =<br />

3 3 3 3<br />

5. a.<br />

sin 46<br />

o<br />

= cos(90<br />

o<br />

− 46<br />

o<br />

) = cos 44<br />

o<br />

π ⎛π π ⎞<br />

b. cot = tan ⎜ − ⎟<br />

12 ⎝ 2 12 ⎠<br />

⎛6π<br />

π ⎞<br />

= tan ⎜ − ⎟<br />

⎝ 12 12 ⎠<br />

5π<br />

= tan 12<br />

6. Because we have a known angle, an unknown opposite side, and a known adjacent side, we select the<br />

tangent function.<br />

tan 24<br />

0 a<br />

=<br />

750<br />

a = 750 tan 24<br />

0<br />

a ≈750(0.4452) ≈334<br />

The distance across the lake is approximately 334 yards.<br />

507<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

7.<br />

side opposite 14<br />

tanθ = =<br />

side adjacent 10<br />

Use a calculator in degree mode to find θ .<br />

Many Scientific Calculators<br />

Many Graphing Calculators<br />

−1<br />

TAN ( 14 10 ) ENTER<br />

÷ TAN ( 14 ÷ 10 ) ENTER<br />

The display should show approximately 54. Thus, the angle of elevation of the sun is approximately 54°.<br />

Exercise Set 4.3<br />

1.<br />

2.<br />

c<br />

= 9 + 12 = 225<br />

2 2 2<br />

c = 225 = 15<br />

opposite 9 3<br />

sinθ<br />

= = =<br />

hypotenuse 15 5<br />

adjacent 12 4<br />

cosθ<br />

= = =<br />

hypotenuse 15 5<br />

opposite 9 3<br />

tanθ<br />

= = =<br />

adjacent 12 4<br />

hypotenuse 15 5<br />

cscθ<br />

= = =<br />

opposite 9 3<br />

hypotenuse 15 5<br />

secθ<br />

= = =<br />

adjacent 12 4<br />

adjacent 12 4<br />

cotθ<br />

= = =<br />

opposite 9 3<br />

c<br />

= 6 + 8 = 100<br />

2 2 2<br />

c = 100 = 10<br />

opposite 6 3<br />

sinθ<br />

= = =<br />

hypotenuse 10 5<br />

adjacent 8 4<br />

cosθ<br />

= = =<br />

hypotenuse 10 5<br />

opposite 6 3<br />

tanθ<br />

= = =<br />

adjacent 8 4<br />

hypotenuse 10 5<br />

cscθ<br />

= = =<br />

opposite 6 3<br />

hypotenuse 10 5<br />

secθ<br />

= = =<br />

adjacent 8 4<br />

adjacent 8 4<br />

cotθ<br />

= = =<br />

opposite 6 3<br />

508<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.3<br />

3.<br />

2 2 2<br />

a + 21 = 29<br />

5.<br />

10 + b = 26<br />

2 2 2<br />

a<br />

2<br />

= 841− 441 = 400<br />

b<br />

2<br />

= 676 − 100 = 576<br />

a = 400 = 20<br />

opposite 20<br />

sinθ<br />

= =<br />

hypotenuse 29<br />

adjacent 21<br />

cosθ<br />

= =<br />

hypotenuse 29<br />

opposite 20<br />

tanθ<br />

= =<br />

adjacent 21<br />

hypotenuse 29<br />

cscθ<br />

= =<br />

opposite 20<br />

hypotenuse 29<br />

secθ<br />

= =<br />

adjacent 21<br />

adjacent 21<br />

cotθ<br />

= =<br />

opposite 20<br />

b = 576 = 24<br />

opposite 10 5<br />

sinθ<br />

= = =<br />

hypotenuse 26 13<br />

adjacent 24 12<br />

cosθ<br />

= = =<br />

hypotenuse 26 13<br />

opposite 10 5<br />

tanθ<br />

= = =<br />

adjacent 24 12<br />

hypotenuse 26 13<br />

cscθ<br />

= = =<br />

opposite 10 5<br />

hypotenuse 26 13<br />

secθ<br />

= = =<br />

adjacent 24 12<br />

adjacent 24 12<br />

cotθ<br />

= = =<br />

opposite 10 5<br />

4.<br />

2 2 2<br />

a + 15 = 17<br />

6.<br />

2 2 2<br />

a + 40 = 41<br />

a<br />

2<br />

= 289 − 225 = 64<br />

a<br />

2<br />

= 1681− 1600 = 81<br />

a = 64 = 8<br />

opposite 8<br />

sinθ<br />

= =<br />

hypotenuse 17<br />

adjacent 15<br />

cosθ<br />

= =<br />

hypotenuse 17<br />

opposite 8<br />

tanθ<br />

= =<br />

adjacent 15<br />

hypotenuse 17<br />

cscθ<br />

= =<br />

opposite 8<br />

hypotenuse 17<br />

secθ<br />

= =<br />

adjacent 15<br />

adjacent 15<br />

cotθ<br />

= =<br />

opposite 8<br />

a = 81 = 9<br />

opposite 9<br />

sinθ<br />

= =<br />

hypotenuse 41<br />

adjacent 40<br />

cosθ<br />

= =<br />

hypotenuse 41<br />

opposite 9<br />

tanθ<br />

= =<br />

adjacent 40<br />

hypotenuse 41<br />

cscθ<br />

= =<br />

opposite 9<br />

hypotenuse 41<br />

secθ<br />

= =<br />

adjacent 40<br />

adjacent 40<br />

cotθ<br />

= =<br />

opposite 9<br />

509<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

7.<br />

8.<br />

a<br />

+ 21 = 35<br />

2 2 2<br />

a<br />

2<br />

= 1225 − 441 = 784<br />

a = 784 = 28<br />

opposite 28 4<br />

sinθ<br />

= = =<br />

hypotenuse 35 5<br />

adjacent 21 3<br />

cosθ<br />

= = =<br />

hypotenuse 35 5<br />

opposite 28 4<br />

tanθ<br />

= = =<br />

adjacent 21 3<br />

hypotenuse 35 5<br />

cscθ<br />

= = =<br />

opposite 28 4<br />

hypotenuse 35 5<br />

secθ<br />

= = =<br />

adjacent 21 3<br />

adjacent 21 3<br />

cotθ<br />

= = =<br />

opposite 28 4<br />

24 + b = 25<br />

2 2 2<br />

b<br />

2<br />

= 625 − 576 = 49<br />

b = 49 = 7<br />

opposite 24<br />

sinθ<br />

= =<br />

hypotenuse 25<br />

adjacent 7<br />

cosθ<br />

= =<br />

hypotenuse 25<br />

opposite 24<br />

tanθ<br />

= =<br />

adjacent 7<br />

hypotenuse 25<br />

cscθ<br />

= =<br />

opposite 24<br />

hypotenuse 25<br />

secθ<br />

= =<br />

adjacent 7<br />

adjacent 7<br />

cotθ<br />

= =<br />

opposite 24<br />

11.<br />

12.<br />

length of hypotenuse<br />

sec 45°=<br />

length of side adjacent to 45°<br />

2<br />

= = 2<br />

1<br />

length of hypotenuse<br />

csc 45°=<br />

length of side opposite 45°<br />

2<br />

= = 2<br />

1<br />

π<br />

13. tan = tan 60 °<br />

3<br />

length of side opposite 60°<br />

=<br />

length of side adjacent to 60°<br />

3<br />

= = 3<br />

1<br />

14.<br />

π length of side adjacent to 60°<br />

cot = cot 60°=<br />

3 length of side opposite 60°<br />

1 1 3 3<br />

= = ⋅ =<br />

3 3 3 3<br />

π π<br />

15. sin − cos = sin 45°− cos 45°<br />

4 4<br />

1 1<br />

= − = 0<br />

2 2<br />

π π<br />

16. tan + csc = tan 45°+ csc30°<br />

4 6<br />

1 2<br />

= + = 1 + 2 = 3<br />

1 1<br />

17. π π π ⎛ 3 ⎞⎛ 2 ⎞<br />

sin cos − tan = −1<br />

3 4 4 ⎜<br />

⎟⎜ 2 ⎟⎜ 2 ⎟<br />

⎝ ⎠⎝ ⎠<br />

9.<br />

length of side adjacent to 30°<br />

cos30°=<br />

length of hypotenuse<br />

3<br />

=<br />

2<br />

6<br />

= − 1<br />

4<br />

6 − 4<br />

=<br />

4<br />

10.<br />

length of side opposite 30°<br />

tan 30°=<br />

length of side adjacent to 30°<br />

18.<br />

π π π 3 3−<br />

3<br />

cos sec − cot = 1− =<br />

3 3 3 3 3<br />

1 1 3 3<br />

= = ⋅ =<br />

3 3 3 3<br />

510<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.3<br />

π π π ⎛ 2 ⎞⎛ 3 ⎞<br />

+ = +⎜<br />

3 4 6 ⎜<br />

⎟⎜<br />

2 ⎟⎜ 3 ⎟<br />

⎝ ⎠⎝ ⎠<br />

6<br />

= 2 3+<br />

6<br />

