12.07.2015 Views

Pattern recognition in the neocognitron is improved by ... - Springer

Pattern recognition in the neocognitron is improved by ... - Springer

Pattern recognition in the neocognitron is improved by ... - Springer

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Biol. Cybern. 70, 47-53 (1993) Bkalog ,eOybemetics9 Spr<strong>in</strong>ger-Verlag 1993<strong>Pattern</strong> <strong>recognition</strong> <strong>in</strong> <strong>the</strong> <strong>neocognitron</strong> <strong>is</strong> <strong>improved</strong> <strong>by</strong> neuronal adaptationA. van Ooyen 1, B. Nienhu<strong>is</strong> ~Ne<strong>the</strong>rlands Institute for Bra<strong>in</strong> Research, Meibergdreef 33, 1105 AZ Amsterdam, The Ne<strong>the</strong>rlandsInstitute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Ne<strong>the</strong>rlandsReceived: 2 October 1992/Accepted <strong>in</strong> rev<strong>is</strong>ed form: 7 June 1993Abstract. We demonstrate that equipp<strong>in</strong>g <strong>the</strong> neuronsof Fukushima's <strong>neocognitron</strong> with <strong>the</strong> phenomenonthat a neuron decreases its activity when repeatedlystimulated (adaptation) markedly improves <strong>the</strong> patternd<strong>is</strong>crim<strong>in</strong>atory power of <strong>the</strong> network. By means ofadaptation, circuits for extract<strong>in</strong>g d<strong>is</strong>crim<strong>in</strong>at<strong>in</strong>g featuresdevelop preferentially. In <strong>the</strong> orig<strong>in</strong>al <strong>neocognitron</strong>, <strong>in</strong>contrast, features shared <strong>by</strong> different patterns are preferentiallylearned, as connections required for extract<strong>in</strong>g<strong>the</strong>m are more frequently re<strong>in</strong>forced.1 IntroductionIn most neural network models, <strong>the</strong> <strong>in</strong>dividual units areover-simplified compared with biotic neurons. Usually,only <strong>the</strong> very basic <strong>in</strong>put-output properties are considered.In <strong>the</strong> simplest case, each unit can be <strong>in</strong> twostates only: ei<strong>the</strong>r it <strong>is</strong> at rest or it fires at its maximumfrequency.The o<strong>the</strong>r extreme <strong>is</strong> formed <strong>by</strong> network models <strong>in</strong>which one attempts to model <strong>the</strong> constituent neurons asreal<strong>is</strong>tically as possible, even down to <strong>the</strong> level of ionicconductances <strong>in</strong> different neuron com-partments (e.g.,Traub 1982). Because of <strong>the</strong> complexity of such models, it<strong>is</strong> usually not attempted to p<strong>in</strong>po<strong>in</strong>t <strong>the</strong> role <strong>the</strong> variousneuronal properties play <strong>in</strong> <strong>the</strong> behavior of <strong>the</strong> network.In general, such models are too complicated to be ofmuch help <strong>in</strong> answer<strong>in</strong>g <strong>the</strong> question of how variousneuronal properties might contribute to <strong>the</strong> <strong>in</strong>formationprocess<strong>in</strong>gpower of neural networks. In order to establ<strong>is</strong>hth<strong>is</strong>, one should work with series of models of vary<strong>in</strong>gcomplexity. The importance of particular properties can<strong>the</strong>n be establ<strong>is</strong>hed <strong>by</strong> add<strong>in</strong>g (or remov<strong>in</strong>g) <strong>the</strong>m from<strong>the</strong> model (see De Boer 1989).In th<strong>is</strong> paper, we focus on one such neuronal property,namely adaptation, and study what role it couldplay <strong>in</strong> pattern <strong>recognition</strong>. The term adaptation <strong>is</strong> usedhere to describe <strong>the</strong> phenomenon that a neuron becomesCorrespondence to: A. van Ooyengradually less responsive when repeatedly stimulated,reflected <strong>by</strong> a decrease <strong>in</strong> its fir<strong>in</strong>g frequency. Forexample, neurons <strong>in</strong> <strong>the</strong> <strong>in</strong>ferior temporal cortex <strong>in</strong>monkeys give strong responses to v<strong>is</strong>ual stimuli that arenew or that have not recently been seen (Rolls et al. 1989;Miller et al. 1991). Possible mechan<strong>is</strong>ms for adaptation<strong>in</strong>clude an <strong>in</strong>creas<strong>in</strong>g potassium conductance as a resultof calcium <strong>in</strong>flux dur<strong>in</strong>g susta<strong>in</strong>ed depolarization (Meech1978; Connors et al. 1982). In Desimone (1992) adaptationor adaptive filter<strong>in</strong>g <strong>is</strong> mentioned as one of <strong>the</strong>neuronal mechan<strong>is</strong>ms that may play a role <strong>in</strong> <strong>the</strong> formationof memory traces. In order to study how adaptationcould contribute to pattern <strong>recognition</strong>, we have<strong>in</strong>corporated it <strong>in</strong>to <strong>the</strong> <strong>neocognitron</strong>, which <strong>is</strong> a multilayeredfeedforward neural network model for v<strong>is</strong>ualpattern <strong>recognition</strong> (Fukushima 1980; Fukushima andMiyake 1982; Miyake and Fukushima 1984; Fukushima1988; Menon and He<strong>in</strong>emann 1988; Fukushima 1989).The <strong>neocognitron</strong> has <strong>the</strong> capacity to carry out translationand size <strong>in</strong>variant pattern <strong>recognition</strong> (but see Barnardand Casasent 1990), and <strong>is</strong> tra<strong>in</strong>ed <strong>by</strong> nonsuperv<strong>is</strong>edlearn<strong>in</strong>g. The learn<strong>in</strong>g mechan<strong>is</strong>m employed <strong>is</strong>a type of competitive learn<strong>in</strong>g I-networks based on competitivelearn<strong>in</strong>g can be found <strong>in</strong>, e.g., Kohonen (1984),Carpenter and Grossberg (1987), and Reilly et al. (1982)].After <strong>the</strong> learn<strong>in</strong>g process <strong>is</strong> completed, <strong>the</strong> model hasa hierarchical structure <strong>in</strong> which simple features are comb<strong>in</strong>edstep <strong>by</strong> step <strong>in</strong>to more complicated features. Thetun<strong>in</strong>g of <strong>the</strong> network can be complicated because of <strong>the</strong>large number of parameters. Recently it has been shownthat <strong>the</strong> model can be greatly simplified while preserv<strong>in</strong>gits <strong>in</strong>terest<strong>in</strong>g properties of self-organization and toleranceof image deformations (Trot<strong>in</strong> et al. 1991). The<strong>neocognitron</strong> can be used for various practical applications(e.g., Fukushima 1988; Fukushima and Imagawa1993).The organization of th<strong>is</strong> article <strong>is</strong> as follows. First, <strong>the</strong>orig<strong>in</strong>al model will be described. Next, <strong>the</strong> modifiedversion will be given <strong>in</strong> which adaptation <strong>is</strong> <strong>in</strong>corporated.The effects of adaptation on <strong>the</strong> developmentof feature-detect<strong>in</strong>g circuits will <strong>the</strong>n be described.Subsequently, <strong>the</strong> performance of <strong>the</strong> network, with andwithout adaptation, will be compared <strong>in</strong> simulationexperiments.


