22.05.2015 Views

Late Quaternary activity of the Feldbiss Fault Zone, Roer ... - Falw.vu

Late Quaternary activity of the Feldbiss Fault Zone, Roer ... - Falw.vu

Late Quaternary activity of the Feldbiss Fault Zone, Roer ... - Falw.vu

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Tectonophysics 352 (2002) 295–315<br />

www.elsevier.com/locate/tecto<br />

<strong>Late</strong> <strong>Quaternary</strong> <strong>activity</strong> <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>,<br />

<strong>Roer</strong> Valley Rift System, <strong>the</strong> Ne<strong>the</strong>rlands, based on<br />

displaced fluvial terrace fragments<br />

R.F. Houtgast *, R.T. Van Balen , L.M. Bouwer , G.B.M. Brand , J.M. Brijker<br />

Faculteit der Aardwetenschappen, Department <strong>of</strong> <strong>Quaternary</strong> Geology and Geomorphology, Vrije Universiteit, de Boelelaan 1085,<br />

1081 HV, Amsterdam, The Ne<strong>the</strong>rlands<br />

Received 5 November 2001; accepted 19 April 2002<br />

Abstract<br />

The Meuse River crosses <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>, one <strong>of</strong> <strong>the</strong> main border fault zones <strong>of</strong> <strong>the</strong> <strong>Roer</strong> Valley Graben in <strong>the</strong><br />

sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands. Uplift <strong>of</strong> <strong>the</strong> area south <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> forced <strong>the</strong> Meuse River to incise and, as a<br />

result, a flight <strong>of</strong> terraces was formed. <strong>Fault</strong>s <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> have displaced <strong>the</strong> Middle and <strong>Late</strong> Pleistocene terrace<br />

deposits. In this study, an extensive geomorphological survey was carried out to locate <strong>the</strong> faults <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> and<br />

to determine <strong>the</strong> displacement history <strong>of</strong> terrace deposits.The <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> is characterized by an average displacement<br />

rate <strong>of</strong> 0.041–0.047 mm a<br />

1 during <strong>the</strong> <strong>Late</strong> Pleistocene. Individual faults show an average displacement rate ranging between<br />

0.010 and 0.034 mm a<br />

1 . The spatial variation in displacement rates along <strong>the</strong> individual faults reveals a system <strong>of</strong><br />

overstepping faults. These normal faults developed by reactivation <strong>of</strong> Paleozoic strike-slip faults.As fault displacements at <strong>the</strong><br />

bases <strong>of</strong> <strong>the</strong> younger terrace deposits are apparently similar to <strong>the</strong> tops <strong>of</strong> <strong>the</strong> adjacent older terrace, <strong>the</strong> age <strong>of</strong> <strong>the</strong>se horizons is<br />

<strong>the</strong> same within thousands <strong>of</strong> years. This implies that <strong>the</strong> model <strong>of</strong> terrace development by rapid fluvial incision followed by<br />

slow aggradation does apply for this area.<br />

D 2002 Elsevier Science B.V. All rights reserved.<br />

Keywords: <strong>Roer</strong> Valley Rift System; <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>; <strong>Fault</strong> displacement rates; Fluvial terraces; Meuse River; <strong>Quaternary</strong><br />

1. Introduction<br />

In <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands, <strong>the</strong> Meuse<br />

River crosses <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>. This fault zone<br />

forms <strong>the</strong> boundary between a strongly subsiding <strong>Roer</strong><br />

Valley Graben, to <strong>the</strong> north and <strong>the</strong> uplifting Ardennes<br />

* Corresponding author. Faculty <strong>of</strong> Earth Sciences, Vrije<br />

Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam,<br />

The Ne<strong>the</strong>rlands. Tel.: +31-20-44-47392; fax: +31-20-64-62457.<br />

E-mail address: hour@geo.<strong>vu</strong>.nl (R.F. Houtgast).<br />

and South Limburg Block in <strong>the</strong> south (Fig. 1). Uplift <strong>of</strong><br />

<strong>the</strong> area south <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> caused <strong>the</strong><br />

Meuse river to incise during <strong>the</strong> Pliocene and <strong>the</strong><br />

<strong>Quaternary</strong> and thus forming a flight <strong>of</strong> terraces (e.g.,<br />

Pissart, 1974; Zonneveld, 1974; Felder et al., 1989; Van<br />

den Berg, 1989; Juvigné and Renard, 1992; Renson et<br />

al., 1999; Pissart et al., 1997; Van Balen et al., 2000).<br />

Numerous studies have been carried out to detect<br />

and quantify large-scale tectonic uplift using terrace<br />

stratigraphy (e.g., Antoine et al., 2000; Krzyszkowski<br />

et al., 2000; Chen and Liu, 2000). Such a study has<br />

0040-1951/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.<br />

PII: S0040-1951(02)00219-6


296<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

Fig. 1. Tectonic features <strong>of</strong> <strong>the</strong> <strong>Roer</strong> Valley Rift System, <strong>the</strong> Ne<strong>the</strong>rlands.<br />

also been carried out for <strong>the</strong> Meuse terraces (Van den<br />

Berg, 1996; Van Balen et al., 2000). Alluvial surfaces<br />

have also been used to date movements on individual<br />

faults (e.g., Hou et al., 1998; Li et al., 1999). In this<br />

study, fluvial terraces are used to detect <strong>activity</strong> along<br />

<strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>.<br />

In <strong>the</strong> area where <strong>the</strong> Meuse River crosses <strong>the</strong><br />

<strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>, several fault scarps dissect <strong>the</strong><br />

terrace morphology. These scarps <strong>of</strong>fer <strong>the</strong> opportunity<br />

to identify faults that were active during <strong>the</strong> <strong>Late</strong><br />

<strong>Quaternary</strong>. The terrace stratigraphy is used to quantify<br />

<strong>activity</strong> along <strong>the</strong> individual faults. An extensive<br />

geomorphological study combined with an analysis <strong>of</strong><br />

borehole data <strong>of</strong> <strong>the</strong> Dutch Geological Survey (TNO-<br />

NITG) and geo-electric soundings was carried out.<br />

The objective <strong>of</strong> this paper is to establish a <strong>Late</strong><br />

<strong>Quaternary</strong> tectonic model for <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong><br />

in <strong>the</strong> Sittard area, using <strong>the</strong> terrace chronostratigraphy<br />

as time control.<br />

2. Tectonic setting<br />

The <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> is <strong>the</strong> sou<strong>the</strong>rn border<br />

fault <strong>of</strong> <strong>the</strong> central Graben <strong>of</strong> <strong>the</strong> <strong>Roer</strong> Valley Rift<br />

System (RVRS). The RVRS is an active rift system,<br />

located in <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands, <strong>the</strong><br />

nor<strong>the</strong>astern part <strong>of</strong> Belgium and adjacent parts <strong>of</strong><br />

Germany (Fig. 1). The RVRS extends from <strong>the</strong> Dutch<br />

North Sea coast sou<strong>the</strong>astwards into <strong>the</strong> Lower Rhine<br />

Embayment, which is an integral part <strong>of</strong> a Cenozoic<br />

mega-rift system crossing western and central Europe<br />

(Ziegler, 1992). The RVRS has a complex Mesozoic<br />

and Cenozoic tectonic history, comprising several


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 297<br />

Fig. 2. Map <strong>of</strong> South Limburg (The Ne<strong>the</strong>rlands). Distribution <strong>of</strong> terraces (after Van den Berg, 1989) and location <strong>of</strong> study area.<br />

extensional and inversion phases (Zijerveld et al.,<br />

1992). The current extension phase started during<br />

<strong>the</strong> <strong>Late</strong> Oligocene (Geluk et al., 1994).<br />

The <strong>Roer</strong> Valley Rift System (RVRS) comprises <strong>the</strong><br />

Campine and South Limburg Blocks in <strong>the</strong> south, <strong>the</strong><br />

<strong>Roer</strong> Valley Graben in <strong>the</strong> center, and <strong>the</strong> Peel Block<br />

and <strong>the</strong> Venlo Block in <strong>the</strong> nor<strong>the</strong>ast (Fig. 1). The <strong>Roer</strong><br />

Valley Graben is separated from <strong>the</strong> adjoining blocks by<br />

<strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> in <strong>the</strong> southwest and <strong>the</strong> Peel<br />

Boundary <strong>Fault</strong> <strong>Zone</strong> in <strong>the</strong> nor<strong>the</strong>ast, both <strong>of</strong> which<br />

were active during <strong>the</strong> <strong>Quaternary</strong> (e.g., Ahorner, 1962;<br />

Paulissen et al., 1985; Houtgast and Van Balen, 2000).<br />

These fault zones are characterized by a spasmodic<br />

displacement behavior during <strong>the</strong> <strong>Quaternary</strong>. In addition,<br />

<strong>activity</strong> along <strong>the</strong>se fault zones is laterally variable<br />

(Houtgast and Van Balen, 2000).<br />

In <strong>the</strong> Sittard area (Fig. 2), <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong><br />

crosses <strong>the</strong> Meuse terraces almost perpendicularly. The


298<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

Fig. 3. Interpreted seismic sections east and west <strong>of</strong> Sittard, after<br />

TNO-NITG (1999). Location <strong>of</strong> section given in Fig. 2.<br />

<strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> consists <strong>of</strong> several individual<br />

faults (Fig. 2; TNO-NITG, 1999). In this study, we<br />

focus on <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> east and west <strong>of</strong><br />

Sittard, which consists <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong>, Geleen and<br />

Heerlerheide <strong>Fault</strong>s. The two interpreted seismic sections,<br />

east and west <strong>of</strong> Sittard illustrate that <strong>the</strong>se faults<br />

were repeatedly reactivated since <strong>the</strong> Jurassic (Fig. 3).<br />

3. Meuse terraces<br />

3.1. Introduction<br />

Due to northwest directed tilting and continuous<br />

uplift <strong>of</strong> <strong>the</strong> South Limburg Block, terrace remnants<br />

are preserved mainly on <strong>the</strong> east bank <strong>of</strong> <strong>the</strong> Meuse<br />

river valley. The Meuse terraces in South Limburg<br />

have been <strong>the</strong> subject <strong>of</strong> many studies and have been<br />

extensively described (e.g., Van Rummelen, 1942;<br />

Brueren, 1945; Zonneveld, 1974; Felder et al., 1989;<br />

Van den Berg, 1989, 1996). Traditionally <strong>the</strong> Meuse<br />

terraces are subdivided into four groups: <strong>the</strong> East<br />

Meuse Terraces, Main (Higher) Terraces, Middle<br />

Terraces and Lower Terrace (Table 1; Zonneveld,<br />

1974). The different age models <strong>of</strong> <strong>the</strong>se terraces do<br />

not agree (especially for <strong>the</strong> Middle and Higher<br />

Terraces) and different names were proposed (especially<br />

for <strong>the</strong> Lower Terraces). In this paper, we use<br />

<strong>the</strong> terminology <strong>of</strong> Van den Berg (1996). The differences<br />

in <strong>the</strong> age models will be addressed below.<br />

During <strong>the</strong> Pliocene and Early Pleistocene, <strong>the</strong><br />