12 3 + 6<br />

=<br />

6<br />

19. 2 tan cos tan 2( 3 )<br />

20.<br />

π π π ⎛ 3 ⎞⎛2 3 ⎞<br />

6tan + sin sec = 6(1) +⎜<br />

4 3 6 ⎜<br />

⎟⎜<br />

2 ⎟⎜ 3 ⎟<br />

⎝ ⎠⎝ ⎠<br />

6<br />

= 6 + 6<br />

= 7<br />

21. sin 7°= cos(90°− 7 ° ) = cos83°<br />

22. sin19°= cos( 90°− 19° ) = cos71°<br />

23. csc 25° = sec(90° – 25 o ) = sec 65°<br />

24. csc35°= sec(90°− 35 ° ) = sec55°<br />

π ⎛π π ⎞<br />

25. tan = cot ⎜ − ⎟<br />

9 ⎝ 2 9 ⎠<br />

⎛9π<br />

2π<br />

⎞<br />

= cot ⎜ − ⎟<br />

⎝18 18 ⎠<br />

7π<br />

= cot 18<br />

26.<br />

27.<br />

7 2 5<br />

tan π ⎛<br />

cot π π ⎞ ⎛<br />

cot π π ⎞<br />

= ⎜ − ⎟= ⎜ − ⎟ = cot<br />

π<br />

7 ⎝ 2 7 ⎠ ⎝14 14 ⎠ 14<br />

2π ⎛π 2π<br />

⎞<br />

cos = sin ⎜ − ⎟<br />

5 ⎝ 2 5 ⎠<br />

⎛5π<br />

4π<br />

⎞<br />

= sin ⎜ − ⎟<br />

⎝ 10 10 ⎠<br />

π<br />

= sin 10<br />

3 3 4 3<br />

28. cos π ⎛<br />

sin π π ⎞ ⎛<br />

sin π π ⎞<br />

= ⎜ − ⎟= ⎜ − ⎟=<br />

sin<br />

π<br />

8 ⎝ 2 8 ⎠ ⎝ 8 8 ⎠ 8<br />

a<br />

29. tan 37°=<br />

250<br />

a = 250 tan 37°<br />

a ≈ 250(0.7536) ≈188 cm<br />

a<br />

30. tan 61°=<br />

10<br />

a = 10 tan 61°<br />

a ≈10(1.8040) ≈18 cm<br />

b<br />

31. cos34°=<br />

220<br />

b = 220cos34°<br />

b ≈220(0.8290) ≈182 in.<br />

a<br />

32. sin 34°=<br />

13<br />

a = 13sin 34°<br />

a ≈13(0.5592) ≈7 m<br />

16<br />

33. sin 23°=<br />

c<br />

16 16<br />

c = ≈ ≈ 41 m<br />

sin 23°<br />

0.3907<br />

23<br />

34. tan 44°=<br />

b<br />

23 23<br />

b = ≈ ≈ 24 yd<br />

tan 44°<br />

0.9657<br />

511<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

35. Scientific Calculator Graphing Calculator<br />

.2974<br />

1<br />

SIN − −<br />

SIN<br />

1<br />

.2974 ENTER<br />

Display<br />

(rounded to the nearest degree)<br />

17<br />

If sinθ<br />

= 0.2974, then θ ≈ 17 ° .<br />

36. Scientific Calculator Graphing Calculator<br />

Display<br />

(rounded to the nearest degree)<br />

.877 COS -1 COS -1 .877 ENTER 29<br />

If cosθ<br />

= 0.877, then θ ≈ 29°.<br />

37. Scientific Calculator Graphing Calculator<br />

1<br />

4.6252 TAN − −<br />

TAN<br />

1<br />

If tanθ<br />

= 4.6252, then θ ≈ 78 ° .<br />

4.6252 ENTER<br />

Display<br />

(rounded to the nearest degree)<br />

78<br />

38. Scientific Calculator Graphing Calculator<br />

Display<br />

(rounded to the nearest degree)<br />

26.0307 TAN -1 TAN -1 26.0307 ENTER 88<br />

If tanθ<br />

= 26.0307, then θ ≈ 88 ° .<br />

39. Scientific Calculator Graphing Calculator<br />

1<br />

.4112 COS − −<br />

COS<br />

1<br />

If cosθ<br />

= 0.4112, then θ ≈ 1.147 radians.<br />

.4112 ENTER<br />

Display<br />

(rounded to three places)<br />

1.147<br />

40. Scientific Calculator Graphing Calculator<br />

Display<br />

(rounded to three places)<br />

.9499 SIN -1 SIN -1 .9499 ENTER 1.253<br />

If sinθ<br />

= 0.9499, then θ = 1.253 radians.<br />

41. Scientific Calculator Graphing Calculator<br />

1<br />

.4169 TAN − −<br />

TAN<br />

1<br />

If tanθ<br />

= 0.4169, then θ ≈ 0.395 radians.<br />

.4169 ENTER<br />

Display<br />

(rounded to three places)<br />

.395<br />

42. Scientific Calculator Graphing Calculator<br />

.5117<br />

If tanθ<br />

= 0.5117, then θ = 0.473<br />

Display<br />

(rounded to three places)<br />

1<br />

TAN − TAN − 1 .5117 ENTER .473<br />

512<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.3<br />

43.<br />

π<br />

tan<br />

3 1 3 1<br />

− = −<br />

2 π<br />

sec<br />

2<br />

6<br />

1<br />

π<br />

cos 6<br />

3 1<br />

= −<br />

2<br />

1<br />

3<br />

2<br />

3 3<br />

= −<br />

2 2<br />

= 0<br />

44.<br />

45.<br />

46.<br />

1 2 1 2<br />

− = −<br />

π π<br />

cot csc<br />

4 6<br />

1 2<br />

= −<br />

1 1<br />

π π<br />

tan sin<br />

4 6<br />

1 1<br />

1 1 2<br />

1 2<br />

= −<br />

1 2<br />

= 1−1<br />

= 0<br />

2 2<br />

1+ sin 40°+ sin 50°<br />

2 2<br />

= 1+ sin (90°− 50 ° ) + sin 50°<br />

2 2<br />

= 1+ cos 50°+ sin 50°<br />

= 1+<br />

1<br />

= 2<br />

2 2<br />

1− tan 10°+ csc 80°<br />

2 2<br />

= 1− cot 80°+ csc 80°<br />

2 2<br />

= 1+ csc 80°− cot 80°<br />

= 1+<br />

1<br />

= 2<br />

47. csc37° sec53°− tan 53° cot 37°<br />

= sec53° sec53°− tan 53° tan 53°<br />

2 2<br />

= sec 53°− tan 53°<br />

= 1<br />

48. cos12° sin 78°+ cos 78° sin12°<br />

= sin 78° sin 78°+ cos 78° cos 78°<br />

2 2<br />

= sin 78°+ cos 78°<br />

= 1<br />

513<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

49. f ( θ) = 2cosθ − cos2θ<br />

⎛π ⎞ π ⎛ π ⎞<br />

f ⎜ 2cos cos 2<br />

6<br />

⎟= −<br />

6<br />

⎜ ⋅<br />

6<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

⎛ 3 ⎞ ⎛π<br />

⎞<br />

= 2 −cos<br />

⎜<br />

2 ⎟ ⎜<br />

3<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

2 3 1<br />

= −<br />

2 2<br />

2 3 −1<br />

=<br />

2<br />

θ<br />

50. f ( θ) = 2sinθ<br />

− sin 2<br />

π<br />

⎛π<br />

⎞ π<br />

3<br />

f ⎜ 2sin sin<br />

3<br />

⎟ = −<br />

⎝ ⎠ 3 2<br />

⎛ 3 ⎞ ⎛π<br />

⎞<br />

= 2 −sin<br />

⎜<br />

2 ⎟ ⎜<br />

6<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

2 3 1<br />

= −<br />

2 2<br />

2 3 −1<br />

=<br />

2<br />

51.<br />

52.<br />

⎛<br />

1<br />

tan<br />

π ⎞<br />

⎜ − θ = cot θ =<br />

2<br />

⎟<br />

⎝ ⎠ 4<br />

⎛π<br />

⎞ 1 1<br />

csc⎜<br />

− θ secθ<br />

3<br />

2<br />

⎟= = = =<br />

⎝ ⎠ cosθ<br />

1<br />

3<br />

a<br />

53. tan 40°=<br />

630<br />

a = 630 tan 40°<br />

a ≈630(0.8391) ≈529<br />

The distance across the lake is approximately 529 yards.<br />

h<br />

54. tan 40°=<br />

35<br />

h = 35tan 40°<br />

h ≈35(0.8391) ≈ 29<br />

The tree’s height is approximately 29 feet.<br />

55.<br />

125<br />

tanθ =<br />

172<br />

Use a calculator in degree mode to find θ .<br />

Many Scientific Calculators<br />

125 ÷ 172 = TAN −1<br />

Many Graphing Calculators<br />

−1<br />

TAN ( 125 ÷ 172 ) ENTER<br />

The display should show approximately 36. Thus, the angle of elevation of the sun is approximately 36°.<br />

514<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.3<br />

56.<br />

57.<br />

555<br />

tan 1320<br />

Use a calculator in degree mode to find θ .<br />

Many Scientific Calculators<br />

Many Graphing Calculators<br />

555 ÷ 1320 = TAN -1 TAN -1 ( 555 ÷ 1320 ) ENTER<br />

The display should show approximately 23. Thus, the angle of elevation is approximately 23°.<br />

