28.05.2015 Views

quantum chaos and its potential for robust quantum control in ...

quantum chaos and its potential for robust quantum control in ...

quantum chaos and its potential for robust quantum control in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Order from disorder: <strong>quantum</strong> <strong>chaos</strong><br />

<strong>and</strong> <strong>its</strong> <strong>potential</strong> <strong>for</strong> <strong>robust</strong> <strong>quantum</strong> <strong>control</strong><br />

Andreas Buchleitner<br />

Quantum optics <strong>and</strong> statistics<br />

www.<strong>quantum</strong>.uni-freiburg.de<br />

Institute of Physics, Albert Ludwigs University of Freiburg<br />

Nonl<strong>in</strong>ear Dynamics<br />

<strong>in</strong> Quantum Systems<br />

Ta<strong>in</strong>an, 31st August 2010


Nonl<strong>in</strong>ear Dynamics<br />

<strong>in</strong> Quantum Systems


In Collaboration with . . .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

funded by DFG, DAAD, AvH <strong>and</strong> VolkswagenStiftung


Vision: Quantum Control through Complexity<br />

complex dynamics generates new <strong>and</strong> <strong>robust</strong> <strong>quantum</strong> phenomena<br />

similar questions <strong>in</strong> apparently remote areas<br />

[L. Kurtz, LMU München 2001]<br />

[The Economist, Quantum Dreams, 10/3/2001]


Many particle <strong>in</strong>teractions<br />

cold atoms<br />

[N. Bohr, 1936]<br />

compound nuclei<br />

[Wigner, R<strong>and</strong>om Matrix Theory]<br />

[Gre<strong>in</strong>er et al., 2002]


Disorder<br />

In<br />

energy<br />

E 2<br />

E<br />

E 1<br />

0<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

Out<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111111111111111111111111111111111<br />

position<br />

Anderson localization<br />

metal-<strong>in</strong>sulator transition <strong>in</strong><br />

disordered solids [Anderson, 1958]<br />

. . . <strong>and</strong> <strong>in</strong> many other systems<br />

with (quasi)r<strong>and</strong>omness<br />

[Fishman et al., 1982; Galvez et al., 1988, Arndt et al.,<br />

1991; Krug et al., 2003; Störzer et al., 2006; Aspect et<br />

al., 2008]


Dynamical Chaos<br />

– e.g., atomic hydrogen <strong>in</strong> a static magnetic field ‖ẑ –<br />

near <strong>in</strong>tegrable<br />

chaotic<br />

5<br />

5<br />

z<br />

z<br />

0<br />

0<br />

−5<br />

−2 −1 0 1 2<br />

ρ<br />

−5<br />

−2 −1 0 1 2<br />

ρ<br />

[Del<strong>and</strong>e & Gay, 1986]


Order/Control from Disorder/Chaos<br />

I Wave packets, nonl<strong>in</strong>ear resonances<br />

II Nondispersive wave packets – examples<br />

III Web-states <strong>in</strong> non-KAM systems


Wave packets <strong>in</strong> the harmonic oscillator


[Schröd<strong>in</strong>ger, 1926]


Collaps <strong>and</strong> revivals <strong>in</strong> the Coulomb problem<br />

a (radial) Rydberg wave packet (at n 0 = 72). . .<br />

• exhib<strong>its</strong> a collaps/dispersion,<br />

<strong>for</strong> classical reasons, after<br />

T collapse ≃<br />

n 0<br />

3π(∆n) 2 × T Kepler<br />

• <strong>and</strong> revives, due to the<br />

discreteness of the <strong>quantum</strong><br />

spectrum, at<br />

T revival ≃ n 0<br />

3 × T Kepler<br />

[Yeazell & Stroud, 1991]<br />

• with possible fractional<br />

revivals <strong>in</strong> between . . .


The cause of dispersion <strong>in</strong> an unharmonic <strong>potential</strong><br />

It’s the phase space, . . . !<br />

• time evolution of the canonical angle<br />

˙θ = ∂H 0<br />

∂I<br />

= Ω(I), θ(t) = Ω(I)t<br />

with I-dependent frequency Ω(I)<br />

X → action I, Y → angle θ<br />

open circles: t = 0<br />

filled circles: t = T(I = 1)<br />

[Mallalieu & Stroud, 1991]<br />

• Hence, to prevent the wave packet from<br />

spread<strong>in</strong>g, we have to change the phase<br />

space structure – e.g., by an external field!