Meuse flowed east <strong>of</strong> <strong>the</strong> Waubach Island (Van den<br />

Berg, 1996; Fig. 2). The terraces formed in this period<br />

are grouped into <strong>the</strong> East Meuse terraces. During <strong>the</strong><br />

Early Pleistocene <strong>the</strong> Meuse River changed its course<br />

and flowed west <strong>of</strong> <strong>the</strong> Waubach Island. The Higher<br />

Terraces, comprising <strong>the</strong> Geertruid and Pietersberg<br />

Terraces, were formed during <strong>the</strong> Early Pleistocene to<br />

<strong>the</strong> Early (Van den Berg, 1996) or Middle Cromerian<br />

times (Felder et al., 1989; Van Balen et al., 2000). The<br />

Middle Terraces, comprising <strong>the</strong> ’s Gravenvoeren,<br />

Ro<strong>the</strong>m and Caberg Terraces, are <strong>of</strong> Cromerian to<br />

Middle Saalian Age. The Lower Terraces, comprising<br />

<strong>the</strong> Eisden-Lanklaar, Mechelen a/d Meuse and Geistingen<br />

are <strong>of</strong> <strong>Late</strong> Saalian to <strong>Late</strong> Glacial age (Felder et<br />

al., 1989; Van den Berg, 1996; Van Balen et al., 2000).<br />

3.2. Terraces in <strong>the</strong> Sittard area<br />

The Meuse terrace fragments in this area belong to<br />

<strong>the</strong> Middle and <strong>the</strong> Lower Terraces (Fig. 2). The<br />

Caberg Terraces <strong>of</strong> <strong>the</strong> Middle Terrace sequence are<br />

aggradational terraces formed by a braided river during<br />

cold periods (Paulissen, 1973). The Eisden-Lanklaar<br />

and Geistingen Terraces <strong>of</strong> <strong>the</strong> Lower Terrace<br />

system were also formed by a braided river system<br />

during a cold period (Paulissen, 1973). An important<br />

stratigraphic characteristic <strong>of</strong> <strong>the</strong> Geistingen Terrace is<br />

<strong>the</strong> complete absence <strong>of</strong> coversands. Consequently,<br />

this terrace was formed during or after <strong>the</strong> latest<br />

period <strong>of</strong> coversand deposition, i.e. during or after<br />

<strong>the</strong> Younger Dryas period (Paulissen, 1973).<br />

All terraces in this study area have been deposited<br />

by braided river systems and are characterized by<br />

comparable lithological compositions. Generally,<br />

<strong>the</strong>se terraces consist <strong>of</strong> a lower part which is formed<br />

by stacked channel deposits, mainly composed <strong>of</strong><br />

gravel and coarse sand (unit 1) and an upper part


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 299<br />

Table 1<br />

which is build up <strong>of</strong> overbank and floodplain deposits<br />

composed <strong>of</strong> coarse to fine sands and loam (unit 2).<br />

These finer sediments could be <strong>the</strong> overbank and<br />

floodplain deposits <strong>of</strong> <strong>the</strong> same fluvial system that<br />

formed <strong>the</strong> underlying coarse grained deposits (unit<br />

1), leading to comparable ages <strong>of</strong> <strong>the</strong> units. Alternatively,<br />

<strong>the</strong> fine deposits (unit 2) could represent a<br />

different fluvial system active during <strong>the</strong> subsequent<br />

interglacial period, like observed at <strong>the</strong> Caberg 3<br />

Terrace near Maastricht (Vandenberghe, 1993). Therefore,<br />

<strong>the</strong> age <strong>of</strong> unit 2 is ambiguous.<br />

The terrace deposits are <strong>of</strong>ten covered by aeolian<br />

deposits, mainly sandy loess (Mun cher, 1986). The<br />

terrace deposits are underlain by Tertiary Breda or<br />

Kiezelöoliet Formations, which consist <strong>of</strong> fine to<br />

coarse sands (Felder et al., 1989). The base <strong>of</strong> <strong>the</strong><br />

terrace deposits has a spatial height variation <strong>of</strong> up to<br />

several meters, whereas <strong>the</strong> top <strong>of</strong> <strong>the</strong> terrace deposits<br />

generally varies only 1 m (Van den Berg, 1996).<br />

3.3. Existing terrace maps<br />

Two detailed geomorphological/terrace maps have<br />

been published: Felder et al. (1989) and Van den Berg<br />

(1989). Felder and Bosch used <strong>the</strong> base <strong>of</strong> <strong>the</strong> terrace<br />

deposits to distinguish and map <strong>the</strong> different terraces.<br />

Van den Berg used <strong>the</strong> top <strong>of</strong> <strong>the</strong> terrace deposits, i.e.<br />

<strong>the</strong>ir geomorphology and topographic height. As <strong>the</strong><br />

height variability at <strong>the</strong> top <strong>of</strong> <strong>the</strong> terrace deposits is<br />

smaller than <strong>the</strong> height variability at <strong>the</strong>ir base (Van den


300<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

Berg, 1996), mapping <strong>the</strong> top <strong>of</strong> <strong>the</strong> terrace deposits<br />

provides a more accurate picture <strong>of</strong> <strong>the</strong> terrace morphology.<br />

The Van den Berg terrace division differentiates<br />

more terraces in our study area. Therefore, we<br />

prefer <strong>the</strong> Van den Berg (1989) map to <strong>the</strong> Felder et al.<br />

(1989) map as a starting point. However, <strong>the</strong> accuracy<br />

<strong>of</strong> <strong>the</strong> terrace borders in <strong>the</strong> vicinity <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong><br />

<strong>Fault</strong> <strong>Zone</strong> may be questioned as bending <strong>of</strong> <strong>the</strong> terrace<br />

edges may be explained by downfaulting and not so<br />

much by river <strong>activity</strong> (Fig. 4).<br />

3.4. Age <strong>of</strong> <strong>the</strong> terraces<br />

In order to calculate fault displacement rates an age<br />

model for <strong>the</strong> terraces is required. The age <strong>of</strong> <strong>the</strong><br />

Caberg 3 Terrace (250 ka) has been established by<br />

<strong>the</strong>rmoluminescence and paleontological remains<br />

(Huxtable and Aitken, 1985; Van Kolfschoten et al.,<br />

1993) and is not disputed. For <strong>the</strong> older terraces, <strong>the</strong><br />

age control is less sure. Three different age models for<br />

<strong>the</strong> terraces have been published (Table 1; Felder et al.,<br />

1989; Van den Berg, 1996; Van Balen et al., 2000).<br />

Felder et al. (1989) based <strong>the</strong>ir age model on pollen<br />

data and on correlation to a paleo-temperature curve.<br />

Fig. 4. Influence <strong>of</strong> fault <strong>activity</strong> on terrace heights. Correlation <strong>of</strong><br />

terraces based on altitudes can lead to wrong results.<br />

Van den Berg (1996) also used pollen data, correlation<br />

with <strong>the</strong> paleo-temperature curve and additional local<br />

paleomagnetic measurements. Van Balen et al. (2000)<br />

used data from pollen, regional paleomagnetic measurements<br />

and U/Th measurements, as well as a correlation<br />

<strong>of</strong> Meuse and Rhine terraces. The age control <strong>of</strong><br />

<strong>the</strong> latter terraces is better. The different age models<br />

show some discrepancies, particularly for <strong>the</strong> middle<br />

Pleistocene terraces. The differences are caused by<br />

paleomagnetic data and regional correlations.<br />

The Meuse valley is characterized by flat and wide<br />

terraces its upper part, <strong>the</strong> Main Terraces, and narrow<br />

terraces in its lower part, <strong>the</strong> Middle and Lower Terraces.<br />

The transition is sharply marked in <strong>the</strong> morphology.<br />

The same morphology is also present along <strong>the</strong> Rhine.<br />

As both rivers are located in <strong>the</strong> same tectonic and<br />

climatic setting, <strong>the</strong> morphologic break observed along<br />

<strong>the</strong> Meuse and Rhine should have <strong>the</strong> same age. Several<br />

paleomagnetic measurements constrain <strong>the</strong> age <strong>of</strong> <strong>the</strong><br />

youngest Main Terrace <strong>of</strong> <strong>the</strong> Rhine and Meuse, within<br />

and outside <strong>the</strong> South Limburg area. Therefore, <strong>the</strong><br />

basic questions for <strong>the</strong> terrace age model are: What is<br />

<strong>the</strong> paleomagnetic signature <strong>of</strong> <strong>the</strong> youngest Main<br />

Terrace, and which terrace in <strong>the</strong> South Limburg area<br />

corresponds to this terrace level? Based on upstream<br />

terrace altitude correlation with <strong>the</strong> Belgian part <strong>of</strong> <strong>the</strong><br />

Meuse, Van Balen et al. (2000) concluded that <strong>the</strong><br />

Pietersberg 1 level is <strong>the</strong> youngest Main Terrace level.<br />

Although, based on <strong>the</strong> local morphology, both <strong>the</strong><br />

Pietersberg 1 and <strong>the</strong> Pietersberg 2 Terraces appear to<br />

belong to <strong>the</strong> last <strong>of</strong> <strong>the</strong> Main Terraces (Van den Berg<br />

and Van Ho<strong>of</strong>, 2001). Thus, Pietersberg 2 is <strong>the</strong> youngest<br />

Main Terrace. We <strong>the</strong>refore question <strong>the</strong> validity <strong>of</strong><br />

<strong>the</strong> date given by Van den Berg (1996) for <strong>the</strong> age <strong>of</strong> <strong>the</strong><br />

Pietersberg Terrace. Along <strong>the</strong> Rhine and along <strong>the</strong><br />