500<br />

sin10°=<br />

c<br />

500 500<br />

c = ≈ ≈ 2880<br />

sin10°<br />

0.1736<br />

The plane has flown approximately 2880 feet.<br />

a<br />

58. sin 5°=<br />

5000<br />

a = 5000sin 5°≈ 5000(0.0872) = 436<br />

The driver’s increase in altitude was approximately 436 feet.<br />

59.<br />

60<br />

cosθ =<br />

75<br />

Use a calculator in degree mode to find θ .<br />

Many Scientific Calculators<br />

60 ÷ 75 = COS −1<br />

Many Graphing Calculators<br />

−1<br />

COS ( 60 ÷ 75 ) ENTER<br />

The display should show approximately 37. Thus, the angle between the wire and the pole is approximately 37°.<br />

55<br />

60. cosθ =<br />

80<br />

Use a calculator in degree mode to find θ .<br />

61. – 67. Answers may vary.<br />

Many Scientific Calculators<br />

Many Graphing Calculators<br />

55 ÷ 80 = COS -1 COS -1 ( 55 ÷ 80 ) ENTER<br />

The display should show approximately 47. Thus, the angle between the wire and the pole is approximately 47°.<br />

68.<br />

θ 0.4 0.3 0.2 0.1 0.01 0.001 0.0001 0.00001<br />

sinθ 0.3894 0.2955 0.1987 0.0998 0.0099998<br />

9.999998×<br />

10 −4<br />

9.99999998×<br />

10 −5<br />

1×<br />

10 −5<br />

sinθ<br />

θ<br />

0.9736 0.9851 0.9933 0.9983 0.99998 0.9999998 0.999999998 1<br />

sinθ<br />

approaches 1 as θ approaches 0.<br />

θ<br />

515<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

69.<br />

θ 0.4 0.3 0.2 0.1 0.01 0.001 0.0001 0.00001<br />

cosθ 0.92106 0.95534 0.98007 0.99500 0.99995 0.9999995 0.999999995 1<br />

cosθ<br />

− 1 –0.19735 –0.148878 –0.099667 –0.04996 –0.005 –0.0005 –0.00005 0<br />

θ<br />

cosθ<br />

−1<br />

approaches 0 as θ approaches 0.<br />

θ<br />

70. does not make sense; Explanations will vary. Sample explanation: An increase in the size of a triangle does not affect<br />

the ratios of the sides.<br />

71. does not make sense; Explanations will vary. Sample explanation: This value is irrational. Irrational numbers are<br />

rounded on calculators.<br />

72. does not make sense; Explanations will vary. Sample explanation: The sine and cosine are cofunctions of each other.<br />

The sine and cosine are not reciprocals of each other.<br />

73. makes sense<br />

74. false; Changes to make the statement true will vary. A sample change is:<br />

tan 45 ° ⎛45<br />

tan<br />

° ⎞<br />

≠ ⎜ ⎟<br />

tan15° ⎝15°<br />

⎠<br />

75. true<br />

76. false; Changes to make the statement true will vary. A sample change is:<br />

1 1 2<br />

sin 45°+ cos 45°= + = ≠ 1<br />

2 2 2<br />

77. true<br />

78. In a right triangle, the hypotenuse is greater than either other side. Therefore both<br />

less than 1 for an acute angle in a right triangle.<br />

opposite<br />

hypotenuse<br />

and<br />

adjacent<br />

hypotenuse<br />

must be<br />

79. Use a calculator in degree mode to generate the following table. Then use the table to describe what happens to the<br />

tangent of an acute angle as the angle gets close to 90°.<br />

θ 60 70 80 89 89.9 89.99 89.999 89.9999<br />

tanθ 1.7321 2.7475 5.6713 57 573 5730 57,296 572,958<br />

As θ approaches 90°, tanθ increases without bound. At 90°, tanθ is undefined.<br />