482 The <strong>neocognitron</strong>In th<strong>is</strong> section we will briefly describe <strong>the</strong> structure of<strong>the</strong> network (after learn<strong>in</strong>g <strong>is</strong> completed) and <strong>the</strong> selforganization(learn<strong>in</strong>g) of <strong>the</strong> network. For a more detaileddescription <strong>the</strong> reader <strong>is</strong> referred to Fukushimaand Miyake (1982) and <strong>the</strong> Appendix.2.1 Structure of <strong>the</strong> networkAfter completion of <strong>the</strong> learn<strong>in</strong>g process, <strong>the</strong> <strong>neocognitron</strong>has a structure <strong>in</strong> which cells <strong>in</strong> <strong>the</strong> lowest levelextract local features of <strong>the</strong> <strong>in</strong>put pattern, while cells <strong>in</strong>each succeed<strong>in</strong>g level respond to specific comb<strong>in</strong>ations of<strong>the</strong> features detected <strong>in</strong> <strong>the</strong> preced<strong>in</strong>g level. In <strong>the</strong> highestlevel, each cell will respond to only one <strong>in</strong>put pattern, i.e.,<strong>the</strong> pattern <strong>is</strong> recognized. Th<strong>is</strong> structure <strong>is</strong> similar to <strong>the</strong>hierarchical model of <strong>the</strong> v<strong>is</strong>ual system proposed <strong>by</strong>Hubel and Wiesel (1962, 1965).The <strong>in</strong>put layer <strong>is</strong> composed of a two-dimensionalarray of receptor cells. Each of <strong>the</strong> succeed<strong>in</strong>g levelscons<strong>is</strong>ts of a layer of excitatory S-cells (S-layer) followed<strong>by</strong> a layer of excitatory C-cells (C-layer; see Fig. 1). EachC-layer also conta<strong>in</strong>s <strong>in</strong>hibitory V-cells (not shown <strong>in</strong><strong>the</strong> figure). An S-cell receives excitatory connectionsfrom a certa<strong>in</strong> group of C-ceUs <strong>in</strong> <strong>the</strong> preced<strong>in</strong>g level. AnS-cell also receives an <strong>in</strong>hibitory connection from a V-cell, which <strong>in</strong> turn receives fixed excitatory connectionsfrom <strong>the</strong> same group of C-cells as does <strong>the</strong> S-cell towhich it projects. After <strong>the</strong> learn<strong>in</strong>g stage <strong>is</strong> f<strong>in</strong><strong>is</strong>hed,S-cells extract features from <strong>the</strong> <strong>in</strong>put patterns. With<strong>in</strong><strong>the</strong>ir respective layers, S-cells and C-cells are divided<strong>in</strong>to cell-planes. All <strong>the</strong> cells <strong>in</strong> such a cell-plane extract<strong>the</strong> same feature but from different positions of <strong>the</strong><strong>in</strong>put layer, while different cell-planes extract differentfeatures. Each C-cell receives signals from a group ofpreced<strong>in</strong>g S-cells, all of which extract identical featuresbut from slightly different positions. A C-cell will beactivated if at least one of <strong>the</strong>se S-cells <strong>is</strong> active, and <strong>is</strong><strong>the</strong>refore less sensitive to positional shifts of <strong>the</strong> <strong>in</strong>putpattern than <strong>is</strong> an S-cell. The size of cell-planes<strong>in</strong> both S- and C-layers decreases with <strong>the</strong> order of <strong>the</strong>level, and <strong>in</strong> <strong>the</strong> highest level each cell-plane <strong>in</strong> <strong>the</strong>C-layer has only one C-cell which responds, if <strong>the</strong> learn<strong>in</strong>ghas been successful, to only one particular <strong>in</strong>putpattern.2.2 Learn<strong>in</strong>gOnly <strong>the</strong> excitatory and <strong>in</strong>hibitory connections to S-cells are variable. To modify <strong>the</strong>m, maximum-outputcells (MOCs) are chosen <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g way. They areselected from each S-layer every time a stimulus pattern<strong>is</strong> presented. In an S-layer, from a group of cells thatextract features with<strong>in</strong> a small area on <strong>the</strong> <strong>in</strong>put layer(such a group <strong>is</strong> called a hypercolumn; see Fig. 2), <strong>the</strong> cellwith <strong>the</strong> largest positive response <strong>is</strong> chosen as a candidatefor <strong>the</strong> MOC. Th<strong>is</strong> <strong>is</strong> repeated for different such hypercolumns,each of which receives signals from differentareas of <strong>the</strong> <strong>in</strong>put layer. If more than one candidate hasbeen chosen <strong>in</strong> <strong>the</strong> same cell-plane, <strong>the</strong> one with <strong>the</strong>largest response <strong>is</strong> selected. All <strong>the</strong> MOCs from differenthypercolumns have <strong>the</strong>ir <strong>in</strong>put connections, both excitatoryand <strong>in</strong>hibitory, re<strong>in</strong>forced. The amount of re<strong>in</strong>forcement<strong>is</strong> proportional to <strong>the</strong> signal strength througha connection, so that <strong>the</strong> excitatory connections willgrow to match <strong>the</strong> response <strong>in</strong> <strong>the</strong> preced<strong>in</strong>g layer (i.e.,<strong>the</strong> S-cell will detect <strong>the</strong> feature that has been presented).All <strong>the</strong> o<strong>the</strong>r S-cells <strong>in</strong> <strong>the</strong> cell-plane from which <strong>the</strong>MOC has been selected have <strong>the</strong>ir connections re<strong>in</strong>forced<strong>in</strong> <strong>the</strong> same way as <strong>the</strong> MOC, so that <strong>the</strong>y all cometo respond to <strong>the</strong> same feature but are extracted fromdifferent positions of <strong>the</strong> <strong>in</strong>put layer. When a novel feature<strong>is</strong> presented to <strong>the</strong> same S-cell, <strong>the</strong> <strong>in</strong>hibitory <strong>in</strong>putfrom <strong>the</strong> V-cell <strong>is</strong> stronger than <strong>the</strong> excitatory <strong>in</strong>put, as<strong>the</strong> excitatory connections do not optimally match th<strong>is</strong>feature. Usually, an S-cell <strong>in</strong> ano<strong>the</strong>r cell-plane <strong>is</strong> nowan MOC and has its connections re<strong>in</strong>forced. Thus, S-cells <strong>in</strong> different cell-planes come to respond to differentfeatures. Th<strong>is</strong> process of select<strong>in</strong>g MOCs and re<strong>in</strong>forc<strong>in</strong>gconnections <strong>is</strong> repeated for each level of <strong>the</strong> network andfor each time an <strong>in</strong>put pattern <strong>is</strong> presented.cell-plmw~ !