Meuse upstream <strong>of</strong> Maastricht, paleomagnetic measurements<br />

on <strong>the</strong> youngest Main Terraces show normal<br />

polarization (see Van Balen et al., 2000). In addition, <strong>the</strong><br />

deposits in <strong>the</strong> <strong>Roer</strong> Valley Graben which can be<br />

correlated to <strong>the</strong> Pietersberg 2 Terrace based on tectono-morphological<br />

arguments (Van Balen et al., 2000)<br />

also show normal polarization (van Montfrans, 1971).<br />

The age <strong>of</strong> this terrace is <strong>the</strong>refore constrained by <strong>the</strong><br />

age <strong>of</strong> <strong>the</strong> paleomagnetic Matuyama–Brunhes boundary,<br />

which is 0.78 ka. However, <strong>the</strong> paleomagnetic<br />

data from <strong>the</strong> Pietersberg 2 level from South Limburg<br />

(Van den Berg, 1996; Van den Berg and Van Ho<strong>of</strong>,<br />

2001) is not in accordance with this scheme. We


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 301<br />

Fig. 5. Correlation in sou<strong>the</strong>rn Limburg <strong>of</strong> terraces with <strong>the</strong> ODP 667 d 18 O ocean record (Shackleton et al., 1990). Van den Berg (1996) age<br />

model and <strong>the</strong> age model used in this paper. After Van den Berg (1996).<br />

question <strong>the</strong>ir validity <strong>of</strong> <strong>the</strong>ir date particularly as <strong>the</strong><br />

Pietersberg Terrace correlates with well dated fluvial<br />

deposits in <strong>the</strong> <strong>Roer</strong> Valley Graben (Van Balen et al.,<br />

2000). In addition, assuming for it an age close to <strong>the</strong><br />

Matuyama–Brunhes boundary results in a more uniform<br />

distribution <strong>of</strong> terraces through time, and a<br />

straightforward correlation <strong>of</strong> terraces with <strong>the</strong> ocean<br />

oxygen isotope record (Shackleton et al., 1990), (see<br />

Fig. 5 and Table 1, age model this paper). Still, both age<br />

models will be used to calculate fault displacements.<br />

4. Methodology<br />

During this study, borehole records form <strong>the</strong> Dutch<br />

Geological Survey (TNO-NITG) were combined with<br />

new handcorings and vertical electric soundings. The<br />

advantage <strong>of</strong> handcorings is <strong>the</strong> accurate lithological<br />

description, <strong>the</strong>ir disadvantage is that it is only possible<br />

to determine <strong>the</strong> top <strong>of</strong> <strong>the</strong> coarse terrace<br />

deposits. The advantage <strong>of</strong> TNO-NITG core holes is<br />

that most <strong>of</strong> <strong>the</strong>m reached <strong>the</strong> base <strong>of</strong> <strong>the</strong> coarse<br />

terrace deposits and thus permit to map <strong>the</strong>ir top and<br />

base. Geo-electric surveys have <strong>the</strong> advantage <strong>of</strong> deep<br />

penetration, but <strong>the</strong>ir disadvantage is <strong>the</strong> dependence<br />

on a number <strong>of</strong> factors which influence <strong>the</strong> measurement<br />

and <strong>the</strong>ir interpretation, e.g. groundwater level<br />

and availability <strong>of</strong> nearby corings to calibrate <strong>the</strong> geoelectric<br />

measurement (Vandenberghe, 1982). The<br />

accuracy in determination <strong>of</strong> <strong>the</strong> top and base <strong>of</strong> <strong>the</strong><br />

coarse terrace deposits is less than in corings. Therefore,<br />

<strong>the</strong> geo-electric soundings play a supportive role,<br />

particularly for <strong>the</strong> determination <strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

coarse terrace deposits.<br />

In a first step, <strong>the</strong> faults in <strong>the</strong> study area were<br />

mapped, using topographic and geomorphological


302<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

maps, field observations and a DTM. Secondly, <strong>the</strong><br />

terrace stratigraphy was used to develop an accurate<br />

terrace map for each fault block. Finally, <strong>the</strong> elevation<br />

<strong>of</strong> <strong>the</strong> top and base <strong>of</strong> each terrace on <strong>the</strong> different<br />

fault blocks was determined, thus permitting <strong>the</strong><br />

calculation <strong>of</strong> <strong>the</strong> fault displacements along <strong>the</strong> individual<br />

faults.<br />

4.1. Location <strong>of</strong> <strong>the</strong> faults in <strong>the</strong> Sittard area<br />

Various maps showing <strong>the</strong> location <strong>of</strong> faults in <strong>the</strong><br />

study area have been published (e.g., Felder et al.,<br />

1989; TNO-NITG, 1999; Beerten et al., 1999). In <strong>the</strong><br />

field, tectonic scarps are evident as relatively steep<br />

slopes which extent over several kilometers. Based on<br />

a DTM <strong>of</strong> <strong>the</strong> area combined with field observations a<br />

new map <strong>of</strong> <strong>the</strong> faults was constructed (Fig. 6). The<br />

mapped faults divide <strong>the</strong> study area, southwest <strong>of</strong><br />

Sittard, into four tectonic blocks, namely <strong>the</strong> area<br />

nor<strong>the</strong>ast <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong>, between <strong>the</strong> <strong>Feldbiss</strong><br />

<strong>Fault</strong> and <strong>the</strong> Geleen <strong>Fault</strong>, between <strong>the</strong> Geleen <strong>Fault</strong><br />

and <strong>the</strong> Heerlerheide <strong>Fault</strong> and southwest <strong>of</strong> <strong>the</strong><br />

Heerlerheide <strong>Fault</strong>. We assume that each fault block<br />

behaves as a tectonic entity. Smaller faults ( < 1 m)<br />

within <strong>the</strong> individual fault blocks cannot be distinguished<br />

from natural height variation <strong>of</strong> 1 m at <strong>the</strong> top<br />

<strong>of</strong> <strong>the</strong> terrace deposits (Van den Berg, 1996). South <strong>of</strong><br />

<strong>the</strong> Heerlerheide <strong>Fault</strong>, we were unable to collect<br />

enough data because <strong>the</strong> younger terraces have no<br />

or only small terrace remnants in that area, and<br />

because <strong>of</strong> built areas. The contribution <strong>of</strong> <strong>the</strong> Heerlerheide<br />

<strong>Fault</strong> to <strong>the</strong> total displacement <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong><br />

<strong>Fault</strong> <strong>Zone</strong> will be addressed in <strong>the</strong> Discussion section.<br />

The fault configuration nor<strong>the</strong>ast <strong>of</strong> Sittard (older<br />

terraces) is different from <strong>the</strong> area west <strong>of</strong> Sittard<br />

(younger terraces, Fig. 6). East Of Sittard, we divide<br />

<strong>the</strong> area into three tectonic blocks, namely north <strong>of</strong> <strong>the</strong><br />

NE-Main <strong>Fault</strong>, between <strong>the</strong> NE-Main fault and <strong>the</strong><br />

<strong>Feldbiss</strong> <strong>Fault</strong> and South <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong>.<br />

4.2. Mapping <strong>the</strong> terraces<br />

The terrace deposits consists <strong>of</strong> a coarse grained<br />

lower part (unit 1) and a finer grained upper part (unit 2).<br />

Fig. 6. Detailed map <strong>of</strong> <strong>the</strong> terraces and differences with <strong>the</strong> Van den Berg (1996) map. Dutch reference system coordinates (Rijks Driehoeks<br />

Meting).


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 303<br />

The boundary between <strong>the</strong> sandy Tertiary deposits and<br />

<strong>the</strong> lower terrace deposits (unit 1) is in most cases easy<br />

to recognize in core holes and geo-electric soundings.<br />

The transition between unit 1 and <strong>the</strong> overlying finergrained<br />

unit 2 is also easily recognized in corings. Due<br />

to <strong>the</strong> gradual transitions, <strong>the</strong> boundary between <strong>the</strong><br />

fine-grained unit 2 and <strong>the</strong> overlying sandy loess cover<br />

is <strong>of</strong>ten difficult to pinpoint in (hand) corings. In this<br />

paper, <strong>the</strong> base <strong>of</strong> <strong>the</strong> terrace deposits refers to <strong>the</strong> base<br />

<strong>of</strong> <strong>the</strong> coarse unit 1, whereas <strong>the</strong> top <strong>of</strong> <strong>the</strong> terrace<br />

deposits refers to top <strong>of</strong> unit 1.<br />

In order to map <strong>the</strong> position <strong>of</strong> <strong>the</strong> terrace borders<br />

on <strong>the</strong> individual fault blocks we constructed geological<br />

sections parallel to <strong>the</strong>ir bounding NW–SEoriented<br />

faults (Figs. 7 and 9), applying <strong>the</strong> following<br />

three criteria: (1) Terrace scarps paralleling <strong>the</strong> river<br />

Meuse have a clear expression, particularly on <strong>the</strong><br />

younger terraces (Geistingen, Eisden-Lanklaar). By<br />

contrast <strong>the</strong> morphological expression <strong>of</strong> <strong>the</strong> older<br />

terraces is less clear due to <strong>the</strong>ir masking loess cover<br />

and erosion <strong>of</strong> <strong>the</strong> scarps (Zonneveld, 1974). (2)<br />

Abrupt depth changes in <strong>the</strong> top <strong>of</strong> unit 1, which<br />

forms a very distinct marker. However, one must<br />

realize that <strong>the</strong> top unit 1 has <strong>of</strong>ten been disrupted<br />

by post depositional gully erosion (Van den Berg,<br />

1996). (3) Abrupt depth changes <strong>of</strong> <strong>the</strong> base <strong>of</strong> unit 1,<br />

which is clearly recognizable in core holes and geoelectric<br />

measurements. However, natural height variations<br />

<strong>of</strong> several meters are evident at <strong>the</strong> base <strong>of</strong> unit<br />

1 (Van den Berg, 1996).<br />

5. Results<br />

It is beyond <strong>the</strong> scope <strong>of</strong> this paper to discuss <strong>the</strong><br />

resulting pr<strong>of</strong>iles in detail. However, some features <strong>of</strong><br />

Fig. 7. Location <strong>of</strong> geological sections parallel to <strong>the</strong> faults (Fig. 8) and <strong>the</strong> location <strong>of</strong> <strong>the</strong> interpreted seismic sections (Fig. 3). For legend, see<br />

Fig. 6.


304<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

Fig. 8. Geological sections parallel to <strong>the</strong> faults. Based on corings and geo-electric soundings.