516<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.4<br />

80. a. Let a = distance of the ship from the lighthouse.<br />

250<br />

tan 35°=<br />

a<br />

250 250<br />

a = ≈ ≈357<br />

tan 35°<br />

0.7002<br />

The ship is approximately 357 feet from the<br />

lighthouse.<br />

81. a.<br />

82. a.<br />

b. Let b = the plane’s height above the lighthouse.<br />

b<br />

tan 22°=<br />

357<br />

b = 357 tan 22°≈357(0.4040) ≈144<br />

144 + 250 = 394<br />

The plane is approximately 394 feet above the<br />

water.<br />

y<br />

r<br />

2 2<br />

b. First find r: r = x + y<br />

2 2<br />

r = ( − 3) + 4<br />

r = 5<br />

y 4<br />

= , which is positive.<br />

r 5<br />

x<br />

r<br />

2 2<br />

b. First find r: r = x + y<br />

r =<br />

2 2<br />

( − 3) + 5<br />

r = 34<br />

x −3 −3 34 −3 34<br />

= = ⋅ = , which is<br />

r 34 34 34 34<br />

negative.<br />

<br />

83. a. θ′ = 360 − 345 = 15<br />

b.<br />

5π 6π 5π π<br />

θ′ = π − = − =<br />

6 6 6 6<br />

Section 4.4<br />

Check Point Exercises<br />

1.<br />

2 2<br />

r = x + y<br />

2 2<br />

r = 1 + ( − 3) = 1+ 9 = 10<br />

Now that we know x, y, and r, we can find the six<br />

trigonometric functions of θ .<br />

y −3 3 10<br />

sinθ<br />

= = =−<br />

r 10 10<br />

x 1 10<br />

cosθ<br />

= = =<br />

r 10 10<br />

y −3<br />

tanθ<br />

= = = −3<br />

x 1<br />

r 10 10<br />

cscθ<br />

= = = −<br />

y −3 3<br />

r 10<br />

secθ<br />

= = = 10<br />

x 1<br />

x 1 1<br />

cotθ<br />

= = = −<br />

y −3 3<br />

2. a. θ = 0°= 0 radians<br />

The terminal side of the angle is on the positive<br />

x-axis. Select the point<br />

P = (1,0): x = 1, y = 0, r = 1<br />

Apply the definitions of the cosine and cosecant<br />

functions.<br />

x 1<br />

cos 0°= cos 0 = = = 1<br />

r 1<br />

r 1<br />

csc0°= csc0 = = , undefined<br />

y 0<br />

π<br />

b. θ = 90°= radians<br />

2<br />

The terminal side of the angle is on the positive<br />

y-axis. Select the point<br />

P = (0,1): x = 0, y = 1, r = 1<br />

Apply the definitions of the cosine and cosecant<br />

functions.<br />

π x 0<br />

cos90°= cos = = = 0<br />

2 r 1<br />

π r 1<br />

csc90°= csc = = = 1<br />

2 y 1<br />

517<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

c. θ = 180°= π radians<br />

The terminal side of the angle is on the negative<br />

x-axis. Select the point<br />

P = (–1,0): x =− 1, y = 0, r = 1<br />

Apply the definitions of the cosine and cosecant<br />

functions.<br />

x −1<br />

cos180°= cosπ<br />

= = =−1<br />

r 1<br />

r 1<br />

csc180°= csc π = = , undefined<br />

y 0<br />

d.<br />

3π<br />

θ = 270°= radians<br />

2<br />

The terminal side of the angle is on the negative<br />

y-axis. Select the point<br />

P = (0,–1): x = 0, y = − 1, r = 1<br />

Apply the definitions of the cosine and cosecant<br />

functions.<br />

3π<br />

x 0<br />

cos 270°= cos = = = 0<br />

2 r 1<br />

3π<br />

r 1<br />

csc 270°= csc = = =−1<br />

2 y −1<br />

3. Because sinθ<br />

< 0, θ cannot lie in quadrant I; all the<br />

functions are positive in quadrant I. Furthermore, θ<br />

cannot lie in quadrant II; sinθ is positive in quadrant<br />

II. Thus, with sinθ<br />

< 0, θ lies in quadrant III or<br />

quadrant IV. We are also given that cosθ < 0 .<br />

Because quadrant III is the only quadrant in which<br />

cosine is negative and the sine is negative, we<br />

conclude that θ lies in quadrant III.<br />

4. Because the tangent is negative and the cosine is<br />

negative, θ lies in quadrant II. In quadrant II, x is<br />

negative and y is positive. Thus,<br />

1 y 1<br />

tanθ =− = =<br />

3 x − 3<br />

x =− 3, y = 1<br />

Furthermore,<br />

2 2 2 2<br />

r = x + y = ( − 3) + 1 = 9+ 1=<br />

10<br />

Now that we know x, y, and r, we can find<br />

sinθ and secθ .<br />

y 1 1 10 10<br />

sinθ<br />

= = = ⋅ =<br />

r 10 10 10 10<br />

r 10 10<br />

secθ<br />

= = = −<br />

x −3 3<br />

5. a. Because 210° lies between 180° and 270°, it is<br />

in quadrant III. The reference angle is<br />

θ ′ = 210°− 180°= 30°.<br />

b. Because 7 π 3π<br />

6π<br />

lies between = and<br />

4<br />

2 4<br />

8π<br />

2π = , it is in quadrant IV. The reference<br />

4<br />

7π 8π 7π π<br />

angle is θ′ = 2π<br />

− = − = .<br />

4 4 4 4<br />

c. Because –240° lies between –180° and –270°, it<br />

is in quadrant II. The reference angle is<br />

θ = 240 − 180 = 60°.<br />

d. Because 3.6 lies between π ≈ 3.14 and<br />

3π ≈ 4.71 , it is in quadrant III. The reference<br />

2<br />

angle is θ′ = 3.6 −π<br />

≈ 0.46 .<br />

6. a. 665°− 360°= 305°<br />

This angle is in quadrant IV, thus the reference<br />

angle is θ′ = 360°− 305°= 55°.<br />

b.<br />

c.<br />

15 π 15 8 7<br />

− 2π<br />

= π − π =<br />

π<br />

4 4 4 4<br />

This angle is in quadrant IV, thus the reference<br />

7π 8π 7π π<br />

angle is θ′ = 2π<br />

− = − = .<br />

4 4 4 4<br />

11 11 12<br />

− π + 2⋅ 2π<br />

= − π + π =<br />

π<br />

3 3 3 3<br />

This angle is in quadrant I, thus the reference<br />

π<br />

angle is θ′ = .<br />

3<br />

7. a. 300° lies in quadrant IV. The reference angle is<br />

θ ′ = 360°− 300°= 60°.<br />

b.<br />

3<br />

sin 60°=<br />

2<br />

Because the sine is negative in quadrant IV,<br />

3<br />

sin 300°=− sin 60°=− .<br />

2<br />

5π lies in quadrant III. The reference angle is<br />

4<br />

5 5 4<br />

θ′ = π − π = π − π = π .<br />

4 4 4 4<br />

π<br />

tan = 1<br />

4<br />

Because the tangent is positive in quadrant III,<br />

5π<br />

π<br />

tan =+ tan = 1 .<br />

4 4<br />

518<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.4<br />

c.<br />

8. a.<br />

b.<br />

π<br />

− lies in quadrant IV. The reference angle is<br />

6<br />

π<br />

θ ′ = .<br />

6<br />

π 2 3<br />

sec = 6 3<br />

Because the secant is positive in quadrant IV,<br />

⎛ π ⎞ π 2 3<br />

sec⎜− ⎟= + sec = .<br />

⎝ 6 ⎠ 6 3<br />

17 π 17 12 5<br />

− 2π<br />

= π − π = π lies in quadrant<br />

6 6 6 6<br />

5π<br />

π<br />

II. The reference angle is θ′ = π − = .<br />

6 6<br />

The function value for the reference angle is<br />

π 3<br />

cos = . 6 2<br />

Because the cosine is negative in quadrant II,<br />

17π 5π π 3<br />

cos = cos =− cos = − .<br />

6 6 6 2<br />

−22 π −22 24 2<br />

+ 8π<br />

= π + π = π lies in<br />

3 3 3 3<br />

quadrant II. The reference angle is<br />

2π<br />

π<br />

θ′ = π − = .<br />

3 3<br />

The function value for the reference angle is<br />

π 3<br />

sin = . 3 2<br />

Because the sine is positive in quadrant II,<br />

−22π 2π π 3<br />

sin = sin = sin = .<br />

3 3 3 2<br />

Exercise Set 4.4<br />

1. We need values for x, y, and r. Because<br />

P = (–4, 3) is a point on the terminal side of<br />

θ , x =− 4 and y = 3. Furthermore,<br />

r x y<br />

that we know x, y, and r, we can find the six<br />

trigonometric functions of θ .<br />

y 3<br />

sinθ<br />

= =<br />

r 5<br />

x −4 4<br />

cosθ<br />

= = = −<br />

r 5 5<br />

y 3 3<br />

tanθ<br />

= = =−<br />

x −4 4<br />

r 5<br />

cscθ<br />

= =<br />

y 3<br />

2 2 2 2<br />

= + = ( − 4) + 3 = 16+ 9 = 25 = 5Now<br />

r 5 5<br />

secθ<br />

= = =−<br />

x −4 4<br />

x −4 4<br />

cotθ<br />

= = = −<br />

y 3 3<br />

2. We need values for x, y, and r, Because P = (–12, 5)<br />

is a point on the terminal side of<br />

θ , x =− 12 and y = 5. Furthermore,<br />

r x y<br />

2 2 2 2<br />

= + = − + = +<br />

( 12) 5 144 25<br />

= 169 = 13<br />

Now that we know x, y, and r, we can find the six<br />

trigonometric functions of θ .<br />

y 5<br />

sinθ<br />

= =<br />

r 13<br />

x −12 12<br />

cosθ<br />

= = = −<br />

r 13 13<br />

y 5 5<br />

tanθ<br />

= = = −<br />

x −12 12<br />

r 13<br />

cscθ<br />

= =<br />

y 5<br />

r 13 13<br />

secθ<br />

= = =−<br />

x −12 12<br />

x −12 12<br />

cotθ<br />

= = −<br />

y 5 5<br />

519<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

3. We need values for x, y, and r. Because P = (2, 3) is a<br />

point on the terminal side of θ , x = 2 and y = 3 .<br />

Furthermore,<br />

2 2 2 2<br />

r = x + y = 2 + 3 = 4+ 9 = 13<br />

Now that we know x, y, and r, we can find the six<br />

trigonometric functions of θ .<br />

y 3 3 13 3 13<br />

sinθ<br />

= = = ⋅ =<br />

r 13 13 13 13<br />

x 2 2 13 2 13<br />

cosθ<br />

= = = ⋅ =<br />

r 13 13 13 13<br />

y 3<br />

tanθ<br />

= =<br />

x 2<br />

r 13<br />

cscθ<br />

= =<br />

y 3<br />

r 13<br />

secθ<br />

= =<br />

x 2<br />

x 2<br />

cotθ<br />

= =<br />

y 3<br />

4. We need values for x, y, and r, Because<br />

P = (3, 7) is a point on the terminal side of<br />

θ , x = 3 and y = 7. Furthermore,<br />

2 2 2 2<br />

r = x + y = 3 + 7 = 9+ 49 = 58<br />

Now that we know x, y, and r, we can find the six<br />

trigonometric functions of θ .<br />

y 7 7 58 7 58<br />

sinθ<br />

= = = ⋅ =<br />

r 58 58 58 58<br />

x 3 3 58 3 58<br />

cosθ<br />

= = = ⋅ =<br />

r 58 58 58 58<br />

y 7<br />

tanθ<br />

= =<br />

x 3<br />

r 58<br />

cscθ<br />

= =<br />

y 7<br />

r 58<br />

secθ<br />

= =<br />

x 3<br />

x 3<br />

cotθ<br />

= =<br />

y 7<br />

5. We need values for x, y, and r. Because P = (3, –3) is<br />

a point on the terminal side of θ , x = 3 and y =− 3 .<br />

2 2 2 2<br />

Furthermore, r = x + y = 3 + ( − 3) = 9+<br />

9<br />

= 18 = 3 2<br />

Now that we know x, y, and r, we can find the six<br />

trigonometric functions of θ .<br />

y −3 −1 2 2<br />

sinθ<br />

= = = − ⋅ = −<br />

r 3 2 2 2 2<br />

x 3 1 2 2<br />

cosθ<br />

= = = ⋅ =<br />

r 3 2 2 2 2<br />

y −3<br />

tanθ<br />

= = = −1<br />

x 3<br />

r 3 2<br />

cscθ<br />

= = = − 2<br />

y −3<br />

r 3 2<br />

secθ<br />

= = = 2<br />

x 3<br />

x 3<br />

cotθ<br />

= = = −1<br />

y −3<br />

6. We need values for x, y, and r, Because P = (5, –5) is<br />