- hL\ ,_c ,.i )\ :IJ ,S-layer ~......~ttL- ~Fig. 1. Schematic diagram illustrat<strong>in</strong>g <strong>the</strong> structure of <strong>the</strong> <strong>neocognitron</strong>.Modified from Fukushima (1980)Fig. 2. Hypercolumns with<strong>in</strong> an S-layer. Modified from Fukushima(1980)


- T(k).493 Incorporat<strong>in</strong>g adaptationIn <strong>the</strong> orig<strong>in</strong>al <strong>neocognitron</strong>, circuits detect<strong>in</strong>g featurescommon among a set of <strong>in</strong>put patterns develop <strong>in</strong> preferenceto those detect<strong>in</strong>g rare or unique features. S-cellsrespond<strong>in</strong>g to common features will have <strong>the</strong>ir <strong>in</strong>putconnections more often re<strong>in</strong>forced than o<strong>the</strong>r S-cells, andwill <strong>the</strong>refore get higher responses. Cells <strong>in</strong> succeed<strong>in</strong>glevels will preferentially have those <strong>in</strong>put connectionsre<strong>in</strong>forced that come from cells which are frequentlyactivated and which have high levels of activity. Hence,strong connections will develop to such cells, which alsodetect, however, <strong>the</strong> least d<strong>is</strong>crim<strong>in</strong>at<strong>in</strong>g features for pattern<strong>recognition</strong>. Consequently, <strong>the</strong> <strong>in</strong>formation passedon to higher levels will not always be specific enough for<strong>the</strong> C-cells <strong>in</strong> <strong>the</strong> highest level to respond selectively toonly one particular <strong>in</strong>put pattern. In what follows, wewill show that neuronal adaptation, i.e., a cell becom<strong>in</strong>gless responsive when frequently stimulated, improvespattern selectivity.Adaptation <strong>is</strong> implemented <strong>by</strong> modify<strong>in</strong>g <strong>the</strong> responsecharacter<strong>is</strong>tic of <strong>the</strong> C-cells (Eq. 8 <strong>in</strong> Appendix),which <strong>by</strong> add<strong>in</strong>g only one term to <strong>the</strong> denom<strong>in</strong>atorbecomes:I 1 + e(k, n) 1Ucz(k,n)=~b l+h(k,n)+ T(k)- I (1)where e(k, n) and h(k, n) are def<strong>in</strong>ed as <strong>the</strong> excitatory and<strong>in</strong>hibitory effect, respectively (for <strong>the</strong> explanation of <strong>the</strong>o<strong>the</strong>r symbols, see Appendix):e(k, n) = ~ d,(v)- usdk, n + v) (2)vEDf1 Kh(k, n) = ~ k~ ' ~ d~(v)'usl(k, n + v) (3)= vCDtand T(k) <strong>is</strong> a variable controll<strong>in</strong>g <strong>the</strong> degree of adaptation.At a given time, all <strong>the</strong> C-cells of <strong>the</strong> kthcell-plane of <strong>the</strong> /th level have <strong>the</strong> same degreeof adaptation. The greater <strong>the</strong> value of T, <strong>the</strong> moreadapted a C-cell <strong>is</strong> and <strong>the</strong> weaker its response to <strong>the</strong>feature which it detects via <strong>the</strong> S-cells <strong>in</strong> <strong>the</strong> preced<strong>in</strong>glayer. The first term <strong>in</strong> <strong>the</strong> argument of ~b (Eq. 1) can bethought of as <strong>the</strong> membrane potential of <strong>the</strong> neuron,which <strong>is</strong> ra<strong>is</strong>ed <strong>by</strong> excitatory <strong>in</strong>puts and shunted <strong>by</strong>lateral <strong>in</strong>hibition and adaptation. The term Uc~ represents<strong>the</strong> fir<strong>in</strong>g frequency; it <strong>is</strong> proportional to <strong>the</strong> differencebetween membrane potential and rest<strong>in</strong>g potential,<strong>the</strong> latter be<strong>in</strong>g represented <strong>by</strong> <strong>the</strong> second term <strong>in</strong> <strong>the</strong>argument of ~9.Before <strong>the</strong> update rule for T will be given, we rewrite(1) as:Uc~(k'n)=O[ e(k'n)-h(k'n)-~T(k)~+-h(k,~+ T(k) J (4)Each time an <strong>in</strong>put pattern <strong>is</strong> presented to <strong>the</strong> network,T (k) <strong>is</strong> updated <strong>by</strong> <strong>the</strong> follow<strong>in</strong>g amount:AT(k) = g~" {Pt" q) [e.,(k) - hm(k)] - T(k)} (5)where T (k) <strong>is</strong> <strong>the</strong> degree of adaptation of all <strong>the</strong> C-cells <strong>in</strong><strong>the</strong> kth cell-plane of <strong>the</strong>/th level; g~ controls <strong>the</strong> speed ofadaptation <strong>in</strong> <strong>the</strong>/th level; p, determ<strong>in</strong>es <strong>the</strong> maximumvalue of T(k) under susta<strong>in</strong>ed stimulation; e,,(k) <strong>is</strong> <strong>the</strong>maximum value of e(k, n) found among <strong>the</strong> C-cells of <strong>the</strong>kth cell-plane; h,,(k) <strong>is</strong> <strong>the</strong> maximum value of h(k, n);q0[x] = x if x >~ 0 and (p[x] = 0 if x < 0.Equations 4 and 5 have <strong>the</strong> follow<strong>in</strong>g implications.Consider <strong>the</strong> first level of <strong>the</strong> network (i,e., l -- 1), whichextracts