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 305<br />

Fig. 8 (continued).<br />

<strong>the</strong> pr<strong>of</strong>iles deserve attention. One prominent feature<br />

is <strong>the</strong> stacking <strong>of</strong> terrace deposits in pr<strong>of</strong>iles A, B and<br />

C. Older terrace deposits (probably deposits <strong>of</strong> <strong>the</strong><br />

Caberg 3 Terrace) underlie <strong>the</strong> younger terraces (Holocene<br />

floodplain, Geistingen and Eisden-Lanklaar<br />

Terraces; Beerten et al., 1999). The bases <strong>of</strong> <strong>the</strong> coarse<br />

deposits <strong>of</strong> <strong>the</strong>se terraces are located at about <strong>the</strong> same<br />

elevation. The pr<strong>of</strong>iles are located on different fault


306<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

Fig. 8 (continued).


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 307<br />

Table 2<br />

Average height [m NAP] <strong>of</strong> <strong>the</strong> base and top <strong>of</strong> <strong>the</strong> terrace deposits on each tectonic block<br />

Terrace<br />

North <strong>of</strong> <strong>Feldbiss</strong> <strong>Fault</strong> Between <strong>Feldbiss</strong> Between Geleen and South <strong>of</strong> Heerlerheide<br />

Height r N<br />

and Geleen <strong>Fault</strong>s Heerlerheide <strong>Fault</strong>s <strong>Fault</strong><br />

Height r N Height r N Height r N<br />

Geistingen Top 29.9 0.8 9 31.7 0.6 10 32.4 1.0 7 n.d.<br />

Base 17.6 0.3 2 21.7 0.9 3 26.5 0.4 3 n.d.<br />

Eisden-Lanklaar Top 31.7 0.4 4 34.9 0.7 5 40.0 0.3 5 n.d.<br />

Base 19.2 0.2 2 24.9 1.2 2 34.5 1.2 2 n.d.<br />

Caberg 3 Top 32.9 0.4 5 39.7 0.7 5 46.5 0.6 3 n.d.<br />

Base 17.5 0.5 4 27.0 0.8 4 34.4 1.1 3 n.d.<br />

Caberg 2 Top 34.8 0.5 8 44.2 0.4 4 49.8 0.2 3 n.d.<br />

Base 19.1 1 33.2 0.8 4 38.6 0.6 2 n.d.<br />

Caberg 1 Top 38.6 0.4 5 48.6 0.3 3 53.4 0.1 2 54.7 0.1 3<br />

Base 20.9 0.6 4 38.0 0.6 3 37.3 1 47.3 1<br />

North <strong>of</strong> NE-main <strong>Fault</strong> Between <strong>Feldbiss</strong> South <strong>of</strong> <strong>Feldbiss</strong> <strong>Fault</strong><br />

and NE-main <strong>Fault</strong>s<br />

Pietersberg 1 Top 52.5 1 n.d. 95.0 1<br />

Base 49.0 1 n.d. 86.1 1<br />

Geertruid 3 Top n.d. n.d. 98.2 1<br />

Base 48.4 2.7 2 n.d. 96.4 0.4 2<br />

Geertruid 2 Top n.d. 73.2 1.6 3 104.1 1.6 3<br />

Base 39.9 1 66.6 1.8 2 91.8 1.4 5<br />

r = Standard deviation, N = Number <strong>of</strong> observations, n.d. = no data.<br />

The values given in this table could differ from <strong>the</strong> results given in <strong>the</strong> pr<strong>of</strong>iles <strong>of</strong> Fig. 8. In those pr<strong>of</strong>iles <strong>the</strong> terrace heights represent <strong>the</strong><br />

elevation at <strong>the</strong> location <strong>of</strong> <strong>the</strong> pr<strong>of</strong>ile, whereas <strong>the</strong> values given in this table are calculated with data from <strong>the</strong> whole fault block.<br />

blocks, with different tectonic regimes (Fig. 7). Pr<strong>of</strong>iles<br />

A and B are located in <strong>the</strong> <strong>Roer</strong> Valley Graben,<br />

which is a strong subsiding block. Pr<strong>of</strong>iles C and D<br />

are respectively located on <strong>the</strong> <strong>Feldbiss</strong>/Geleen <strong>Fault</strong><br />

Block and <strong>the</strong> Geleen/Heerlerheide <strong>Fault</strong> Block,<br />

which are moderate to minor (with respect to <strong>the</strong><br />

<strong>Roer</strong> Valley Graben) subsiding blocks. Because <strong>of</strong><br />

<strong>the</strong> strong subsiding nature <strong>of</strong> <strong>the</strong> <strong>Roer</strong> Valley Graben<br />

and <strong>the</strong> moderate subsiding nature <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong>/<br />

Geleen <strong>Fault</strong> Block, older terrace deposits underlie <strong>the</strong><br />

younger terraces. An additional cause for <strong>the</strong> decrease<br />

in incision <strong>of</strong> <strong>the</strong> younger terraces (Eisden-Lanklaar<br />

and Geistingen Terraces) could be <strong>the</strong> loss <strong>of</strong> <strong>the</strong><br />

Moselle tributary to <strong>the</strong> Meuse River during <strong>the</strong> <strong>Late</strong><br />

Saalian (Pissart et al., 1997; Van Balen et al., 2000).<br />

Decreasing <strong>the</strong> discharge <strong>of</strong> <strong>the</strong> Meuse river after <strong>the</strong><br />

formation <strong>of</strong> <strong>the</strong> Caberg 3 Terrace (Middle Saale) lead<br />

to <strong>the</strong> preservation <strong>of</strong> <strong>the</strong> Caberg 3 Terrace deposits<br />

beneath <strong>the</strong> younger terrace deposits. This stratigraphic<br />

superposition makes it difficult to establish<br />

<strong>the</strong> exact position <strong>of</strong> <strong>the</strong> boundaries between <strong>the</strong><br />

stacked terrace deposits. Section D (Fig. 8) is located<br />

on <strong>the</strong> Geleen/Heerlerheide <strong>Fault</strong> Block. Tertiary<br />

deposits underlie all terraces in this pr<strong>of</strong>ile, stacked<br />

terrace deposits are absent. Section E (Fig. 8) is<br />

located south <strong>of</strong> <strong>the</strong> Heerlerheide <strong>Fault</strong>. In <strong>the</strong> area<br />

<strong>of</strong> this pr<strong>of</strong>ile, <strong>the</strong> younger terraces are hardly preserved.<br />

In section C (Fig. 8), <strong>the</strong> large height difference<br />

between <strong>the</strong> Caberg 1 Terrace and <strong>the</strong> older Terraces<br />

deserves attention. It could possibly be <strong>the</strong> result <strong>of</strong> a<br />

N–S-oriented fault. On <strong>the</strong> geological map <strong>of</strong> <strong>the</strong> top<br />

<strong>of</strong> <strong>the</strong> pre-Permian (TNO-NITG, 1999), a N–S-oriented<br />

fault is situated near this location. However, at<br />

o<strong>the</strong>r locations in between <strong>the</strong> <strong>Feldbiss</strong> and Geleen<br />

<strong>Fault</strong>s we could not any find evidence for a N–Soriented<br />

fault that was active during <strong>the</strong> <strong>Quaternary</strong>.<br />

Additionally, <strong>the</strong> inferred displacement <strong>of</strong> more than<br />

30 m is too large for such a short (1 km) fault<br />

segment, making it <strong>the</strong> fault with <strong>the</strong> largest displacement<br />

in <strong>the</strong> area. An alternative explanation is that<br />

during <strong>the</strong> formation <strong>of</strong> <strong>the</strong> Caberg 1 Terrace <strong>the</strong> river<br />

was able to remove older terrace remnants (Ro<strong>the</strong>m 2,<br />

Ro<strong>the</strong>m 1 and ’s Gravenvoeren) at this location.<br />

The natural height variation <strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

terraces is several meters (Van den Berg, 1996). At


308<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

several locations along <strong>the</strong> pr<strong>of</strong>iles, <strong>the</strong> variation is<br />

even larger (e.g., pr<strong>of</strong>ile B, Caberg 2; pr<strong>of</strong>ile E,<br />

Caberg 2). This shows that <strong>the</strong> variation in <strong>the</strong> base<br />

<strong>of</strong> <strong>the</strong> terraces can be as large as 5–8 m. In general,<br />

<strong>the</strong> terrace heights in <strong>the</strong> pr<strong>of</strong>iles represent <strong>the</strong> elevation<br />

<strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> terraces at <strong>the</strong> location <strong>of</strong> <strong>the</strong><br />

pr<strong>of</strong>ile, whereas <strong>the</strong> values given in Table 2 are<br />

calculated with data from <strong>the</strong> whole fault block. Thus,<br />

<strong>the</strong> values given in Table 2 could differ from <strong>the</strong><br />

results as shown in <strong>the</strong> pr<strong>of</strong>iles <strong>of</strong> Fig. 8.<br />

Additional data (hand corings, TNO-NITG corings<br />

and geo-electric soundings) located outside <strong>the</strong> pr<strong>of</strong>iles<br />

were used to determine <strong>the</strong> location <strong>of</strong> <strong>the</strong> terrace<br />

borders between <strong>the</strong> pr<strong>of</strong>iles. The new terrace map<br />

differs in several details from <strong>the</strong> terrace map <strong>of</strong> Van<br />

den Berg (1989) as indicated in Fig. 6. Most <strong>of</strong> <strong>the</strong>se<br />

differences occur north <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong>. South <strong>of</strong><br />

<strong>the</strong> <strong>Feldbiss</strong> fault, <strong>the</strong>se differences between <strong>the</strong> two<br />

maps are minimal. The largest discrepancy is <strong>the</strong><br />

border between <strong>the</strong> Geistingen Terrace and Holocene<br />

floodplain. Large parts <strong>of</strong> <strong>the</strong> Holocene floodplain are<br />

now interpreted as forming a part <strong>of</strong> <strong>the</strong> Geistingen<br />

Terrace. Three arguments support our interpretation.<br />

(1) Difference in morphology between <strong>the</strong> two terraces.<br />

In our interpretation, <strong>the</strong> Holocene floodplain is<br />

characterized by a clear scroll bar morphology. In <strong>the</strong><br />

interpretation <strong>of</strong> Van den Berg, this distinct morphology<br />

is attributed to <strong>the</strong> Geistingen Terrace south <strong>of</strong> <strong>the</strong><br />

<strong>Feldbiss</strong> <strong>Fault</strong>. (2) The heights differ between <strong>the</strong> two<br />

terraces and a scarp occurs between <strong>the</strong> two terraces.<br />

(3) Analyses <strong>of</strong> <strong>the</strong> pollen record <strong>of</strong> <strong>the</strong> fill <strong>of</strong> a<br />

meander scar a few kilometers north <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong><br />