a point on the terminal side of θ , x = 5 and y = –5 .<br />

Furthermore,<br />

2 2 2<br />

r = x + y = 5 + ( − 5) = 25 + 25 = 50<br />

= 5 2<br />

Now that we know x, y, and r, we can find the six<br />

trigonometric functions of θ .<br />

y −5 −1 2 2<br />

sinθ<br />

= = = ⋅ =−<br />

r 5 2 2 2 2<br />

x 5 1 2 2<br />

cosθ<br />

= = = ⋅ =<br />

r 5 2 2 2 2<br />

y −5<br />

tanθ<br />

= = = −1<br />

x 5<br />

r 5 2<br />

cscθ<br />

= = = − 2<br />

y −5<br />

r 5 2<br />

secθ<br />

= = = 2<br />

x 5<br />

x 5<br />

cotθ<br />

= = =−1<br />

y −5<br />

520<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.4<br />

7. We need values for x, y, and r. Because P = (–2, –5)<br />

is a point on the terminal side of<br />

θ , x =− 2 and y =− 5. Furthermore,<br />

r x y<br />

2 2 2 2<br />

= + = ( − 2) + ( − 5) = 4+ 25 = 29Now<br />

that we know x, y, and r, we can find the six<br />

trigonometric functions of θ .<br />

y −5 −5 29 5 29<br />

sinθ<br />

= = = ⋅ = −<br />

r 29 29 29 29<br />

x −2 −2 29 2 29<br />

cosθ<br />

= = = ⋅ =−<br />

r 29 29 29 29<br />

y −5 5<br />

tanθ<br />

= = =<br />

x −2 2<br />

r 29 29<br />

cscθ<br />

= = = −<br />

y −5 5<br />

r 29 29<br />

secθ<br />

= = =−<br />

x −2 2<br />

x −2 2<br />

cotθ<br />

= = =<br />

y −5 5<br />

10. θ = π radians<br />

The terminal side of the angle is on the negative x-<br />

axis. Select the point P = (–1, 0): x =− 1, y = 0, r = 1<br />

Apply the definition of the tangent function.<br />

y 0<br />

tanπ = = = 0<br />

x −1<br />

11. θ = π radians<br />

The terminal side of the angle is on the negative x-<br />

axis. Select the point P = (–1, 0):<br />

x =− 1, y = 0, r = 1 Apply the definition of the secant<br />

function.<br />

r 1<br />

secπ = = = −1<br />

x −1<br />

12. θ = π radians<br />

The terminal side of the angle is on the negative x-<br />

axis. Select the point P = (–1, 0): x =− 1, y = 0, r = 1<br />

Apply the definition of the cosecant function.<br />

r 1<br />

csc π = = , undefined<br />

y 0<br />

8. We need values for x, y, and r, Because P = (–1, –3)<br />

is a point on the terminal side of<br />

θ , x = –1 and y = –3 . Furthermore,<br />

r x y<br />

2 2 2 2<br />

= + = − + − = + =<br />

( 1) ( 3) 1 9 10<br />

Now that we know x, y, and r, we can find the six<br />

trigonometric functions of θ .<br />

y −3 −3 10 3 10<br />

sinθ<br />

= = = ⋅ = −<br />

r 10 10 10 10<br />

x −1 −1 10 10<br />

cosθ<br />

= = = ⋅ = −<br />

r 10 10 10 10<br />

y −3<br />

tanθ<br />

= = = 3<br />

x −1<br />

r 10 10<br />

cscθ<br />

= = = −<br />

y −3 3<br />

r 10<br />

secθ<br />

= = =− 10<br />

x −1<br />

x −1 1<br />

cotθ<br />

= = =<br />

y −3 3<br />

9. θ = π radians<br />

The terminal side of the angle is on the negative x-<br />

axis. Select the point P = (–1, 0):<br />

x =− 1, y = 0, r = 1 Apply the definition of the<br />

cosine function.<br />

x −1<br />

cosπ<br />

= = = − 1<br />

r 1<br />

13.<br />

14.<br />

15.<br />

3π<br />

θ = radians<br />

2<br />

The terminal side of the angle is on the negative y-<br />

axis. Select the point P = (0, –1):<br />

x = 0, y = –1, r = 1 Apply the definition of the<br />

3π<br />

y −1<br />

tangent function. tan = = , undefined<br />

2 x 0<br />

3π<br />

θ = radians<br />

2<br />

The terminal side of the angle is on the negative y-<br />

axis. Select the point P = (0, –1): x = 0, y = − 1, r = 1<br />

Apply the definition of the cosine function.<br />

3π x 0<br />

cos = = = 0<br />

2 r 1<br />

π<br />

θ = radians<br />

2<br />

The terminal side of the angle is on the positive y-<br />

axis. Select the point P = (0, 1):<br />

x = 0, y = 1, r = 1 Apply the definition of the<br />

π x 0<br />

cotangent function. cot = = = 0<br />

2 y 1<br />

521<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

16.<br />

π<br />

θ = radians<br />

2<br />

The terminal side of the angle is on the positive y-<br />

axis. Select the point P = (0, 1): x = 0, y = 1, r = 1<br />

Apply the definition of the tangent function.<br />

π y 1<br />

tan = = , undefined<br />

2 x 0<br />

17. Because sinθ<br />

> 0, θ cannot lie in quadrant III or<br />

quadrant IV; the sine function is negative in those<br />

quadrants. Thus, with sinθ<br />

> 0, θ lies in quadrant I<br />

or quadrant II. We are also given that cosθ > 0 .<br />

Because quadrant I is the only quadrant in which the<br />

cosine is positive and sine is positive, we conclude<br />

that θ lies in quadrant I.<br />

18. Because sinθ<br />

< 0, θ cannot lie in quadrant I or<br />

quadrant II; the sine function is positive in those two<br />

quadrants. Thus, with sinθ<br />

< 0, θ lies in quadrant III<br />

or quadrant IV. We are also given that cosθ > 0.<br />

Because quadrant IV is the only quadrant in which<br />

the cosine is positive and the sine is negative, we<br />

conclude that θ lies in quadrant IV.<br />

19. Because sinθ<br />

< 0, θ cannot lie in quadrant I or<br />

quadrant II; the sine function is positive in those two<br />

quadrants. Thus, with sinθ < 0, θ lies in quadrant<br />

III or quadrant IV. We are also given that cosθ < 0 .<br />

Because quadrant III is the only quadrant in which<br />

the cosine is positive and the sine is negative, we<br />

conclude that θ lies in quadrant III.<br />

20. Because tanθ<br />

< 0, θ cannot lie in quadrant I or<br />

quadrant III; the tangent function is positive in those<br />

two quadrants. Thus, with tanθ<br />

< 0, θ lies in<br />

quadrant II or quadrant IV. We are also given that<br />

sinθ < 0 . Because quadrant IV is the only quadrant<br />

in which the sine is negative and the tangent is<br />

negative, we conclude that θ lies in quadrant IV.<br />

21. Because tanθ<br />

< 0, θ cannot lie in quadrant I or<br />

quadrant III; the tangent function is positive in those<br />

quadrants. Thus, with tanθ<br />

< 0, θ lies in quadrant II<br />

or quadrant IV. We are also given that cosθ < 0 .<br />

Because quadrant II is the only quadrant in which the<br />

cosine is negative and the tangent is negative, we<br />

conclude that θ lies in quadrant II.<br />

22. Because cotθ<br />

> 0, θ cannot lie in quadrant II or<br />

quadrant IV; the cotangent function is negative in<br />

those two quadrants. Thus, with cotθ<br />

> 0, θ lies in<br />

quadrant I or quadrant III. We are also given that<br />

secθ < 0 . Because quadrant III is the only quadrant<br />

in which the secant is negative and the cotangent is<br />

positive, we conclude that θ lies in quadrant III.<br />

23. In quadrant III x is negative and y is negative. Thus,<br />

cos = 3 x −3<br />

θ − = = , x = –3, r = 5. Furthermore,<br />

5 r 5<br />

2 2 2<br />

r = x + y<br />

2 2 2<br />

5 = ( − 3) + y<br />

2<br />

y = 25 − 9 = 16<br />

y =− 16 =−4<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y −4 4<br />

sinθ<br />

= = = −<br />

r 5 5<br />

y −4 4<br />

tanθ<br />

= = =<br />

x −3 3<br />

r 5 5<br />

cscθ<br />

= = = −<br />

y −4 4<br />

r 5 5<br />

secθ<br />

= = = −<br />

x −3 3<br />

x −3 3<br />

cotθ<br />

= = =<br />

y −4 4<br />

24. In quadrant III, x is negative and y is negative. Thus,<br />

12 y −12<br />

sin θ =− = = , y =− 12, r = 13 .<br />

13 r 13<br />

Furthermore,<br />

2 2 2<br />

x + y = r<br />

2 2 2<br />

x + ( − 12) = 13<br />

2<br />

x = 169 − 144 = 25<br />

x =− 25 =−5<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

x −5 5<br />

cosθ<br />

= = = −<br />

r 13 13<br />

y −12 12<br />

tanθ<br />

= = =<br />

x −5 5<br />

r 13 13<br />

cscθ<br />

= = = −<br />

y −12 12<br />

r 13 13<br />

secθ<br />

= = =−<br />

x −5 5<br />

x −5 5<br />

cotθ<br />

= = =<br />

y −12 12<br />

522<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.4<br />

25. In quadrant II x is negative and y is positive. Thus,<br />

5 y<br />

sin θ = = , y = 5, r = 13 . Furthermore,<br />

13 r<br />

2 2 2<br />

x + y = r<br />

2 2 2<br />

x + 5 = 13<br />

2<br />

x = 169 − 25 = 144<br />

x =− 144 =−12<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

x −12 12<br />

cosθ<br />

= = = −<br />

r 13 13<br />

y 5 5<br />

tanθ<br />

= = = −<br />

x −12 12<br />

r 13<br />

cscθ<br />

= =<br />

y 5<br />

r 13 13<br />

secθ<br />

= = = −<br />

x −12 12<br />

x −12 12<br />

cotθ<br />

= = =−<br />

y 5 5<br />

26. In quadrant IV, x is positive and y is negative. Thus,<br />

4 x<br />

cos θ = = , x = 4, r = 5 . Furthermore,<br />

5 r<br />

2 2 2<br />

x + y = r<br />

2 2 2<br />

4 + y = 5<br />

2<br />

y = 25 − 16 = 9<br />

y =− 9 =−3<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y −3 3<br />

sinθ<br />

= = = −<br />

r 5 5<br />

y −3 3<br />

tanθ<br />

= = = −<br />

x 4 4<br />

r 5 5<br />

cscθ<br />

= = =−<br />

y −3 3<br />

r 5<br />

secθ<br />

= =<br />

x 4<br />

x 4 4<br />

cotθ<br />

= = = −<br />

y −3 3<br />

27. Because 270°< θ < 360 ° , θ is in quadrant IV. In<br />

quadrant IV x is positive and y is negative. Thus,<br />

8 x<br />

cos θ = = , x = 8,<br />

17 r<br />

r = 17. Furthermore<br />

2 2 2<br />

x + y = r<br />

2 2 2<br />

8 + y = 17<br />

2<br />

y = 289 − 64 = 225<br />

y =− 225 =−15<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y −15 15<br />

sinθ<br />

= = = −<br />

r 17 17<br />

y −15 15<br />

tanθ<br />

= = = −<br />

x 8 8<br />

r 17 17<br />

cscθ<br />

= = =−<br />

y −15 15<br />

r 17<br />

secθ<br />

= =<br />

x 8<br />

x 8 8<br />

cotθ<br />

= = = −<br />

y −15 15<br />

28. Because 270°< θ < 360 ° , θ is in quadrant IV. In<br />

quadrant IV, x is positive and y is negative. Thus,<br />

1 x<br />

cos θ = = , x = 1, r = 3. Furthermore,<br />

3 r<br />

2 2 2<br />

x + y = r<br />

2 2 2<br />

1 + y = 3<br />

2<br />

y = 9− 1=<br />

8<br />

y =− 8 =−2 2<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y −2 2 2 2<br />