simple features from <strong>the</strong> <strong>in</strong>put pattern. Supposethat <strong>the</strong> feature detected <strong>by</strong> cell-plane k <strong>is</strong> present <strong>in</strong> all<strong>in</strong>put patterns, and that at least one of <strong>the</strong> C-cells <strong>in</strong> <strong>the</strong>kth cell-plane <strong>is</strong> activated each time an <strong>in</strong>put pattern<strong>is</strong> presented, i.e., ~p[e,,(k)-h,,(k)] <strong>is</strong> always greaterthan zero (T(k)=0 <strong>in</strong>itially). Fur<strong>the</strong>r assume that~p[em(k)-hm(k)] <strong>is</strong> <strong>the</strong> same for each <strong>in</strong>put pattern.Then, <strong>the</strong> value of T(k) will <strong>in</strong>crease until it equalsPt'r [era(k) - h,,(k)], and <strong>the</strong> response of all C-cells <strong>in</strong> <strong>the</strong>kth cell-plane becomes strongly depressed. If p~ = 1, <strong>the</strong>response will become zero.Now consider a cell-plane respond<strong>in</strong>g to a featurethat occurs only <strong>in</strong> a subset of <strong>the</strong> <strong>in</strong>put patterns. Ifa pattern conta<strong>in</strong><strong>in</strong>g th<strong>is</strong> feature <strong>is</strong> presented, and <strong>the</strong>cell-plane <strong>is</strong> activated <strong>by</strong> it, adaptation will be build up<strong>by</strong> an amount proportional to pl'~p[e,,(k)--hm(k)]If <strong>the</strong> next <strong>in</strong>put patterns do not conta<strong>in</strong> th<strong>is</strong>feature (i.e., (p[e,,(k)- h,,(k)] = 0), T(k) decreases <strong>by</strong>g~" T (k). If <strong>the</strong> set of <strong>in</strong>put patterns <strong>is</strong> presented repeatedly,and g~ <strong>is</strong> small enough, T(k) will converge to <strong>the</strong>average of p~'q)[e,,(k) - h,,(k)] elicited <strong>by</strong> different <strong>in</strong>putpatterns. Thus, <strong>the</strong> equilibrium value of T(k) will bedeterm<strong>in</strong>ed <strong>by</strong> feature frequency: <strong>the</strong> greater <strong>the</strong> frequency,<strong>the</strong> higher <strong>the</strong> equilibrium value of T (k) and <strong>the</strong>weaker <strong>the</strong> response.Now consider <strong>the</strong> case <strong>in</strong> which <strong>the</strong> feature detected<strong>by</strong> cell-plane k <strong>is</strong> present <strong>in</strong> all <strong>in</strong>put patterns but doesnot produce exactly <strong>the</strong> same response each time, e.g.,due to lateral <strong>in</strong>hibition of o<strong>the</strong>r cell-planes. That <strong>is</strong>,~p [em(k) - hr,(k)] <strong>is</strong> always greater than zero but does notalways have <strong>the</strong> same value each time an <strong>in</strong>put pattern <strong>is</strong>presented. After T (k) has reached its equilibrium value,cell-plane k <strong>is</strong> only active if <strong>the</strong> response <strong>is</strong> so strong thatit exceeds T(k).Adaptation has <strong>the</strong> follow<strong>in</strong>g effect on <strong>the</strong> developmentof connections lead<strong>in</strong>g to succeed<strong>in</strong>g levels. Because<strong>the</strong> response of C-cells activated <strong>by</strong> frequently occurr<strong>in</strong>gfeatures <strong>is</strong> weak due to adaptation, connections lead<strong>in</strong>gfrom <strong>the</strong>se cells to succeed<strong>in</strong>g S-cells will not be preferentiallyre<strong>in</strong>forced. Connections lead<strong>in</strong>g from C-cells thatrespond to rare or unique features, on <strong>the</strong> o<strong>the</strong>r hand, arepreferentially re<strong>in</strong>forced because <strong>the</strong> output of <strong>the</strong>se cells<strong>is</strong> relatively high due to a low degree of adaptation. Inth<strong>is</strong> way, circuits for detect<strong>in</strong>g d<strong>is</strong>crim<strong>in</strong>at<strong>in</strong>g featureswill develop preferentially.Cells <strong>in</strong> higher levels than <strong>the</strong> first comb<strong>in</strong>e simplefeatures extracted <strong>by</strong> cells <strong>in</strong> lower levels. Therefore, cells<strong>in</strong> higher levels will become differentially adapted to


50comb<strong>in</strong>ations of simple features. The more frequentlya particular comb<strong>in</strong>ation occurs, <strong>the</strong> higher <strong>the</strong> degree ofadaptation for cells detect<strong>in</strong>g th<strong>is</strong> comb<strong>in</strong>ation.a4 Simulation resultsIn th<strong>is</strong> section, some experiments with <strong>the</strong> modified<strong>neocognitron</strong> will be presented, <strong>the</strong> results of which willbe compared with those obta<strong>in</strong>ed with <strong>the</strong> orig<strong>in</strong>al one.~N~DDDDmD4.1 Parameter sett<strong>in</strong>gsA reasonable parameter sett<strong>in</strong>g for a range of experiments<strong>in</strong>volv<strong>in</strong>g <strong>recognition</strong> of numerals was chosen. Tofacilitate compar<strong>is</strong>on, <strong>the</strong> same sett<strong>in</strong>g was used <strong>in</strong> <strong>the</strong>orig<strong>in</strong>al and modified <strong>neocognitron</strong>. The network usedhas n<strong>in</strong>e layers: an <strong>in</strong>put layer followed <strong>by</strong> four levels,each cons<strong>is</strong>t<strong>in</strong>g of an S- and a C-layer. The first level has10 cell-planes, whereas <strong>the</strong> three o<strong>the</strong>r levels each have 15cell-planes. The number of cells <strong>in</strong> <strong>the</strong> <strong>in</strong>put layer <strong>is</strong>16 • 16. The number of cells <strong>in</strong> a given cell-plane <strong>is</strong>:16 x 16 <strong>in</strong> Us1 (S-layer of level 1); 8 x 8 <strong>in</strong> Ucl (C-layer oflevel 1) and Us2; 4 x 4 <strong>in</strong> Uc2 and Us3; 