<strong>Fault</strong> revealed a Younger Dryas age (Van Nieuwpoort<br />

and Schokker, 1998), placing <strong>the</strong> abandonment <strong>of</strong> this<br />

system before or during <strong>the</strong> Younger Dryas.<br />

5.1. Height <strong>of</strong> terrace deposits on <strong>the</strong> different fault<br />

blocks<br />

<strong>Fault</strong>s divide <strong>the</strong> area west <strong>of</strong> Sittard into several<br />

tectonic blocks while <strong>the</strong> terrace borders subdivide<br />

<strong>the</strong>se blocks into individual terrace sections. The next<br />

step in our analysis was to calculate <strong>the</strong> average height<br />

<strong>of</strong> <strong>the</strong> top and base <strong>of</strong> <strong>the</strong> terrace deposits on each<br />

block. Theoretically, all <strong>the</strong> measurements on a terrace<br />

within one block should approximately yield <strong>the</strong> same<br />

elevation. However, some natural variations may be<br />

attributed to a depositional height variability <strong>of</strong> about<br />

1 m at <strong>the</strong> top <strong>of</strong> <strong>the</strong> coarse terrace deposits (Van den<br />

Berg, 1996), and to longitudinal gradients <strong>of</strong> <strong>the</strong><br />

terrace surface. Additional factors are gully erosion<br />

and inaccuracy in <strong>the</strong> height measurements in corings<br />

and in <strong>the</strong> determination <strong>of</strong> <strong>the</strong> top and base <strong>of</strong> unit 1<br />

in <strong>the</strong> corings. We made corrections for <strong>the</strong> latter (see<br />

below).<br />

Because <strong>of</strong> <strong>the</strong> height variability we expect some<br />

<strong>of</strong> <strong>the</strong> height measurements to deviate downwards. We<br />

assume that <strong>the</strong> highest points give <strong>the</strong> most accurate<br />

representation <strong>of</strong> <strong>the</strong> depositional height. Measurements<br />

which deviate too much ( > 1 m) from <strong>the</strong><br />

average height <strong>of</strong> each section were rejected. A<br />

distinction should be made between <strong>the</strong> older terraces<br />

(Pietersberg 1, 2, 3 and Geertruid 1, 2, 3) and <strong>the</strong><br />

younger terraces (Caberg 1, 2, 3, Eisden-Lanklaar, and<br />

Geistingen). The older terraces were subjected to<br />

erosion for a much longer time and <strong>the</strong>refore large<br />

parts <strong>of</strong> <strong>the</strong> terrace deposits are missing (Felder et al.,<br />

1989). Therefore, on a number <strong>of</strong> sections we were<br />

not able to determine <strong>the</strong> height <strong>of</strong> <strong>the</strong> top and/or base<br />

<strong>of</strong> <strong>the</strong> coarse terrace deposits. On <strong>the</strong> younger terraces,<br />

a complete stratigraphy is present at most places<br />

and <strong>the</strong> values are much more reliable. As mentioned<br />

above, <strong>the</strong> youngest terraces (Eisden-Lanklaar and<br />

Geistingen) are underlain by older terrace deposits<br />

(probably Caberg 3 Terrace deposits, see Fig. 8).<br />

Therefore, values for <strong>the</strong> base <strong>of</strong> <strong>the</strong> unit 1 terrace<br />

deposits on <strong>the</strong>se younger terraces should be regarded<br />

with caution. Table 2 gives <strong>the</strong> height <strong>of</strong> <strong>the</strong> base and<br />

<strong>the</strong> top <strong>of</strong> <strong>the</strong> terrace deposits on each tectonic block<br />

toge<strong>the</strong>r with <strong>the</strong> number <strong>of</strong> reliable observations and<br />

<strong>the</strong> standard deviation. A distinction was made<br />

between <strong>the</strong> area west and east <strong>of</strong> Sittard because <strong>of</strong><br />

difference in fault configuration between <strong>the</strong> two<br />

areas, see Fig. 2.<br />

Beerten et al. (1999) also investigated <strong>the</strong> height <strong>of</strong><br />

<strong>the</strong> base <strong>of</strong> several terraces on <strong>the</strong> Belgian and Dutch<br />

side <strong>of</strong> <strong>the</strong> Meuse River, but did not investigate <strong>the</strong><br />

height <strong>of</strong> <strong>the</strong> top <strong>of</strong> <strong>the</strong> terrace deposits. The result <strong>of</strong><br />

<strong>the</strong>ir investigation is given in Table 3 along with <strong>the</strong><br />

results <strong>of</strong> our study. In most cases <strong>the</strong> results <strong>of</strong> both<br />

investigations coincide within a margin <strong>of</strong> 2 m.<br />

However, <strong>the</strong>y differ significantly on <strong>the</strong> Geistingen<br />

Terrace in between <strong>the</strong> Geleen and <strong>Feldbiss</strong> <strong>Fault</strong>s.<br />

Beerten et al. (1999) used <strong>the</strong> terrace map <strong>of</strong> Van den<br />

Berg (1989) in <strong>the</strong> area <strong>of</strong> <strong>the</strong> Geistingen Terrace near<br />

<strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>. This is exactly <strong>the</strong> area where


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 309<br />

Table 3<br />

Comparison between <strong>the</strong> heights <strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> terrace deposits on <strong>the</strong> Dutch side <strong>of</strong> <strong>the</strong> Maas River found by Beerten et al. (1999) and this<br />

investigation<br />

Terrace<br />

Average heights (m NAP) <strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> terrace deposits<br />

South <strong>of</strong> <strong>the</strong> Geleen <strong>Fault</strong> Between <strong>the</strong> Geleen and <strong>Feldbiss</strong> <strong>Fault</strong>s North <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong><br />

This research Beerten et al. This research Beerten et al. This research Beerten et al.<br />

Holocene Floodplain n.d. F 27 n.d. F 16 17.0 F 16<br />

Geistingen 26.5 F 27 21.7 F 27 17.6 < 20<br />

Eisden-Lanklaar 34.5 F 35 24.9 F 27 19.2 < 20<br />

Caberg 3 34.4 F 35 27.0 F 27 17.5 < 20<br />

Caberg 2 38.6 F 40 33.2 F 33 19.1 < 20<br />

n.d. = no data.<br />

<strong>the</strong> largest adjustments to <strong>the</strong> Van den Berg terrace<br />

map were made (see Fig. 6). Moreover, Beerten et al.<br />

(1999) regards <strong>the</strong> area north <strong>of</strong> <strong>the</strong> Geleen <strong>Fault</strong> on<br />

this terrace as one fault block, not intersected by <strong>the</strong><br />

<strong>Feldbiss</strong> <strong>Fault</strong>. This could lead to different results.<br />

Therefore, we give preference to <strong>the</strong> results <strong>of</strong> our<br />

investigation at <strong>the</strong>se specific points.<br />

5.2. <strong>Fault</strong> displacements<br />

The height difference <strong>of</strong> <strong>the</strong> base and top <strong>of</strong> <strong>the</strong> unit<br />

1 terrace deposits across a fault is interpreted as<br />

resulting from a displacement along that fault. However,<br />

in order to calculate fault displacements accurately<br />

we have to take into account <strong>the</strong> longitudinal<br />

river gradient <strong>of</strong> <strong>the</strong> original terrace surface (Fig. 9).<br />

According to Van den Berg (1996), terrace surfaces<br />

have a gradient <strong>of</strong> about 0.75 m/km south <strong>of</strong> <strong>the</strong><br />

<strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>. The heights <strong>of</strong> <strong>the</strong> terrace deposits<br />

in <strong>the</strong> middle <strong>of</strong> adjacent blocks on <strong>the</strong> same terrace<br />

are approximately 1.2–1.6 km separated from each<br />

o<strong>the</strong>r. Therefore, we corrected each height difference<br />

across <strong>the</strong> faults with 1.0 m for <strong>the</strong> longitudinal<br />

gradient. In Fig. 10, <strong>the</strong> displacements <strong>of</strong> <strong>the</strong> base<br />

(Fig. 10a) and top (Fig. 10b) <strong>of</strong> <strong>the</strong> unit 1 terrace<br />

deposits along <strong>the</strong> individual faults are presented.<br />

We used two age models to date <strong>the</strong> fault displacements,<br />

<strong>the</strong> Van den Berg (1996) age model and an<br />

improved Van Balen et al. (2000) age model (Table 1).<br />

To date <strong>the</strong> displacement <strong>of</strong> <strong>the</strong> top <strong>of</strong> <strong>the</strong> coarse terrace<br />

deposits we used <strong>the</strong> age <strong>of</strong> <strong>the</strong> terrace as given by <strong>the</strong><br />

age models. For dating <strong>the</strong> displacement <strong>of</strong> <strong>the</strong> base <strong>of</strong><br />

<strong>the</strong> coarse terrace deposits, we use <strong>the</strong> age <strong>of</strong> <strong>the</strong><br />

adjacent older terrace as a maximum age (Fig. 11).<br />

This approach assumes that <strong>the</strong>re is a short time interval<br />

between <strong>the</strong> formation <strong>of</strong> two subsequent terraces,<br />

Fig. 9. Relation between height <strong>of</strong> <strong>the</strong> tectonic block, fault displacement and fluvial gradient.