sinθ<br />

= = =−<br />

r 3 3<br />

y −2 2<br />

tanθ<br />

= = = −2 2<br />

x 1<br />

r 3 3 2 3 2<br />

cscθ<br />

= = = ⋅ = −<br />

y −2 2 −2 2 2 4<br />

r 3<br />

secθ<br />

= = = 3<br />

x 1<br />

x 1 1 2 2<br />

cotθ<br />

= = = ⋅ =−<br />

y −2 2 − 2 2 2 4<br />

523<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

29. Because the tangent is negative and the sine is<br />

positive, θ lies in quadrant II. In quadrant II, x is<br />

negative and y is positive. Thus,<br />

2 y 2<br />

tan θ = − = = , x = − 3, y = 2. Furthermore,<br />

3 x −3<br />

r x y<br />

2 2 2 2<br />

= + = − + = + =<br />

( 3) 2 9 4 13<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y 2 2 13 2 13<br />

sinθ<br />

= = = ⋅ =<br />

r 13 13 13 13<br />

x −3 −3 13 3 13<br />

cosθ<br />

= = = ⋅ = −<br />

r 13 13 13 13<br />

r 13<br />

cscθ<br />

= =<br />

y 2<br />

r 13 13<br />

secθ<br />

= = = −<br />

x −3 3<br />

x −3 3<br />

cotθ<br />

= = = −<br />

y 2 2<br />

30. Because the tangent is negative and the sine is<br />

positive, θ lies in quadrant II. In quadrant II, x is<br />

negative and y is positive. Thus,<br />

1 y 1<br />

tan θ =− = = , y = 1, x =−3<br />

. Furthermore,<br />

3 x −3<br />

r x y<br />

2 2 2 2<br />

= + = − + = + =<br />

( 3) 1 9 1 10<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y 1 1 10 10<br />

sinθ<br />

= = = ⋅ =<br />

r 10 10 10 10<br />

x −3 −3 10 3 10<br />

cosθ<br />

= = = ⋅ = −<br />

r 10 10 10 10<br />

r 10<br />

cscθ<br />

= = = 10<br />

y 1<br />

r 10 10<br />

secθ<br />

= = = −<br />

x −3 3<br />

x −3<br />

cotθ<br />

= = =−3<br />

y 1<br />

31. Because the tangent is positive and the cosine is<br />

negative, θ lies in quadrant III. In quadrant III, x is<br />

4 y −4<br />

negative and y is negative. Thus, tan θ = = = ,<br />

3 x − 3<br />

x = –3, y = –4. Furthermore,<br />

2 2 2 2<br />

r = x + y = ( − 3) + ( − 4) = 9+<br />

16<br />

= 25 = 5<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y −4 4<br />

sinθ<br />

= = = −<br />

r 5 5<br />

x −3 3<br />

cosθ<br />

= = =−<br />

r 5 5<br />

r 5 5<br />

cscθ<br />

= = = −<br />

y −4 4<br />

r 5 5<br />

secθ<br />

= = = −<br />

x −3 3<br />

x −3 3<br />

cotθ<br />

= = =<br />

y −4 4<br />

32. Because the tangent is positive and the cosine is<br />

negative, θ lies in quadrant III. In quadrant III, x is<br />

negative and y is negative. Thus,<br />

5 y −5<br />

tan θ = = = , x =− 12, y =−5<br />

. Furthermore,<br />

12 x −12<br />

2 2 2 2<br />

r = x + y = ( − 12) + ( − 5) = 144+<br />

25<br />

= 169 = 13<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y −5 5<br />

sinθ<br />

= = =−<br />

r 13 13<br />

x −12 12<br />

cosθ<br />

= = = −<br />

r 13 13<br />

r 13 13<br />

cscθ<br />

= = = −<br />

y −5 5<br />

r 13 13<br />

secθ<br />

= = = −<br />

x −12 12<br />

x −12 12<br />

cotθ<br />

= = =<br />

y −5 5<br />

524<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.4<br />

33. Because the secant is negative and the tangent is<br />

positive, θ lies in quadrant III. In quadrant III, x is<br />

negative and y is negative. Thus,<br />

r 3<br />

secθ =− 3 = = , x =− 1, r = 3 . Furthermore,<br />

x −1<br />

2 2 2<br />

x + y = r<br />

2 2 2<br />

( − 1) + y = 3<br />

2<br />

y = 9− 1=<br />

8<br />

y =− 8 =−2 2<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y −2 2 2 2<br />