Near resonant driv<strong>in</strong>g of the Rydberg/Kepler dynamics<br />

e<br />

• planetary Kepler motion vs.<br />

Rydberg spectrum<br />

• correspondence pr<strong>in</strong>ciple: classical<br />

round trip frequency T −1<br />

Kepler approx.<br />

equal to <strong>quantum</strong> level spac<strong>in</strong>g, i.e.<br />

E n0 − E n0 ±1 ≃ dE n<br />

dn = dH 0<br />

dI = Ω(I)<br />

→ large n 0 . . . high density of states!<br />

→ t<strong>in</strong>y microwave photon energies ω . . . near-resonant, strong coupl<strong>in</strong>g!<br />

H(t) = ⃗p2<br />

2 − 1 r + ⃗r ⃗F(t), H(t) = H(t + T), T = 2π/ω


An elliptic isl<strong>and</strong> is born<br />

I/n 0<br />

1.10<br />

1.05<br />

1.00<br />

0.95<br />

Hamiltonian (1D, <strong>for</strong> simplicity) <strong>in</strong><br />

action-angle variables<br />

H = H 0 + λ<br />

m=+∞<br />

∑<br />

m=−∞<br />

V m (I)cos(mθ − ωt)<br />

0.90<br />

0 π 2π<br />

θ<br />

For ω ≃ Ω, the term m = 1 dom<strong>in</strong>ates <strong>and</strong> allows <strong>for</strong> the (time <strong>in</strong>dependent)<br />

secular approximation, Θ = θ − ωt, I 0 ≡ I/n 0 = 1, ⃗r F(t) ⃗ = Fz cos(ωt)<br />

H sec ∼ H 0 (I) + λV 1 (I)cos(Θ) ∼ ∂2 H 0<br />

∂I 2 | I 0<br />

(I − I 0 ) 2 + λV 1 (I 0 ) cos(Θ)<br />

I.e., it’s almost a pendulum . . . [Berman & Zaslavsky, Phys. Lett. A 61, 295 (1977)]


Classical phase space of driven Rydberg dynamics<br />

– Po<strong>in</strong>caré section at ωt = 0 –<br />

(spanned by canonical action I <strong>and</strong> angle θ)<br />

near <strong>in</strong>tegrable<br />

chaotic<br />

1.10<br />

1.4<br />

1.05<br />

1.2<br />

I/n 0<br />

1.00<br />

I/n 0<br />

1.0<br />

0.95<br />

0.8<br />

0.90<br />

0 π 2π<br />

θ<br />

0.6<br />

The elliptic isl<strong>and</strong> conf<strong>in</strong>es the classical angle!<br />

(mode lock<strong>in</strong>g)<br />

0 π 2π<br />

θ<br />

Kolmogorov-Arnold-Moser (KAM) theorem:<br />

isl<strong>and</strong> extremely <strong>robust</strong> aga<strong>in</strong>st perturbations/experimental imperfections!


Synchronicity of regular <strong>and</strong> complex spectral structures<br />

KAM torus <strong>in</strong> “chaotic sea”<br />

J<br />

π<br />

π/2<br />

0<br />

-π/2<br />

-π<br />

-π -π/2 0 π/2 π<br />

θ<br />

regular level structure embedded<br />

<strong>in</strong>to irregular level dynamics –<br />

much alike regular isl<strong>and</strong><br />

embedded <strong>in</strong>to chaotic phase<br />

space<br />

eigenvalues anchored to the<br />

isl<strong>and</strong> “go straight”!<br />

3<br />

Energy (10 −4 a.u.)<br />

−1.372<br />

−1.382<br />

−1.392<br />

−1.402<br />

RESCALED ENERGY<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

0.03 0.032 0.034 0.036 0.038 0.04<br />

F 0<br />

[Zakrzewski et al., 1997]<br />

−1.412<br />

0 0.02 0.04 0.06<br />

0 0.02 0.04 0.06<br />

F


Wrap-up I<br />

Nonl<strong>in</strong>ear/elliptic resonance isl<strong>and</strong>s . . .<br />