310<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

Fig. 10. Displacement <strong>of</strong> <strong>the</strong> base (a) and top (b) <strong>of</strong> <strong>the</strong> terrace<br />

deposits along <strong>the</strong> individual faults <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>. For<br />

legend, see Fig. 6.<br />

which corresponds to fast river incision followed by<br />

slow aggradation as proposed in models <strong>of</strong> fluvial<br />

terrace development (e.g., Vandenberghe, 1993).<br />

In Fig. 12 (left), <strong>the</strong> results <strong>of</strong> our study are<br />

presented as displacements both at <strong>the</strong> top and <strong>the</strong><br />

base <strong>of</strong> <strong>the</strong> terrace deposits as a function <strong>of</strong> location<br />

along <strong>the</strong> fault, showing <strong>the</strong> lateral variability in fault<br />

<strong>activity</strong> along <strong>the</strong> individual faults (Geleen and <strong>Feldbiss</strong><br />

<strong>Fault</strong>s). The average fault displacement rate since<br />

<strong>the</strong> formation <strong>of</strong> <strong>the</strong> terrace is given for <strong>the</strong> locations<br />

indicated in Fig. 10a and b. It varies between 0.009 and<br />

0.034 mm a<br />

1 along <strong>the</strong> Geleen <strong>Fault</strong> and between<br />

0.017 and 0.031 mm a<br />

1 along <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong>. We<br />

reject <strong>the</strong> value <strong>of</strong> 0.073 mm a<br />

1 , based on <strong>the</strong><br />

displacement <strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> Geistingen Terrace,<br />

as <strong>the</strong> inaccuracy (several meters, see above) in determination<br />

<strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> Geistingen Terrace is too<br />

large in comparison with <strong>the</strong> displacement (0.8 m).<br />

Fig. 13 shows <strong>the</strong> displacement as a function <strong>of</strong><br />

time for <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> as a whole (Heerlerheide,<br />

Geleen and <strong>Feldbiss</strong> <strong>Fault</strong>s), using <strong>the</strong> two age<br />

models. It gives an indication <strong>of</strong> fault <strong>activity</strong> for <strong>the</strong><br />

<strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> from <strong>the</strong> Middle Pleistocene up to<br />

<strong>the</strong> present. In Fig. 13, we used <strong>the</strong> most reliable<br />

measurements, e.g. <strong>the</strong> displacement at <strong>the</strong> top <strong>of</strong> <strong>the</strong><br />

terrace deposits for <strong>the</strong> younger terraces (Geistingen<br />

and Eisden-Lanklaar) and <strong>the</strong> displacement in <strong>the</strong> base<br />

<strong>of</strong> <strong>the</strong> terrace deposits for <strong>the</strong> older terraces (Caberg 1,<br />

2 and 3, Pietersberg 1, Geertruid 2 and 3). The<br />

average fault displacement rate since <strong>the</strong> Middle<br />

Pleistocene for <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> is 0.041 mm<br />

a<br />

1 , using <strong>the</strong> Van den Berg (1996) age model and<br />

0.047 mm a<br />

1 , using <strong>the</strong> improvement <strong>of</strong> <strong>the</strong> Van<br />

Balen et al. (2000) age model. These displacement<br />

rates are <strong>of</strong> <strong>the</strong> same order <strong>of</strong> magnitude as displacement<br />

rates found by o<strong>the</strong>r studies on <strong>the</strong> <strong>Roer</strong> Valley<br />

Rift System (Paulissen et al., 1985; Van den Berg,<br />

1996; Camelbeeck and Meghraoui, 1998).<br />

The individual faults show temporal and spatial<br />

variation in fault <strong>activity</strong> (Fig. 12). However, it is<br />

difficult to separate <strong>the</strong> temporal and spatial components,<br />

since <strong>the</strong> Geleen <strong>Fault</strong> is only active in <strong>the</strong><br />

western part <strong>of</strong> <strong>the</strong> study area. This is indicated by <strong>the</strong><br />

increase in displacements at both <strong>the</strong> base and top <strong>of</strong><br />

<strong>the</strong> terrace deposits along this fault towards <strong>the</strong> northwest,<br />

despite <strong>the</strong> fact that <strong>the</strong> terrace deposits become<br />

younger (Fig. 10). This is also clearly evident in <strong>the</strong><br />

morphology, as <strong>the</strong> Geleen <strong>Fault</strong> looses its morphological<br />

expression sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> Caberg 1 terrace.<br />

The displacements along <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> at both <strong>the</strong><br />

base and top <strong>of</strong> <strong>the</strong> terrace deposits decrease as<br />

expected whereas <strong>the</strong> terraces become younger. Yet,<br />

at <strong>the</strong> Caberg 2 Terrace where <strong>the</strong> Geleen <strong>Fault</strong><br />

becomes active <strong>the</strong> <strong>activity</strong> <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong><br />

decreases. However, Fig. 13 shows that <strong>the</strong> total<br />

displacement rate on <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> is constant<br />

at a rate <strong>of</strong> 0.041 or 0.047 mm a<br />

1 throughout


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 311<br />

Fig. 11. Using <strong>the</strong> terrace age model to date <strong>the</strong> base and top <strong>of</strong> <strong>the</strong> coarse terrace deposits. The age <strong>of</strong> <strong>the</strong> top <strong>of</strong> <strong>the</strong> coarse terrace deposits<br />

corresponds to <strong>the</strong> age <strong>of</strong> <strong>the</strong> terrace as given by <strong>the</strong> age model. The age <strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> coarse terrace deposits corresponds to <strong>the</strong> age <strong>of</strong> <strong>the</strong><br />

adjacent older terrace as given by <strong>the</strong> age model. Levels <strong>of</strong> approximately <strong>the</strong> same age are indicated.<br />

<strong>the</strong> <strong>Late</strong> Pleistocene. These two observations indicate<br />

that <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> is a system <strong>of</strong> overstepping<br />

faults: in a northwestward direction extensional<br />

strain is transferred from <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> to<br />

<strong>the</strong> Geleen <strong>Fault</strong>.<br />

5.3. Contribution <strong>of</strong> <strong>the</strong> Heerlerheide <strong>Fault</strong> to <strong>the</strong><br />

<strong>activity</strong> <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong><br />

We were not able to calculate <strong>the</strong> displacement <strong>of</strong> <strong>the</strong><br />

younger terraces along <strong>the</strong> Heerlerheide <strong>Fault</strong>. On a<br />

geo-electric pr<strong>of</strong>ile along <strong>the</strong> Meuse River Beerten et al.<br />

(1999) could not find evidence for <strong>activity</strong> <strong>of</strong> <strong>the</strong><br />

Heerlerheide <strong>Fault</strong>. Fur<strong>the</strong>r to <strong>the</strong> sou<strong>the</strong>ast <strong>the</strong> Heerlerheide<br />

<strong>Fault</strong> has displaced <strong>the</strong> deposits <strong>of</strong> <strong>the</strong> Caberg 1<br />

Terrace. It seems that <strong>activity</strong> along <strong>the</strong> Heerlerheide<br />

<strong>Fault</strong> diminishes towards <strong>the</strong> northwest. However, <strong>the</strong><br />

contribution <strong>of</strong> <strong>the</strong> Heerlerheide <strong>Fault</strong> <strong>Zone</strong> to <strong>the</strong><br />

displacement <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> as a whole<br />

can be calculated. Van den Berg (1996) reconstructed<br />

<strong>the</strong> terrace gradients between Maastricht and <strong>the</strong> <strong>Roer</strong><br />

Valley Graben, and arrived at about <strong>the</strong> same value for<br />

all terraces. From his reconstruction, it is clear that<br />

terrace convergence is negligible on <strong>the</strong> South Limburg<br />

Block. The height difference between <strong>the</strong> Geertruid 3<br />

Terrace and <strong>the</strong> Holocene floodplain in <strong>the</strong> Maastricht<br />

area is 80 m. whereas <strong>the</strong> height difference between<br />

<strong>the</strong>se two terraces north <strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> is 23<br />

m. Because river pr<strong>of</strong>ile convergence is negligible, <strong>the</strong><br />

difference <strong>of</strong> 57 m is mainly caused by fault movements.<br />

We found a displacement since <strong>the</strong> formation <strong>of</strong><br />

<strong>the</strong> Geertruid Terrace <strong>of</strong> 52 m (see Fig. 13). This leaves


312<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

Fig. 12. Displacements along <strong>the</strong> <strong>Feldbiss</strong> and Geleen <strong>Fault</strong>s.<br />

5 m unaccounted for, for which <strong>the</strong> Heerlerheide <strong>Fault</strong><br />

is partly responsible. There are probably more small<br />

faults on <strong>the</strong> South Limburg Block. Therefore, we<br />

assume that since <strong>the</strong> Middle Pleistocene <strong>the</strong> Heerlerheide<br />

<strong>Fault</strong> contributed less <strong>the</strong>n 10% to <strong>the</strong> total<br />

displacement along <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>.<br />

6. Discussion<br />

6.1. <strong>Quaternary</strong> and present-day stress field and<br />

relation to fault movements<br />

Fig. 13. Displacement as a function <strong>of</strong> time for <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong><br />

<strong>Zone</strong>.<br />

Our results have revealed <strong>the</strong> occurrence <strong>of</strong> an<br />

overstepping fault system that can be explained in<br />

several ways. For example, it could represent a system<br />

<strong>of</strong> overstepping strike-slip faults. Strike-slip motions<br />

were proposed by Camelbeeck and Meghraoui (1998)


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 313<br />

and Van den Berg (1996) for faults <strong>of</strong> <strong>the</strong> <strong>Roer</strong> Valley<br />

Graben, based on <strong>the</strong> fault pattern, <strong>the</strong> occurrence <strong>of</strong><br />

possible pop-up and pull-apart structures, and earthquake<br />

focal mechanisms. However, <strong>the</strong>se authors<br />

disagree however on <strong>the</strong> sense <strong>of</strong> wrenching: Camelbeeck<br />

and Meghraoui (1998) suggest a left lateral<br />

strike-slip component for <strong>the</strong> Belgian part <strong>of</strong> <strong>the</strong><br />

<strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong>, whereas Van den Berg (1996)<br />

argues that <strong>the</strong> <strong>Feldbiss</strong> and Peel Boundary <strong>Fault</strong><br />

<strong>Zone</strong>s have a right lateral strike-slip component.<br />

However, morphological- and structural geology data<br />

provide no hard evidence for strike-slip motions along<br />

<strong>the</strong> NW–SE-oriented faults (Houtgast, manuscript in<br />

preparation). In addition, <strong>the</strong> <strong>Quaternary</strong> faults in <strong>the</strong><br />

<strong>Roer</strong> Valley Graben represent reactivated Paleozoic<br />

wrench faults <strong>of</strong> late Variscan age or older (Houtgast<br />

and Van Balen, 2000). Therefore, <strong>the</strong> observed <strong>Quaternary</strong><br />

fault pattern is inherited and could not be<br />

directly related to <strong>the</strong> present-day stress field (Houtgast<br />

and Van Balen, 2000). The present-day maximum<br />

horizontal stress direction is NW–SE-oriented (Mun l-<br />

ller et al., 1992), and was established during <strong>the</strong><br />

middle and late Miocene (Bergerat, 1987; Hibsch et<br />

al., 1995; Becker, 1993). Based on earthquake focal<br />

mechanisms, Plenefisch and Bonjer (1997) showed<br />

that <strong>the</strong> vast majority <strong>of</strong> fault <strong>activity</strong> in <strong>the</strong> Lower<br />