sinθ<br />

= = =−<br />

r 3 3<br />

x −1 1<br />

cosθ<br />

= = =−<br />

r 3 3<br />

y −2 2<br />

tanθ<br />

= = = 2 2<br />

x −1<br />

r 3 3 2 3 2<br />

cscθ<br />

= = = ⋅ = −<br />

y −2 2 −2 2 2 4<br />

x −1 1 2 2<br />

cotθ<br />

= = = ⋅ =<br />

y − 2 2 2 2 2 4<br />

34. Because the cosecant is negative and the tangent is<br />

positive, θ lies in quadrant III. In quadrant III, x is<br />

negative and y is negative. Thus,<br />

r 4<br />

cscθ =− 4 = = , y =− 1, r = 4 . Furthermore,<br />

y −1<br />

2 2 2<br />

x + y = r<br />

2 2 2<br />

x + ( − 1) = 4<br />

2<br />

x = 16 − 1 = 15<br />

x =− 15<br />

Now that we know x, y, and r, we can find the<br />

remaining trigonometric functions of θ .<br />

y −1 1<br />

sinθ<br />

= = = −<br />

r 4 4<br />

x − 15 15<br />

cosθ<br />

= = = −<br />

r 4 4<br />

y −1 1 15 15<br />

tanθ<br />

= = = ⋅ =<br />

x − 15 15 15 15<br />

r 4 4 15 4 15<br />

secθ<br />

= = = − ⋅ = −<br />

x − 15 15 15 15<br />

x − 15<br />

cotθ<br />

= = = 15<br />

y − 1<br />

35. Because 160° lies between 90° and 180°, it is in<br />

quadrant II. The reference angle is<br />

θ ′ = 180°− 160°= 20°.<br />

36. Because 170° lies between 90° and 180°, it is in<br />

quadrant II. The reference angle is<br />

θ ′ = 180°− 170°= 10°.<br />

37. Because 205° lies between 180° and 270°, it is in<br />

quadrant III. The reference angle is<br />

θ ′ = 205°− 180°= 25°.<br />

38. Because 210° lies between 180° and 270°, it is in<br />

quadrant III. The reference angle is<br />

θ ′ = 210°− 180°= 30°.<br />

39. Because 355° lies between 270° and 360°, it is in<br />

quadrant IV. The reference angle is<br />

θ ′ = 360°− 355°= 5°.<br />

40. Because 351° lies between 270° and 360°, it is in<br />

quadrant IV. The reference angle is<br />

θ ′ = 360°− 351°= 9°.<br />

41. Because 7 π 3π<br />

6π<br />

8π<br />

lies between = and 2π = , it<br />

4<br />

2 4<br />

4<br />

is in quadrant IV. The reference angle is<br />

7π 8π 7π π<br />

θ′ = 2π<br />

− = − = .<br />

4 4 4 4<br />

42. Because 5π 4 lies between π = 4π 4 and 3π 2 = 6π 4 , it<br />

is in quadrant III. The reference angle is<br />

θ ′ = 5π 4 − π = 5π 4 − 4π 4 = π 4 .<br />

43. Because 5 π π 3π<br />

lies between = and π =<br />

6<br />

2 6<br />

in quadrant II. The reference angle is<br />

5π 6π 5π π<br />

θ′ = π − = − = .<br />

6 6 6 6<br />

6π<br />

6<br />

, it is<br />

44. Because 5 π 10 π<br />

π 7π<br />

= lies between = and<br />

7 14<br />

2 14<br />

14π<br />

π = , it is in quadrant II. The reference angle is<br />

14<br />

5π 7π 5π 2π<br />

θ′ = π − = − = .<br />

7 7 7 7<br />

45. − 150°+ 360°= 210°<br />

Because the angle is in quadrant III, the reference<br />

angle is θ ′ = 210°− 180°= 30°.<br />

525<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

46. − 250°+ 360°= 110°<br />

Because the angle is in quadrant II, the reference<br />

angle is θ′ = 180°− 110°= 70°.<br />

47. − 335°+ 360°= 25°<br />

Because the angle is in quadrant I, the reference<br />

angle is θ′ = 25°.<br />

48. − 359°+ 360°= 1°<br />

Because the angle is in quadrant I, the reference<br />

angle is θ′ = 1°.<br />

57.<br />

58.<br />

11 11 16 5<br />

− π + 4π<br />

= − π + π =<br />

π<br />

4 4 4 4<br />

Because the angle is in quadrant III, the reference<br />

5π<br />

π<br />

angle is θ′ = − π = .<br />

4 4<br />

17 17 24 7<br />

− π + 4π<br />

=− π + π =<br />

π<br />

6 6 6 6<br />

Because the angle is in quadrant III, the reference<br />

7π<br />

π<br />

angle is θ′ = − π = .<br />

6 6<br />

49. Because 4.7 lies between π ≈ 3.14 and 3 π ≈ 4.71 , it<br />

2<br />

is in quadrant III. The reference angle is<br />

θ′ = 4.7 −π<br />

≈ 1.56 .<br />

50. Because 5.5 lies between 3 π ≈ 4.71 and 2π ≈ 6.28 ,<br />

2<br />

it is in quadrant IV. The reference angle is<br />

θ′ = 2π<br />

−5.5 ≈ 0.78 .<br />

51. 565°− 360°= 205°<br />

Because the angle is in quadrant III, the reference<br />

angle is θ ′ = 205°− 180°= 25°.<br />

52. 553°− 360°= 193°<br />

Because the angle is in quadrant III, the reference<br />

angle is θ′ = 193°− 180°= 13°.<br />

53.<br />

54.<br />

55.<br />

56.<br />

17 π 17 12 5<br />

− 2π<br />

= π − π =<br />

π<br />

6 6 6 6<br />

Because the angle is in quadrant II, the reference<br />

5π<br />

π<br />

angle is θ′ = π − = .<br />

6 6<br />

11 π 11 8 3<br />

− 2π<br />

= π − π =<br />

π<br />

4 4 4 4<br />

Because the angle is in quadrant II, the reference<br />

3π<br />

π<br />

angle is θ′ = π − = .<br />

4 4<br />

23 π 23 16 7<br />

− 4π<br />

= π − π =<br />

π<br />

4 4 4 4<br />

Because the angle is in quadrant IV, the reference<br />

7π<br />

π<br />

angle is θ′ = 2π<br />

− = .<br />

4 4<br />

17 π 17 12 5<br />

− 4π<br />

= π − π =<br />

π<br />

3 3 3 3<br />

Because the angle is in quadrant IV, the reference<br />

5π<br />

π<br />

angle is θ′ = 2π<br />

− = .<br />

3 3<br />

59.<br />

60.<br />

25 25 36 11<br />

− π + 6π<br />

=− π + π =<br />

π<br />

6 6 6 6<br />

Because the angle is in quadrant IV, the reference<br />

11π<br />

π<br />

angle is θ′ = 2π<br />

− = .<br />

6 6<br />

13 13 18 5<br />

− π + 6π<br />

= − π + π =<br />

π<br />

3 3 3 3<br />

Because the angle is in quadrant IV, the reference<br />

5π<br />

π<br />

angle is θ′ = 2π<br />

− = .<br />

3 3<br />

61. 225° lies in quadrant III. The reference angle is<br />

θ ′ = 225°− 180°= 45°.<br />

2<br />

cos 45°=<br />

2<br />

Because the cosine is negative in quadrant III,<br />

2<br />

cos 225 ° = − cos 45 ° = − .<br />

2<br />

62. 300° lies in quadrant IV. The reference angle is<br />

θ ′ = 360°− 300°= 60°<br />

.<br />

3<br />

sin 60°=<br />

2<br />

Because the sine is negative in quadrant IV,<br />

3<br />

sin 300°=− sin 60°=− .<br />

2<br />

63. 210° lies in quadrant III. The reference angle is<br />

210 180 30<br />

θ ′ = °− °= °.<br />

3<br />

tan 30°=<br />

3<br />

Because the tangent is positive in quadrant III,<br />

3<br />

tan 210 ° = tan 30°= .<br />

3<br />

526<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.4<br />

64. 240° lies in quadrant III. The reference angle is<br />

θ ′ = 240°− 180°= 60°<br />

.<br />

sec60°=<br />

2<br />

Because the secant is negative in quadrant III,<br />

sec 240°=− sec60°− 2 .<br />

65. 420° lies in quadrant I. The reference angle is<br />

420 360 60<br />

θ ′ = °− °= °.<br />

tan 60°=<br />

3<br />

Because the tangent is positive in quadrant I,<br />

tan 420 ° = tan 60 ° = 3 .<br />

66. 405° lies in quadrant I. The reference angle is<br />

θ ′ = 405°− 360°= 45°<br />

.<br />

tan 45°=<br />

1<br />

Because the tangent is positive in quadrant I,<br />

tan 405 ° =tan45 ° =1.<br />

67.<br />

2π lies in quadrant II. The reference angle is<br />

3<br />

2π 3π 2π π<br />

θ′ = π − = − = .<br />

3 3 3 3<br />

π 3<br />

sin = 3 2<br />

Because the sine is positive in quadrant II,<br />

2π π 3<br />

sin =sin = .<br />

3 3 2<br />

70.<br />

71.<br />

72.<br />

7π lies in quadrant IV. The reference angle is<br />

4<br />

7π 8π 7π π<br />

θ′ = 2 π − = − = .<br />

4 4 4 4<br />

π<br />

cot = 1<br />

4<br />

Because the cotangent is negative in quadrant IV,<br />

7π<br />

π<br />

cot = − cot = − 1 .<br />

4 4<br />

9π lies in quadrant I. The reference angle is<br />

4<br />

9 9 8<br />

θ′ = π − 2π<br />

= π − π = π .<br />

4 4 4 4<br />

π<br />

tan = 1<br />

4<br />

Because the tangent is positive in quadrant I,<br />

9π π<br />

tan =tan = 1<br />

4 4<br />

9π lies on the positive y-axis. The reference angle is<br />

2<br />

9 9 8<br />

θ′ = π − 4π<br />

= π − π = π .<br />

2 2 2 2<br />

π 9π Because tan is undefined, tan is also<br />

2 2<br />

undefined.<br />

68.<br />

69.<br />

3π lies in quadrant II. The reference angle is<br />

4<br />

3π 4π 3π π<br />

θ′ = π − = − = .<br />

4 4 4 4<br />

π 2<br />

cos = 4 2<br />

Because the cosine is negative in quadrant II,<br />

3π π 2<br />

cos =– cos =− .<br />

4 4 2<br />

7π lies in quadrant III. The reference angle is<br />

6<br />

7 7 6<br />

θ′ = π − π = π − π = π .<br />

6 6 6 6<br />

π<br />

csc = 2<br />

6<br />

Because the cosecant is negative in quadrant III,<br />

7π<br />

π<br />