2 x 2 <strong>in</strong> Uc3 andUs4; and 1 <strong>in</strong> Uc4. In every layer, <strong>the</strong> connect<strong>in</strong>g area S~<strong>is</strong> 5 x 5 and D~ <strong>is</strong> 6 • 6. Parts of <strong>the</strong> connection area fall<strong>in</strong>goutside a layer receive zero <strong>in</strong>put. The value of r~, whichcontrols <strong>the</strong> <strong>in</strong>tensity of <strong>the</strong> <strong>in</strong>hibitory <strong>in</strong>put to an S-cell,decreases with <strong>the</strong> order of <strong>the</strong> level: r~ = 8.0, r2 = 5.8,r 3 = 5.0, and r4 = 4.5. The degree of saturation (cq) <strong>is</strong>:~ = 0.1, e2 = 0.004, a3 = 0.02, and :t4 = 0.3. The speedof re<strong>in</strong>forcement of <strong>the</strong> variable connections, q~, <strong>in</strong>creaseswith <strong>the</strong> order of <strong>the</strong> level: q~ = 1.3, q2 = 2.3, q3 = 3.3,and q4 = 4.3. The value of m, which determ<strong>in</strong>es <strong>the</strong> durationof <strong>the</strong> connections a and b (see Appendix) decreaseswith <strong>the</strong> order of <strong>the</strong> level: m~ = 35, m2 = 30, m3 = 28,and m, = 25. The values of <strong>the</strong> fixed connections c andd are determ<strong>in</strong>ed as <strong>in</strong> Fukushima and Miyake (1982).4.2 Recognition of four numeralsIn order to study closely <strong>the</strong> effects of adaptation andto demonstrate what factors can hamper pattern <strong>recognition</strong><strong>in</strong> <strong>the</strong> orig<strong>in</strong>al <strong>neocognitron</strong>, we focus on anexperiment <strong>in</strong> which only four numerals with commonelementary features were presented. The <strong>in</strong>put patterns 8,5, 6, and 9 (see Figs. 3, 4) were presented <strong>in</strong> a cyclicalmanner, i.e., 85698569 .... The positions of <strong>the</strong>se patternswere not shifted dur<strong>in</strong>g presentation.4.2.1 Orig<strong>in</strong>al <strong>neocognitron</strong>. In th<strong>is</strong> small experiment,a network cons<strong>is</strong>t<strong>in</strong>g of an <strong>in</strong>put layer followed <strong>by</strong> onlythree levels would have been sufficient, as <strong>the</strong>re turnedout to be a one-to-one correspondence between <strong>the</strong> activationpattern <strong>in</strong> <strong>the</strong> third and <strong>the</strong> fourth level. With<strong>the</strong> parameter sett<strong>in</strong>g used, <strong>the</strong> network did not acquire<strong>the</strong> ability to d<strong>is</strong>t<strong>in</strong>gu<strong>is</strong>h 5 and 6: <strong>in</strong> <strong>the</strong> highest layer, oneand <strong>the</strong> same C-cell <strong>is</strong> activated <strong>by</strong> both numerals. Although<strong>the</strong> features with which <strong>the</strong>y can be d<strong>is</strong>t<strong>in</strong>gu<strong>is</strong>hedDDmDb ~ ~ ~o1 ,5 10rO~SD~DDDSD@DSDNDSDD~~D~DDNDDD~3DD~NDDD~r,[i3~D@DIB]DDU]DE3NID~DDDDmd 1 5I[][]DD[]DDDSD[]D[]DD4DDD~DFig. 3a-d. Neocognitron without adaptation, a Response of <strong>the</strong>cells <strong>in</strong> Ucl, Uc2, and Uc3 to each of <strong>the</strong> four <strong>in</strong>put patterns.Note that <strong>the</strong> number<strong>in</strong>g of <strong>the</strong> cell planes <strong>in</strong> Ucl corresponds to <strong>the</strong>feature number<strong>in</strong>g <strong>in</strong> b; b features extracted <strong>by</strong> <strong>the</strong> S-cells <strong>in</strong> <strong>the</strong>first level; e connect<strong>in</strong>g areas between S-layer 2 (vertical) and C-layer1 (horizontal); d connect<strong>in</strong>g areas between S-layer 3 (vertical) andC-layer 2 (horizontal). In e and d, only high connection strengths areshownare extracted <strong>by</strong> cells <strong>in</strong> <strong>the</strong> first level, it <strong>is</strong> ma<strong>in</strong>ly <strong>the</strong>features shared <strong>by</strong> both patterns that are extracted <strong>by</strong>cells <strong>in</strong> <strong>the</strong> second level, as can be seen <strong>in</strong> Fig. 3a. Asa result, 5 and 6 cannot be d<strong>is</strong>t<strong>in</strong>gu<strong>is</strong>hed. (Because <strong>in</strong> th<strong>is</strong>case only a few patterns needed to be recognized, it wouldbe possible to recognize all patterns <strong>by</strong> choos<strong>in</strong>g a differentparameter sett<strong>in</strong>g.)4.2.2 Neocognitron with adaptation. The <strong>in</strong>itial degree ofadaptation <strong>in</strong> each cell-plane was set at zero. There wasadaptation only <strong>in</strong> <strong>the</strong> first level, i.e., 92 = g3 = 94 = O.The speed of adaptation <strong>in</strong> <strong>the</strong> first level, gl, was set at0.05; and pt, which determ<strong>in</strong>es <strong>the</strong> maximum equilibriumvalue of T(k), was set at 1.0. With th<strong>is</strong> value, T(k)stabilized around an equilibrium value after about 100presentations of <strong>the</strong> whole set of <strong>in</strong>put patterns. BecauseT of each cell-plane converges to <strong>the</strong> average of <strong>the</strong>responses elicited <strong>by</strong> different numerals, cell-planeswill be activated only if <strong>the</strong> response exceeds <strong>the</strong>adaptation level. Therefore, only a reduced set of featureswill be active for each <strong>in</strong>put pattern: <strong>the</strong> d<strong>is</strong>crim<strong>in</strong>at<strong>in</strong>gfeatures (i.e., <strong>in</strong>frequent features) are enhanced (see Fig.4). As a result, 5 and 6 are now recognized as be<strong>in</strong>gdifferent.The feature with which 5 can be d<strong>is</strong>t<strong>in</strong>gu<strong>is</strong>hed fromall o<strong>the</strong>r numerals (feature 3; see Fig. 4b), <strong>is</strong> now used <strong>in</strong><strong>the</strong> circuit for recogniz<strong>in</strong>g 5.