Rhine Embayment is characterized by normal faulting.<br />

Thus, <strong>the</strong> maximum principal stress is vertical. In<br />

this stress system, <strong>the</strong> NW–SE striking faults, such as<br />

<strong>the</strong> <strong>Feldbiss</strong> and Peel Boundary <strong>Fault</strong> <strong>Zone</strong>s, are<br />

expected to move in a normal faulting mode. Therefore,<br />

in our view, <strong>the</strong> system <strong>of</strong> overstepping faults in<br />

<strong>the</strong> Sittard area represents a set <strong>of</strong> Paleozoic strike-slip<br />

faults reactivated as normal faults. However, we do<br />

not exclude strike-slip motions along faults with<br />

different orientations. For example, N–S-oriented<br />

fault lineaments have been found on satellite images<br />

by Sesören (1976), and in <strong>the</strong> topography by Van den<br />

Berg (1996) and Houtgast and Van Balen (2000).<br />

6.2. Fluvial development model <strong>of</strong> rapid incision and<br />

slow aggradation<br />

To date <strong>the</strong> fault displacements we assumed a<br />

model <strong>of</strong> rapid river incision followed by slow aggradation<br />

(e.g., Vandenberghe, 1993). This implies that<br />

on a 10-ka time scale <strong>the</strong> base <strong>of</strong> <strong>the</strong> coarse deposits<br />

<strong>of</strong> a terrace are approximately <strong>of</strong> <strong>the</strong> same age as <strong>the</strong><br />

top <strong>of</strong> <strong>the</strong> coarse terrace deposits on <strong>the</strong> adjacent older<br />

terrace (see Fig. 11): Incision takes only thousands <strong>of</strong><br />

years, whereas aggradation lasts for tens <strong>of</strong> thousands<br />

<strong>of</strong> years. On a 1- to 10-ka time scale, an individual<br />

fault moves centimeters to decimeters, whereas on a<br />

10- to 100-ka time scale <strong>the</strong> fault moves several<br />

meters. If one assumes a constant displacement rate<br />

along an individual fault, extending over several<br />

kilometers, <strong>the</strong> displacement <strong>of</strong> <strong>the</strong> base <strong>of</strong> a terrace<br />

should approximately equal <strong>the</strong> displacement at <strong>the</strong><br />

top <strong>of</strong> <strong>the</strong> older adjacent terrace. Fig. 12 (right) shows<br />

that, in fact, in most cases <strong>the</strong> displacement at <strong>the</strong> base<br />

<strong>of</strong> a terrace is slightly larger than that <strong>of</strong> <strong>the</strong> top <strong>of</strong> <strong>the</strong><br />

higher terrace. This suggests that <strong>the</strong> top <strong>of</strong> <strong>the</strong> terrace<br />

deposits were subjected to erosion. The displacement<br />

at <strong>the</strong> base <strong>of</strong> <strong>the</strong> terrace equals <strong>the</strong> displacement at<br />

<strong>the</strong> top <strong>of</strong> <strong>the</strong> older adjacent terrace within a meter.<br />

There are some exceptions: along <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong><br />

<strong>the</strong> displacement at <strong>the</strong> base <strong>of</strong> <strong>the</strong> Caberg 2 Terrace is<br />

significantly larger <strong>the</strong>n <strong>the</strong> displacement at <strong>the</strong> top <strong>of</strong><br />

<strong>the</strong> Caberg 1 Terrace. This may be due to strong<br />

erosion <strong>of</strong> <strong>the</strong> top <strong>of</strong> <strong>the</strong> Caberg 1 Terrace. Along <strong>the</strong><br />

Geleen fault in <strong>the</strong> middle <strong>of</strong> <strong>the</strong> investigated fault<br />

segment, <strong>the</strong> displacement at <strong>the</strong> base <strong>of</strong> <strong>the</strong> terrace is<br />

larger <strong>the</strong>n <strong>the</strong> displacement in <strong>the</strong> top <strong>of</strong> <strong>the</strong> adjacent<br />

older terraces. This can be explained by northwestwards<br />

increasing <strong>activity</strong> along <strong>the</strong> Geleen <strong>Fault</strong> (Fig.<br />

12, left). The base <strong>of</strong> <strong>the</strong> Eisden-Lanklaar Terrace and<br />

<strong>the</strong> top <strong>of</strong> <strong>the</strong> adjacent older Caberg 3 Terrace are 2<br />

km apart. In this case, <strong>the</strong> assumption <strong>of</strong> a constant<br />

fault displacement rate along <strong>the</strong> Geleen <strong>Fault</strong> over<br />

several kilometers is not correct.<br />

As in general <strong>the</strong> apparent displacement at <strong>the</strong> top<br />

<strong>of</strong> <strong>the</strong> terrace deposits is equal to or even less than <strong>the</strong><br />

displacement at <strong>the</strong> base <strong>of</strong> <strong>the</strong> next younger terrace.<br />

The time elapsed between <strong>the</strong> formation <strong>of</strong> <strong>the</strong>se two<br />

surfaces is probably short. Therefore, <strong>the</strong> model <strong>of</strong><br />

rapid fluvial incision followed by slow aggradation<br />

for <strong>the</strong> terrace formation appears to apply in this area.<br />

7. Conclusions<br />

Terrace deposits displaced by faults are very useful<br />

to locate and quantify fault <strong>activity</strong>, provided <strong>the</strong> age <strong>of</strong><br />

<strong>the</strong> terraces is known. However, <strong>the</strong> tops <strong>of</strong> <strong>the</strong> terrace<br />

deposits have been subjected to erosion and this could<br />

lead to an underestimation <strong>of</strong> <strong>the</strong> vertical fault displace-


314<br />

R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315<br />

ment. Correlation <strong>of</strong> <strong>the</strong> top <strong>of</strong> <strong>the</strong> terrace deposits<br />

across faults can cause problems. A terrace surface on<br />

<strong>the</strong> hanging wall will be lower <strong>the</strong>n on <strong>the</strong> footwall.<br />

However, an older terrace on <strong>the</strong> hanging wall can have<br />

<strong>the</strong> same height as a younger terrace on <strong>the</strong> footwall.<br />

This has to be taken into consideration when terrace<br />

stratigraphy is used to quantify fault <strong>activity</strong>.<br />

As <strong>the</strong> bases <strong>of</strong> <strong>the</strong> younger terrace deposits have<br />

similar fault displacements as <strong>the</strong> tops <strong>of</strong> <strong>the</strong> older<br />

terraces, <strong>the</strong> ages <strong>of</strong> <strong>the</strong>se horizons are apparently<br />

similar within a margin <strong>of</strong> several thousands <strong>of</strong> years.<br />

This implies that <strong>the</strong> duration <strong>of</strong> <strong>the</strong> fluvial incision<br />

phase is relatively short compared to <strong>the</strong> terrace<br />

formation phase.<br />

During <strong>the</strong> Middle and <strong>Late</strong> Pleistocene, <strong>the</strong> <strong>Feldbiss</strong><br />

<strong>Fault</strong> <strong>Zone</strong> had an average fault displacement rate<br />

<strong>of</strong> 0.041 or 0.047 mm a<br />

1 , depending on which age<br />

models is used. During <strong>the</strong> same time period individual<br />

faults <strong>of</strong> this fault zone (Heerlerheide, Geleen and<br />

<strong>Feldbiss</strong> <strong>Fault</strong>s) show fault displacement rates varying<br />

between 0.010 and 0.035 mm a<br />

1 . In <strong>the</strong> area<br />

between Sittard and <strong>the</strong> Meuse River, <strong>the</strong> contribution<br />

<strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> <strong>Fault</strong> to <strong>the</strong> total displacement <strong>of</strong> <strong>the</strong><br />

<strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> decreases towards <strong>the</strong> northwest,<br />

whereas in <strong>the</strong> same direction <strong>the</strong> contribution <strong>of</strong> <strong>the</strong><br />

Geleen <strong>Fault</strong> increases. Therefore, this part <strong>of</strong> <strong>the</strong><br />

<strong>Feldbiss</strong> <strong>Fault</strong> <strong>Zone</strong> is a system <strong>of</strong> overstepping faults.<br />

The overstepping faults are Paleozoic wrench faults,<br />

reactivated as normal faults.<br />

Acknowledgements<br />

The study presented in this paper is a contribution<br />

to <strong>the</strong> NEESDI (Ne<strong>the</strong>rlands Environmental Earth<br />

System Initiative) program, funded by <strong>the</strong> Ne<strong>the</strong>rlands<br />

Organization for Scientific Research (NWO). We<br />

thank Drs. W. Westerh<strong>of</strong>f <strong>of</strong> <strong>the</strong> TNO-NITG for his<br />

cooperation. Pr<strong>of</strong>. Dr. J. Vandenberghe, Dr. C. Kasse,<br />

Dr. F.W. van der Wateren, Drs. P.W. Bogaart and Drs.<br />

V. Bense for <strong>the</strong>ir discussions and constructive<br />

criticism.<br />

References<br />

Ahorner, L., 1962. Untersuchungen zur Quartären Bruchtektonik<br />

der Niederrheinischen Bucht. Eiszeitalter Ggw. 13, 24–105.<br />

Antoine, P., Lautridou, J.P., Laurent, M., 2000. Long-term fluvial<br />

archives in NW France: response <strong>of</strong> <strong>the</strong> Seine and Somme rivers<br />

to tectonic movements, climatic variations and sea-level changes.<br />

Geomorphology 33, 183–207.<br />

Becker, A., 1993. An attemp to define a ‘‘neotectonic period’’ for<br />

central and nor<strong>the</strong>rn Europe. Geol. Rundsch. 82, 67–83.<br />

Beerten, K., Brabers, P., Bosch, P., Gullentops, F., 1999. The passage<br />

<strong>of</strong> <strong>the</strong> <strong>Feldbiss</strong> Bundle through <strong>the</strong> Maas Valley. Aardkd.<br />

Meded. 9, 153–158.<br />

Bergerat, F., 1987. Stress fields in <strong>the</strong> European platform at <strong>the</strong> time<br />

<strong>of</strong> Africa –Eurasia collision. Tectonics 6 (2), 99–132.<br />

Brueren, J.W.R., 1945. Het terrassenlandschap van Zuid-Limburg.<br />

Meded. - Geol. Sticht., Ser. C VI. (1), 93 pp.<br />

Camelbeeck, T., Meghraoui, M., 1998. Geological and geophysical<br />

evidence for large palaeo-earthquakes with surface faulting in<br />

<strong>the</strong> <strong>Roer</strong> Graben (Northwest Europe). Geophys. J. Int. 132,<br />