csc = − csc =− 2 .<br />

6 6<br />

73. –240° lies in quadrant II. The reference angle is<br />

240 180 60<br />

θ ′ = °− °= °.<br />

3<br />

sin 60°=<br />

2<br />

Because the sine is positive in quadrant II,<br />

3<br />

sin( − 240 ° )= sin 60 ° = . 2<br />

74. –225° lies in quadrant II. The reference angle is<br />

θ ′ = 225°− 180°= 45 ° .<br />

2<br />

sin 45°=<br />

2<br />

Because the sine is positive in quadrant II,<br />

2<br />

sin( − 225 ° ) = sin 45°= .<br />

2<br />

527<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

75.<br />

76.<br />

π<br />

− lies in quadrant IV. The reference angle is<br />

4<br />

π<br />

θ ′ = .<br />

4<br />

π<br />

tan = 1<br />

4<br />

Because the tangent is negative in quadrant IV,<br />

⎛ π ⎞ π<br />

tan ⎜− ⎟= − tan =−1<br />

⎝ 4 ⎠ 4<br />

π<br />

− lies in quadrant IV. The reference angle is<br />

6<br />

π π 3<br />

θ = . tan =<br />

6 6 3<br />

Because the tangent is negative in quadrant IV,<br />

⎛ π ⎞ 3<br />

tan ⎜− ⎟ =− .<br />

⎝ 6 ⎠ 3<br />

77. sec 495°= sec135°=−<br />

2<br />

78.<br />

79.<br />

80.<br />

2 3<br />

sec510°= sec150°=−<br />

3<br />

19π<br />

7π<br />

cot = cot = 3<br />

6 6<br />

13π<br />

π 3<br />

cot = cot =<br />

3 3 3<br />

87.<br />

π π 3π<br />

sin cosπ − cos sin<br />

3 3 2<br />

⎛ 3 ⎞ ⎛1⎞<br />

= ( −1) − ( −1<br />

⎜<br />

)<br />

2 ⎟ ⎜<br />

2<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

3 1<br />

=− +<br />

2 2<br />

1−<br />

3<br />

=<br />

2<br />

π π<br />

88. sin cos 0 − sin cosπ<br />

4 6<br />

⎛ 2 ⎞ ⎛1⎞<br />

= () 1 − ( −1<br />

⎜<br />

)<br />

2 ⎟ ⎜<br />

2<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

2 1<br />

= +<br />

2 2<br />

2 + 1<br />

=<br />

2<br />

89.<br />

11π 5π 11π 5π<br />

sin cos + cos sin<br />

4 6 4 6<br />

⎛ 2 ⎞⎛ 3 ⎞ ⎛ 2 ⎞⎛1⎞<br />

= − + −<br />

⎜ 2 ⎟⎜ 2 ⎟ ⎜ 2<br />

⎟⎜⎟ 2<br />

⎟<br />

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

6 2<br />

=− −<br />

4 4<br />

6 + 2<br />

=−<br />

4<br />

81.<br />

82.<br />

83.<br />

84.<br />

23π<br />

7π<br />

2<br />

cos = cos =<br />

4 4 2<br />

35π<br />

11π<br />

3<br />

cos = cos =<br />

6 6 2<br />

⎛ 17π<br />

⎞ 7π<br />

3<br />

tan ⎜− tan<br />

6<br />

⎟= =<br />

⎝ ⎠ 6 3<br />

⎛ 11π<br />

⎞ π<br />

tan ⎜− = tan = 1<br />

4<br />

⎟<br />

⎝ ⎠ 4<br />

90.<br />

17π 5π 17π 5π<br />

sin cos + cos sin<br />

3 4 3 4<br />

⎛ 3 ⎞⎛ 2 ⎞ ⎛1⎞⎛ 2 ⎞<br />

= − − + −<br />

⎜ 2 ⎟⎜ 2 ⎟ ⎜<br />

2<br />

⎟<br />

⎜ 2 ⎟<br />

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠<br />

6 2<br />

= −<br />

4 4<br />

6 − 2<br />

=<br />

4<br />

85.<br />

⎛ 17π<br />

⎞ π 3<br />

sin ⎜− sin<br />

3<br />

⎟ = =<br />

⎝ ⎠ 3 2<br />

86.<br />

⎛ 35π<br />

⎞ π 1<br />

sin ⎜− sin<br />

6<br />

⎟ = =<br />

⎝ ⎠ 6 2<br />

528<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


PreCalculus 4E Section 4.4<br />

91.<br />

92.<br />

93.<br />

94.<br />

3 15 5<br />

sin π ⎛<br />

tan π ⎞ ⎛<br />

cos<br />

π ⎞<br />

2<br />

⎜− − −<br />

4<br />

⎟ ⎜<br />

3<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

⎛1<br />

⎞<br />

= ( −1)( 1)<br />

− ⎜<br />

2 ⎟<br />

⎝ ⎠<br />

1<br />

=−1−<br />

2<br />

2 1<br />

=− −<br />

2 2<br />

3<br />

=−<br />

2<br />

3 8 5<br />

sin π ⎛<br />

tan π ⎞ ⎛<br />

cos<br />

π ⎞<br />

2<br />

⎜− + −<br />

3<br />

⎟ ⎜<br />

6<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

⎛ 3 ⎞<br />

= ( − 1)( 3)<br />

+ ⎜<br />

−<br />

2 ⎟<br />

⎝ ⎠<br />

3<br />

=− 3 −<br />

2<br />

2 3 3<br />

=− −<br />

2 2<br />

3 3<br />

=−<br />

2<br />

⎛4 4<br />

f π π ⎞ ⎛<br />

f π ⎞ ⎛<br />

f<br />

π ⎞<br />

⎜ +<br />

3 6<br />

⎟+ ⎜ +<br />

3<br />

⎟ ⎜<br />

6<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

⎛4π π ⎞ 4π π<br />

= sin ⎜ + sin sin<br />

3 6<br />

⎟+ +<br />

⎝ ⎠ 3 6<br />

3π 4π π<br />

= sin + sin + sin<br />

2 3 6<br />

⎛ 3 ⎞ ⎛1⎞<br />

= ( − 1)<br />

+ − +<br />

⎜<br />

2 ⎟ ⎜<br />

2<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

3 + 1<br />

=−<br />

2<br />

⎛5 5<br />

g π π ⎞ ⎛<br />

g π ⎞ ⎛<br />

g<br />

π ⎞<br />

⎜ +<br />

6 6<br />

⎟+ ⎜ +<br />

6<br />

⎟ ⎜<br />

6<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

⎛5π π ⎞ 5π π<br />

= cos ⎜ + cos cos<br />

6 6<br />

⎟+ +<br />

⎝ ⎠ 6 6<br />

5π<br />

π<br />

= cosπ<br />

+ cos + cos<br />

6 6<br />

⎛ 3 ⎞ ⎛ 3 ⎞<br />

= ( − 1)<br />

+ − +<br />

⎜ 2 ⎟ ⎜ 2 ⎟<br />

⎝ ⎠ ⎝ ⎠<br />

=−1<br />

95. ( )<br />

⎛17π<br />

⎞ ⎛ ⎛17π<br />

⎞⎞<br />

h g ⎜ = h⎜g<br />

⎟<br />

3<br />

⎟ ⎜<br />

3<br />

⎟<br />

⎝ ⎠ ⎝ ⎝ ⎠⎠<br />

⎛ ⎛17π<br />

⎞⎞<br />

= 2⎜cos⎜<br />

3<br />

⎟⎟<br />

⎝ ⎝ ⎠⎠<br />

⎛1<br />

⎞<br />

= 2 ⎜ 2 ⎟<br />

⎝ ⎠<br />

= 1<br />

⎛11π<br />

⎞ ⎛ ⎛11π<br />

⎞⎞<br />

h f ⎜ = h⎜ f ⎟<br />

4<br />

⎟ ⎜<br />

4<br />

⎟<br />

⎝ ⎠ ⎝ ⎝ ⎠⎠<br />

⎛ ⎛11π<br />

⎞⎞<br />

= 2⎜sin⎜<br />

⎟<br />

4<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

96. ( )<br />

⎛ 2 ⎞<br />

= 2<br />

⎜<br />

2 ⎟<br />

⎝ ⎠<br />

= 2<br />

97. The average rate of change is the slope of the line<br />

, ( ) x , f( x )<br />

through the points ( x f x ) and ( )<br />

m =<br />

f( x2) − f( x1)<br />

x − x<br />

2 1<br />

1 1<br />

⎛3π<br />

⎞ ⎛5π<br />

⎞<br />

sin ⎜ sin<br />

2<br />

⎟−<br />

⎜<br />

4<br />

⎟<br />

=<br />

⎝ ⎠ ⎝ ⎠<br />

3π<br />

5π<br />

−<br />

2 4<br />

⎛ 2 ⎞<br />

−1− −<br />

⎜<br />

2 ⎟<br />

=<br />

⎝ ⎠<br />

π<br />

4<br />

2<br />

− 1+<br />

= 2<br />

π<br />

4<br />

⎛ 2 ⎞<br />

4 − 1+<br />

⎜<br />

2 ⎟<br />

=<br />

⎝ ⎠<br />

⎛π<br />

⎞<br />

4⎜<br />

4<br />

⎟<br />

⎝ ⎠<br />

2 2 − 4<br />

=<br />

π<br />

2 2<br />

529<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.


<strong>Trigonometric</strong> <strong>Functions</strong><br />

98. The average rate of change is the slope of the line<br />

through the points ( x1, g( x<br />

1)<br />

) and ( x2, g( x<br />

2)<br />

)<br />

gx (<br />

2) − gx (<br />

1)<br />

m =<br />

x2 − x1<br />

⎛3π<br />

⎞<br />

cos ( π ) − cos ⎜<br />

4<br />

⎟<br />

=<br />

⎝ ⎠<br />

3π<br />

π −<br />

4<br />

⎛ 2 ⎞<br />

−1− ⎜<br />

−<br />

2 ⎟<br />

=<br />

⎝ ⎠<br />

π<br />

4<br />

⎛ 2 ⎞<br />

4 − 1+<br />

⎜<br />

2 ⎟<br />

=<br />

⎝ ⎠<br />

⎛π<br />

⎞<br />

4⎜<br />

4<br />

⎟<br />

⎝ ⎠<br />

2 2 − 4<br />

=<br />

π<br />

99.<br />

2<br />

π<br />

sinθ = when the reference angle is and θ is<br />

2<br />

4<br />

in quadrants I or II.<br />

QI<br />

QII<br />

π<br />

π<br />

θ = θ = π −<br />

4 4<br />

3π<br />

=<br />

4<br />

π 3π<br />

θ = ,<br />

4 4<br />

1<br />

π<br />

100. cosθ = when the reference angle is and θ is in<br />

2<br />

3<br />

quadrants I or IV.<br />

QI<br />

QIV<br />

π<br />

π<br />

θ = θ = 2π<br />

−<br />

3 3<br />

5π<br />

=<br />

3<br />

π 5π<br />

θ = ,<br />

3 3<br />

2<br />

π<br />

101. sinθ =− when the reference angle is and<br />

2<br />

4<br />

θ is in quadrants III or IV.<br />

QIII<br />

QIV<br />

π<br />

π<br />

θ = π + θ = 2π<br />

−<br />

4 4<br />

5π<br />

7π<br />

= =<br />

4 4<br />

5π<br />

7π<br />

θ = ,<br />

4 4<br />

1<br />

π<br />

102. cosθ =− when the reference angle is and θ is<br />

2<br />

3<br />

in quadrants II or III.<br />

QII<br />

QIII<br />

π<br />

π<br />

θ = π − θ = π +<br />

3 3<br />

2π<br />

4π<br />

= =<br />

3 3<br />

2π<br />

4π<br />

θ = ,<br />

3 3<br />

π<br />

103. tanθ =− 3 when the reference angle is and θ is 3<br />

in quadrants II or IV.<br />

QII<br />

QIV<br />

π<br />

π<br />

θ = π − θ = 2π<br />

−<br />

3 3<br />

2π<br />

5π<br />

= =<br />

3 3<br />

2π<br />

5π<br />

θ = ,<br />

3 3<br />

3<br />

π<br />

104. tanθ =− when the reference angle is and<br />

3<br />

6<br />

θ is in quadrants II or IV.<br />

QII<br />

QIV<br />

π<br />

π<br />

θ = π − θ = 2π<br />

−<br />

6 6<br />

5π<br />

11π<br />

= =<br />

6 6<br />

5π<br />

11π<br />

θ = ,<br />

6 6<br />

105. – 109. Answers may vary.<br />

110. does not make sense; Explanations will vary.<br />

Sample explanation: Sine is defined for all values of<br />

the angle.<br />

530<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!