51a@~@@@b 1 5 10c , 5 lO dDD~5~DD~@~N@D89N~@g89GNDG[]~@@NN,oN9C~C~ U] m1 ,5 10D~E3[][]D[][]D~5E3~3~3D@NE34DG[389Fig. 4a-d. Neocognitron with adaptation, a Response of <strong>the</strong> cells <strong>in</strong>Ucl, Uc2, and Uca to each of <strong>the</strong> four <strong>in</strong>put patterns. Note that <strong>the</strong>number<strong>in</strong>g of <strong>the</strong> cell planes <strong>in</strong> Uc, corresponds to <strong>the</strong> featurenumber<strong>in</strong>g <strong>in</strong> b; b features extracted <strong>by</strong> <strong>the</strong> S-cells <strong>in</strong> <strong>the</strong> first level(note that <strong>the</strong>se are <strong>the</strong> same features as <strong>in</strong> Fig. 3b); e connect<strong>in</strong>gareas between S-layer 2 (vertical) and C-layer 1 (horizontal);d connect<strong>in</strong>g areas between S-layer 3 (vertical) and C-layer 2 (horizontal).In c and d only high connection strengths are shown. Dur<strong>in</strong>glearn<strong>in</strong>g, extra cell-planes were created <strong>in</strong> <strong>the</strong> second and third layer.They are not shown here because <strong>the</strong>y never become activated <strong>in</strong> <strong>the</strong>f<strong>in</strong>al networkIn <strong>the</strong> orig<strong>in</strong>al <strong>neocognitron</strong>, <strong>the</strong> features with which6 can be d<strong>is</strong>t<strong>in</strong>gu<strong>is</strong>hed from 5 (features 8 and 9) were notstrongly extracted <strong>by</strong> cells <strong>in</strong> <strong>the</strong> second level. In <strong>the</strong>network conta<strong>in</strong><strong>in</strong>g adaptation, feature 8 <strong>is</strong> <strong>the</strong> mostimportant feature for recogniz<strong>in</strong>g 6.Although feature 7 can be used to d<strong>is</strong>t<strong>in</strong>gu<strong>is</strong>h 9from all o<strong>the</strong>r patterns, it was not actually usedfor th<strong>is</strong> purpose <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al <strong>neocognitron</strong>. In <strong>the</strong>modified <strong>neocognitron</strong>, however, <strong>the</strong>re are strong connectionslead<strong>in</strong>g from <strong>the</strong> cell-plane which detects th<strong>is</strong>feature.Feature 1 <strong>is</strong> present <strong>in</strong> all <strong>in</strong>put patterns but elicits <strong>the</strong>strongest response when an 8 <strong>is</strong> presented. The strongresponse to th<strong>is</strong> particular feature can thus be regardedas character<strong>is</strong>tic of 8. In <strong>the</strong> modified <strong>neocognitron</strong>, <strong>the</strong>degree of adaptation for th<strong>is</strong> feature <strong>is</strong> so high that only if8 <strong>is</strong> presented <strong>is</strong> <strong>the</strong> cell-plane activated. Consequently,feature 1 <strong>is</strong> used solely for <strong>the</strong> <strong>recognition</strong> of 8, whereas <strong>in</strong><strong>the</strong> orig<strong>in</strong>al <strong>neocognitron</strong> it had been used <strong>in</strong> <strong>the</strong> <strong>recognition</strong>of all numerals.4.3 Recognition of n<strong>in</strong>e numeralsUs<strong>in</strong>g <strong>the</strong> parameter sett<strong>in</strong>gs described <strong>in</strong> Sects. 4.1 and4.2.2, a larger experiment was carried out <strong>in</strong> which <strong>the</strong>network had to recognize n<strong>in</strong>e different numerals, <strong>in</strong>order of presentation: 1, 8, 5, 6, 9, 3, 2, 7, and 4. The orderof presentation <strong>is</strong> not crucial; here we have more or lessgrouped toge<strong>the</strong>r patterns with common features. The<strong>in</strong>put numerals were presented as follows, aga<strong>in</strong> withoutshift<strong>in</strong>g <strong>the</strong>ir position: only <strong>the</strong> first pattern 30 times, <strong>the</strong>n<strong>the</strong> first two patterns 30 times, <strong>the</strong>n <strong>the</strong> first three patternscyclically, etc., until all numericals had been presented.With <strong>the</strong> parameter sett<strong>in</strong>gs used, <strong>the</strong> orig<strong>in</strong>al<strong>neocognitron</strong> developed only three cells <strong>in</strong> <strong>the</strong> highestlayer that responded specifically to one of <strong>the</strong> <strong>in</strong>putpatterns. Only <strong>the</strong> numerals 1, 8, and 4 could be d<strong>is</strong>t<strong>in</strong>gu<strong>is</strong>hedcorrectly. One cell responded to both 5 and 6,and ano<strong>the</strong>r to 9, 3, 2, and 7. With <strong>the</strong> addition ofadaptation, on <strong>the</strong> o<strong>the</strong>r hand, all numerals were correctlyidentified, i.e., each cell <strong>in</strong> <strong>the</strong> highest layerresponded to only one of <strong>the</strong> <strong>in</strong>put patterns. Also <strong>in</strong>experiments <strong>in</strong> which <strong>the</strong> positions of <strong>the</strong> <strong>in</strong>put patternswere shifted dur<strong>in</strong>g <strong>the</strong> presentation, <strong>the</strong> <strong>neocognitron</strong>with adaptation was found to perform markedly betterthan <strong>the</strong> one without. In <strong>the</strong> orig<strong>in</strong>al <strong>neocognitron</strong> <strong>the</strong>parameters had to be tediously set each time so as to beoptimal for <strong>the</strong> particular task at hand. Our experiencesuggests that <strong>by</strong> <strong>in</strong>corporat<strong>in</strong>g adaptation <strong>in</strong>to <strong>the</strong> network<strong>the</strong> parameter range <strong>is</strong> broadened.5 Conclusions and d<strong>is</strong>cussionThe <strong>neocognitron</strong> has been modified to <strong>in</strong>corporateneuronal adaptation, <strong>by</strong> means of which <strong>the</strong> networksuppresses frequently occurr<strong>in</strong>g features (or comb<strong>in</strong>ationsof features) and enhances relatively <strong>in</strong>frequentfeatures (i.e., d<strong>is</strong>crim<strong>in</strong>at<strong>in</strong>g features) with<strong>in</strong> a set of<strong>in</strong>put patterns. Through adaptation, cells will becomeprogressively less responsive to <strong>the</strong> more frequentfeatures, and, consequently, circuits for detect<strong>in</strong>g <strong>the</strong>mwill not be re<strong>in</strong>forced. Circuits for detect<strong>in</strong>g <strong>the</strong> mostd<strong>is</strong>crim<strong>in</strong>at<strong>in</strong>g features of <strong>the</strong> stimulus develop preferentiallyunder <strong>the</strong>se conditions, as a result of which <strong>the</strong>ability of <strong>the</strong> network to differentiate patterns <strong>is</strong> markedly<strong>improved</strong>.In general, <strong>the</strong> concept of adaptation or habituation<strong>is</strong> not restricted to s<strong>in</strong>gle neurons but could also beapplied to entire neural systems, e.g., it might be used <strong>in</strong>expla<strong>in</strong><strong>in</strong>g phenomena such as selective attention.Adaptation <strong>is</strong> <strong>in</strong>corporated <strong>in</strong> C-cells ra<strong>the</strong>r than <strong>in</strong>S-cells. As S-cells compete with each o<strong>the</strong>r to respond toa particular feature, a weaker response due to adaptationwould make <strong>the</strong>m less competitive. Then, a new S-cellcould develop which extracts <strong>the</strong> same feature as <strong>the</strong>S-cell that became previously adapted to it, s<strong>in</strong>ce <strong>the</strong>adapted cell can no longer <strong>in</strong>hibit <strong>the</strong> development of <strong>the</strong>new one.In <strong>the</strong> case where <strong>the</strong> elementary features detected at<strong>the</strong> first level occur <strong>in</strong> all <strong>the</strong> <strong>in</strong>put patterns (i.e., onlycomb<strong>in</strong>ations of features are d<strong>is</strong>t<strong>in</strong>ctive), adaptation


52should only be moderate <strong>in</strong> <strong>the</strong> first level, so that <strong>the</strong>response <strong>is</strong> not entirely suppressed and <strong>the</strong> succeed<strong>in</strong>glevels can, <strong>by</strong> means of adaptation, enhance those comb<strong>in</strong>ationsof features that are d<strong>is</strong>crim<strong>in</strong>at<strong>in</strong>g.In <strong>the</strong> cognitron, a precursor of <strong>the</strong> <strong>neocognitron</strong>,it was also recognized that frequent features were preferentiallylearned. To improve <strong>the</strong> cognitron's patternselectivity, modifiable feedback connections were<strong>in</strong>troduced (Miyake and Fukushima 1984) so that a cellcan suppress its presynaptic cells <strong>by</strong> <strong>in</strong>hibitory feedbackif it <strong>is</strong> activated <strong>by</strong> a feature already familiar to <strong>the</strong>network. In th<strong>is</strong> way, familiar features fail to elicit a susta<strong>in</strong>edresponse, and only circuits detect<strong>in</strong>g novel featureswill develop. Th<strong>is</strong> modification was shown toimprove pattern selectivity and learn<strong>in</strong>g speed. However,<strong>in</strong> order to achieve th<strong>is</strong> improvement, ra<strong>the</strong>r drasticmodifications were made <strong>in</strong> <strong>the</strong> structure of <strong>the</strong>cognitron, as a new type of <strong>in</strong>hibitory cells with feedbackconnections had to be <strong>in</strong>serted. Additionally, onehad to assume that <strong>the</strong> <strong>in</strong>put patterns were presented <strong>in</strong>a specific way. Fur<strong>the</strong>rmore, <strong>the</strong> response character<strong>is</strong>ticsof all <strong>the</strong> cells <strong>in</strong> <strong>the</strong> network were affected <strong>by</strong> <strong>the</strong>modification. In contrast to th<strong>is</strong> global modification,adaptation need not <strong>in</strong>volve more than a local change <strong>in</strong><strong>the</strong> network.For many neuronal properties it <strong>is</strong> not clear what role<strong>the</strong>y could play <strong>in</strong> <strong>the</strong> <strong>in</strong>formation process<strong>in</strong>g carried out<strong>by</strong> biotic neural networks (Selverston 1988). Model neuronsare <strong>the</strong>refore usually simplified to <strong>the</strong> po<strong>in</strong>t thatonly <strong>the</strong> most basic response character<strong>is</strong>tics are considered(summation of <strong>in</strong>puts, fir<strong>in</strong>g threshold). However,to <strong>in</strong>corporate neuronal properties solely to make <strong>the</strong>mmore "real<strong>is</strong>tic", without study<strong>in</strong>g how <strong>the</strong>y actuallyaffect <strong>the</strong> behavior of <strong>the</strong> network, will not give a better<strong>in</strong>sight <strong>in</strong>to <strong>the</strong> role of each property <strong>in</strong> <strong>the</strong> various taskscarried out <strong>by</strong> biotic neural networks (see also Kohonen1992). In th<strong>is</strong> study, we have focused on <strong>the</strong> possible roleof one such property, namely adaptation, <strong>in</strong> v<strong>is</strong>ual pattern<strong>recognition</strong>. We have shown that add<strong>in</strong>g adaptationto a neural network model for v<strong>is</strong>ual pattern <strong>recognition</strong>improves its d<strong>is</strong>crim<strong>in</strong>atory power.Acknowledgements. We are grateful to M.A. Corner for critically read<strong>in</strong>g<strong>the</strong> manuscript and for correct<strong>in</strong>g <strong>the</strong> Engl<strong>is</strong>h, and to M. Timmermanfor ass<strong>is</strong>tance with <strong>the</strong> figures.AppendixFormulas govern<strong>in</strong>g <strong>the</strong> networkIn th<strong>is</strong> section, <strong>the</strong> formulas from Fukushima andMiyake (1982) relevant for our modification will bedescribed.The output of an S-cell of <strong>the</strong> ktth cell-plane of S-cells<strong>in</strong> <strong>the</strong>/th level <strong>is</strong> given <strong>by</strong>Usl(kt, n) = r;" q~f ]1 + 2..k,_, = I )_,v~s at(kt- l, v, k3" Uc,- l(kl- 1, n + v)x ' 1rl1 + ~ "bt(k;)" Vct- l(n)(6)where q~ [x] = x if x/> 0 and q~ [x] = 0 if x < O; n <strong>is</strong> <strong>the</strong>two-dimensional coord<strong>in</strong>ates <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> location of <strong>the</strong>cell; al(kt- 1, n, kl) and bz(kl) are <strong>the</strong> strengths of <strong>the</strong> variableexcitatory connection and <strong>in</strong>hibitory connection, respectively;St denotes <strong>the</strong> size of <strong>the</strong> connect<strong>in</strong>g area; K;_ 1 <strong>is</strong> <strong>the</strong>total number of cell-planes of C-cells; and r~ <strong>is</strong> a parametercontroll<strong>in</strong>g <strong>the</strong> <strong>in</strong>tensity of <strong>the</strong> <strong>in</strong>hibition. For <strong>the</strong> <strong>in</strong>putlayer, l = O.The output of an <strong>in</strong>hibitory V-cell <strong>is</strong> given <strong>by</strong>Vc'-l(n)= ~K~, = ', ,~s, ~' ct-l(v)'u~t-l(kt-l'n+(7)where cz- 1 (V) represents <strong>the</strong> strength of <strong>the</strong> fixed excitatoryconnections com<strong>in</strong>g from <strong>the</strong> preced<strong>in</strong>g C-cells. The termVct l(n) has <strong>the</strong> same connect<strong>in</strong>g area, St, as Usl(k;, n).The output of a C-cell of <strong>the</strong> kth cell-plane of C-cells <strong>in</strong><strong>the</strong>/th level <strong>is</strong> given <strong>by</strong>+ -~ ~k =, 2~o, dt(v)'ust(k, n + v)where O [x] = x/(a + x) if x ~> 0 and ~ Ix] = 0 if x < O,be<strong>in</strong>g a parameter determ<strong>in</strong><strong>in</strong>g <strong>the</strong> degree of saturation of<strong>the</strong> output; dz(u) <strong>is</strong> <strong>the</strong> value of <strong>the</strong> fixed excitatory connection;and D; <strong>is</strong> <strong>the</strong> connect<strong>in</strong>g area for Uct(k, n).The variable connections al(kt_l, v, k;) and bz(kt) areupdated as follows. Let cell Ust(k, ii) be selected as an MOC.The connections to th<strong>is</strong> cell and to all <strong>the</strong> cells <strong>in</strong> <strong>the</strong> samecell-plane are re<strong>in</strong>forced:Aat(k;- 1, V, kl) = qt" ct- 1 (v)" Uc;- 1 (kl- 1, fi + v) (9)Abt(l~;) = q," Vc;- 1 (fi) (10)where q~ <strong>is</strong> a parameter determ<strong>in</strong><strong>in</strong>g <strong>the</strong> speed of re<strong>in</strong>forcement.In Fukushima and Miyake (1982), a and b <strong>in</strong>creasewithout bound. In our implementation, <strong>the</strong> connectionstrength <strong>is</strong> saturated:m-1a~a'- + Aa (11)mm-1b ~ b" + Ab (12)mwhere m gives <strong>the</strong> duration of <strong>the</strong> memory of <strong>the</strong> connectionsa and b expressed <strong>in</strong> learn<strong>in</strong>g cycles. The <strong>in</strong>itialstrength of <strong>the</strong> variable <strong>in</strong>hibitory connections are set tozero. All <strong>the</strong> variable excitatory <strong>in</strong>put connections to anS-cell get <strong>in</strong>itially a very small value, which <strong>is</strong> proportionalto <strong>the</strong> strength of <strong>the</strong> correspond<strong>in</strong>g fixed <strong>in</strong>put connectionto <strong>the</strong> V-cell.ReferencesBarnard E, Casasent D (1990) Shift <strong>in</strong>variance and <strong>the</strong> <strong>neocognitron</strong>.Neural Networks 3:403-410(8)


53Carpenter G, Grossberg S (1987) Art2: stable self-organization of pattern<strong>recognition</strong> codes for analog <strong>in</strong>put patterns. Appl Opt 26:4919-4930Connors B, Gutnick M J, Pr<strong>in</strong>ce DA (1982) Electrophysiological propertiesof neocortical neurons <strong>in</strong> vitro. J Neurophysiol 48:1302-1320De Boer RJ (1989) Clonal selection versus idiotypic network models of <strong>the</strong>immune system. Thes<strong>is</strong>, University of Utrecht, The Ne<strong>the</strong>rlands, p 6Desimone R (1992) The physiology of memory: record<strong>in</strong>gs of th<strong>in</strong>gs past.Science 258:245-246.Fukushima K (1980) Neocognitron: a self-organ<strong>is</strong><strong>in</strong>g neural network fora mechan<strong>is</strong>m of pattern <strong>recognition</strong> unaffected <strong>by</strong> shift <strong>in</strong> position.Biol Cybern 36:193-202.Fukushima K (1988) Neocognitron: a hierarchical neural network capableof v<strong>is</strong>ual pattern <strong>recognition</strong>. Neural Networks 1:119-130Fukushima K (1989) Analys<strong>is</strong> of <strong>the</strong> process of v<strong>is</strong>ual pattern <strong>recognition</strong><strong>by</strong> <strong>the</strong> <strong>neocognitron</strong>. Neural Networks 2:413-420Fukushima K, lmagawa T (1993) Recognition and segmentation of connectedcharacters with selective attention. Neural Networks 6:33-41Fukushima K, Myake S (1982) Neocognitron: a new algorithm for pattern<strong>recognition</strong> tolerant of deformations and shifts <strong>in</strong> position. <strong>Pattern</strong>Recognition 15:455-469Hubel DH, Wiesel TN (1962) Receptive fields, b<strong>in</strong>ocular <strong>in</strong>teraction andfunctional architecture <strong>in</strong> cat's v<strong>is</strong>ual cortex. J Physiol (Lond)160:106-154Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture<strong>in</strong> two nonstriate v<strong>is</strong>ual area (18 and 19) of <strong>the</strong> cat. J Neurophysiol28:229-289Kohonen T (1984) Self-organization and associative memory. Spr<strong>in</strong>ger,New York Berl<strong>in</strong> HeidelbergKohonen T (1992) Artifical neural networks: models, paradigmsor methods? In: Aleksander I, Taylor J (eds) Artificial neuralnetworks, vol 1. Proceed<strong>in</strong>gs of ICANN-92. Elsevier, Amsterdam,pp 3-10Meech RW (1978) Calcium-dependent potassium activation <strong>in</strong> nervoust<strong>is</strong>sues. Annu Rev Biophys Bioeng 7:1-18Menon MM, He<strong>in</strong>emann KG (1988) Classification of patterns us<strong>in</strong>g a selforganiz<strong>in</strong>gneural network. Neural Networks 1:201-215Miller EK, Li L, Desimone R (1991) A neural mechan<strong>is</strong>m for work<strong>in</strong>g and<strong>recognition</strong> memory <strong>in</strong> <strong>in</strong>ferior temporal cortex. Science254:1377-1379Miyake S, Fukushima K (1984) A neural network model for <strong>the</strong> mechan<strong>is</strong>mof feature-extraction, a self-organiz<strong>in</strong>g network with feedback<strong>in</strong>hibition. Biol Cybern 50:377-384Reilly DL, Cooper LN, Elbaum C (1982) A neural model for categorylearn<strong>in</strong>g. Biol Cybern 45:35-41Rolls ET, Miyashita Y, Cahusac PMB, Kesner RP, Niki H, FeigenbaumJD, Bach L (1989) Hippocampal neurons <strong>in</strong> <strong>the</strong> monkey with activityrelated to <strong>the</strong> palce <strong>in</strong> which a stimulus <strong>is</strong> shown. J. Neurosci.9:1835-1845Selverston AI (1988) A consideration of <strong>in</strong>vertebrate central pattern generatorsas computational data bases. Neural Networks 1:109-117Traub RD (1982) Simulation of <strong>in</strong>tr<strong>in</strong>sic burst<strong>in</strong>g <strong>in</strong> CA3 hippocampalneurons.Neuroscience 7:1233-1242Trot<strong>in</strong> A, Darbel N, Jutand F (1991) Acquired structure, adapted parameters:modifications of <strong>the</strong> Neocognitron. In: Aleksander I, TaylorJ (eds) Artificial neural networks, vol 2. Proceed<strong>in</strong>gs of ICANN-92.Elsevier, Amsterdam, pp 1107-1110

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!