347–362.<br />

Chen, Y.-G., Liu, T.-K., 2000. Holocene uplift and subsidence along<br />

an active tectonic margin, southwestern Taiwan. Quat. Sci. Rev.<br />

19, 923–930.<br />

Felder, W.M., Bosch, P.W., Bisschops, J.H., 1989. Geologische<br />

kaart van Zuid-Limburg en omgeving, schaal 1:50.000. Afzettingen<br />

van de Maas. Rijks Geologische Dienst, Haarlem.<br />

Geluk, M.C., Duin, E.J.Th., Dusar, M., Rijkers, R.H.B., Van den<br />

Berg, M.W., Van Rooijen, P., 1994. Stratigraphy and tectonics <strong>of</strong><br />

<strong>the</strong> <strong>Roer</strong> Valley Graben. Geol. Mijnbouw 73, 129–141.<br />

Hibsch, C., Jarrige, J.J., Cusginh, E.M., Mercier, J., 1995. Paleostress<br />

analysis, a contribution to <strong>the</strong> understanding <strong>of</strong> basin<br />

tectonics and geodynamic evolution. Example <strong>of</strong> <strong>the</strong> Permian/<br />

Cenozoic tectonics <strong>of</strong> Great Britain and geodynamic implications<br />

in western Europe. Tectonophysics 252, 103–136.<br />

Hou, J.-J., Han, M.-K., Han, H.-J., 1998. Geomorphological observations<br />

<strong>of</strong> active faults in <strong>the</strong> epicentral region <strong>of</strong> <strong>the</strong> Huaxian<br />

large earthquake in 1556 in Shaanxi Province, China. J. Struct.<br />

Geol. 20, 549–577.<br />

Houtgast, R.F., Van Balen, R.T., 2000. Neotectonics <strong>of</strong> <strong>the</strong> <strong>Roer</strong><br />

Valley Rift System, <strong>the</strong> Ne<strong>the</strong>rlands. Global Planet. Change<br />

27, 131–146.<br />

Huxtable, J., Aitken, J., 1985. Thermoluminescence dating results<br />

for <strong>the</strong> Palaeolithic site Maastricht –Belvédère. Meded. - Rijks<br />

Geol. Dienst 39, 41–44.<br />

Juvigné, E., Renard, F., 1992. Les terrasses de la Meuse de Liége à<br />

Maastricht. Ann. Soc. Géol. Belg. 115, 167–186.<br />

Krzyszkowski, D., Przybylski, B., Badura, J., 2000. The role <strong>of</strong><br />

neotectonics and glaciation on terrace formation along <strong>the</strong> Nysa<br />

Klodzka River in <strong>the</strong> Sudeten Mountains (southwestern Poland).<br />

Geomorphology 33, 149–166.<br />

Li, Y., Yang, J., Tan, L., Duan, F., 1999. Impact <strong>of</strong> tectonics on<br />

alluvial landforms in <strong>the</strong> Hexi Corridor, Northwest China. Geomorphology<br />

28, 299–308.<br />

Mun cher, H.J., 1986. Aspects <strong>of</strong> Loess and Loess-Derived Slope<br />

Deposits: an Experimental and Micromorphological Approach.<br />

Fysisch Geografisch en Bodemkundig Laboratorium, Universiteit<br />

van Amsterdam, Amsterdam, p. 267.<br />

Mun ller, B., Zoback, M.L., Fuchs, K., Mastin, L., Gregersen, S.,<br />

Pavoni, N., Stephansson, O., Ljunggren, C., 1992. Regional<br />

patterns <strong>of</strong> tectonic stress in Europe. J. Geophys. 43, 783–803.<br />

Paulissen, E., 1973. De morfologie en de Kwartairstratigrafie van de


R.F. Houtgast et al. / Tectonophysics 352 (2002) 295–315 315<br />

Maas vallei in Belgisch Limburg. Verh. K. Acad. Wet. Lett.<br />

Schone Kunsten Belg., Klasse Wet. 35 (127), 1 – 266.<br />

Paulissen, E., Vandenberghe, J., Gullentops, F., 1985. The <strong>Feldbiss</strong><br />

fault in <strong>the</strong> Maas valley bottom (Limburg, Belgium). Geol.<br />

Mijnbouw 64, 79–87.<br />

Pissart, A., 1974. La Meuse en France et en Belgique. Formation du<br />

basin hydrographique. Les terrasses et leur enseignements. In:<br />

Macar, P. (Ed.), L’Évolution Quaternaire des Basins Fluviaux de<br />

la mer du Nord Mérondiale. Centenaire de la Société Géologique<br />

de Belgique, Liège, pp. 105–131.<br />

Pissart, A., Harmand, D., Krook, L., 1997. L’Évolution de la Meuse<br />

de Toul à Maastricht depuis le Miocène: corrélations chronologiques<br />

et traces des captures de la Meuse Lorraine d’après les<br />

minéraux denses. Geogr. Phys. Quat. 51, 267–284.<br />

Plenefisch, T., Bonjer, K.-P., 1997. The stress field in <strong>the</strong> Rhine<br />

Graben area inferred from earthquake focal mechanisms and<br />

estimation <strong>of</strong> frictional parameters. Tectonophysics 275, 71–97.<br />

Renson, V., Juvigné, E., Cordy, J.-M., 1999. Découverte en faveur<br />

d’une révision de la chronologie du Quaternaire: la grotte de La<br />

Belle-Roche (Belgique); hypothèse nouvelle concernant l’ancienneté<br />

de l’Homme en Europe du Nord-Ouest. C. R. Acad.<br />

Sci. Paris, Sci. Terre Planèteres/Earth and Planetary Sciences<br />

328, 635–640.<br />

Shackleton, N.J., Berger, A., Peltier, W.R., 1990. An alternative<br />

astronomical calibration <strong>of</strong> <strong>the</strong> Lower Pleistocene timescale<br />

based on ODP Site 677. Trans. R. Soc. Edinburgh: Earth Sci.<br />

81, 251–261.<br />

Sesören, A., 1976. Lineament analysis from ERTS (Landsat) images<br />

<strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands. Geol. Mijnbouw 55, 61–67.<br />

TNO-NITG, 1999. Toelichting bij kaartblad XV Sittard-Maastricht.<br />

Nederlands instituut voor Toegepaste Geowetenschappen TNO,<br />

Utrecht, 127 pp.<br />

Van Balen, R.T., Houtgast, R.F., Van der Wateren, F.M., Vandenberghe,<br />

J., Bogaart, P.W., 2000. Sediment budget and<br />

tectonic evolution <strong>of</strong> <strong>the</strong> Meuse catchment in <strong>the</strong> Ardennes<br />

and <strong>the</strong> <strong>Roer</strong> Valley Rift System. Global Planet. Change 27,<br />

113–129.<br />

Van den Berg, M.W., 1989. Geomorfologische Kaart van Nederland<br />

1:50.000 Kaartblad 59 Genk, 60 Sittard, 61 Maastricht, 62 Heerlen,<br />

met toelichting en de Kaart Maasterrassen en Hellingklassen.<br />

Staring Centrum, Wageningen en Rijks Geologische Dienst,<br />

Haarlem, 32 pp.<br />

Van den Berg, M.W., 1996. Fluvial sequences <strong>of</strong> <strong>the</strong> Maas, a 10 Ma<br />

record <strong>of</strong> neotectonics and climate change at various timescales.<br />

PhD <strong>the</strong>sis, Universiteit Wageningen, 181 pp.<br />

Van den Berg, M.W., Van Ho<strong>of</strong>, T., 2001. The Maas terrace sequence<br />

at Maastricht, SE Ne<strong>the</strong>rlands: evidence for 200 m <strong>of</strong><br />

late Neogene and <strong>Quaternary</strong> surface uplift. In: Maddy, D.,<br />

Macklin, M.G., Woodward, J.C. (Eds.), River Basin Sediment<br />

Systems: Archives <strong>of</strong> Environmental Change. A.A. Balkema<br />

Publishers, Lisse, pp. 45–86.<br />

Van Kolfschoten, T., Roebroeks, W., Vandenberghe, J., 1993. The<br />

Middle and <strong>Late</strong> Pleistocene sequence at Maastricht–Belvédère:<br />

<strong>the</strong> type locality <strong>of</strong> <strong>the</strong> Belvédère Interglacial. Meded. - Rijks<br />

Geol. Dienst, Niewe Ser. 47, 81–91.<br />

Van Montfrans, H.M., 1971. Paleomagnetic dating in <strong>the</strong> North Sea<br />

Basin. Thesis, Amsterdam, 133 pp.<br />

Van Nieuwpoort, I.L., Schokker, J., 1998. Rivierevolutie op verschillende<br />

tijdschalen. De ontwikkeling van het midden-Limburgse<br />

Maasdal vanaf het Cromeriën tot heden onder invloed<br />

van klimaat, tektoniek en de mens. Internal report, Faculteit der<br />

Aardwetenschappen, Vrije Universiteit Amsterdam, 107 pp.<br />

Van Rummelen, F.H., 1942. De Maasterrassen van S.-Limburg en<br />

hunne wordingsgeschiedenis, Idem, pp. 85–108.<br />

Vandenberghe, J., 1982. Geo-electric investigations <strong>of</strong> a fault system<br />

in <strong>Quaternary</strong> deposits. Geophys. Prospect. 30, 879–897.<br />

Vandenberghe, J., 1993. River terrace development and its relation<br />

to climate: <strong>the</strong> Saalian Caberg terrace <strong>of</strong> <strong>the</strong> Maas river near<br />

Maastricht (The Ne<strong>the</strong>rlands). Meded. - Rijks Geol. Dienst 47,<br />

19–24.<br />

Ziegler, P.A., 1992. European Cenozoic rift system. Tectonophysics<br />

208, 91–111.<br />

Zijerveld, L., Stephenson, R., Cloetingh, S., Duin, E., Van den Berg,<br />

M.W., 1992. Subsidence analysis and modelling <strong>of</strong> <strong>the</strong> <strong>Roer</strong><br />

Valley Graben (SE Ne<strong>the</strong>rlands). Tectonophysics 208, 159–<br />

171.<br />

Zonneveld, J.I.S., 1974. The terraces <strong>of</strong> <strong>the</strong> Maas (and Rhine)<br />

downstream <strong>of</strong> Maastricht. L’Évolution Quartenaire des Bassins<br />

Fluviaux de la Mer du Nord Meridionale. Centenaire de la Société<br />

Géologique de Belgique, Liège, pp. 133–157.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!