• are a generic feature of periodically driven, bounded systems<br />

• are <strong>robust</strong> aga<strong>in</strong>st perturbations – due to KAM<br />

• manifest as solitonic solutions <strong>in</strong> the <strong>quantum</strong> spectrum<br />

[A.J. Lichtenberg, M.A. Lieberman, Regular <strong>and</strong> Stochastic Motion, Spr<strong>in</strong>ger<br />

1983; E. Schröd<strong>in</strong>ger, Naturwissenschaften 14, 664 (1926); G.P. Berman, G.M.<br />

Zaslavsky, Phys. Lett. A 61, 295 (1977); J. Zakrzewski et al., Z. Phys. B 103,<br />

115 (1997)]


Rescal<strong>in</strong>g of<br />

by<br />

Digression – Classical scal<strong>in</strong>g laws<br />

H = p2<br />

2 − 1 z<br />

+ Fz cos(ωt)<br />

λH = (pλ1/2 ) 2<br />

− 1<br />

2 (zλ −1 ) + Fλ2 zλ −1 cos(ωλ 3/2 tλ −3/2 )<br />

leaves Hamiltonian equations of motion <strong>for</strong>m-<strong>in</strong>variant, but not the commutator:<br />

[p,z] → λ −1/2 [p,z] = iλ −1/2 ,<br />

nor the action<br />

S =<br />

∮<br />

pdq → λ −1/2 ∮<br />

pdq .<br />

Scaled quantities, with λ = n 2 :<br />

H sc = Hn 2 , p sc = pn, z sc = zn −2 , F sc = Fn 4 ,ω sc = ωn 3 , S sc = Sn −1 , sc = n −1 .<br />

Thus can argue <strong>in</strong> terms of fixed classical phase space structure!


Order/Control from Disorder/Chaos<br />

I Wave packets, nonl<strong>in</strong>ear resonances<br />

II Nondispersive wave packets – examples<br />

III Web-states <strong>in</strong> non-KAM systems


Isl<strong>and</strong>s of stability: nondispersive electronic wave packets<br />

along a 1D Rydberg orbit<br />

phase space projection of a Floquet eigenstate – 2π/ω-periodic!!!<br />

I u (a)<br />

(c)<br />

!t=0 !t=2 !t= !t=32 !t=2<br />

(b) (d) F = 0.035/n 4 , ω = 1.0/n 3 , n = 57<br />

no dispersion – lifetimes Γ −1<br />

ǫ ≃ 10 6 × 2π ω<br />

[–, 1993, D. Del<strong>and</strong>e & –, 1994]<br />

θ u<br />

8.0<br />

8.0<br />

6.0<br />

6.0<br />

4.0<br />

4.0<br />

2.0<br />

2.0<br />

Floquet state <strong>in</strong> configuration space<br />

electronic density<br />

0.0<br />

0.0 0.3 0.6 0.9<br />

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9<br />

radial distance (104atomic un<strong>its</strong>)<br />

0.0<br />

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9


Experimental evidence<br />

position-sensitive detection<br />

experiments [Maeda et al., 2004-09; Mestayer et al., 2009]<br />

experimental life time<br />

≥ 15000 Kepler orb<strong>its</strong>!<br />

l<strong>in</strong>ear polarization ‖ẑ <strong>and</strong> parallel static electric field,<br />

ωt = 0, π/2, 3π/4, π,<br />

n = 60, ρ, z = ±10000 a.u.;<br />

[–, Del<strong>and</strong>e & Zakrzewski, Phys. Rep. 368, 409 (2002)]


Arbitrary <strong>control</strong> <strong>in</strong> 3D – wave packet on circular trajectory<br />

<strong>control</strong> through circularly polarizated e-m field, ρ,z = ±10000 a.u.<br />

[Bia̷lynicki-Birula, Kaliński & Eberly, 1994; Brunello, Uzer & Farelly, 1996; Zakrzewski, Del<strong>and</strong>e, -, 1995]<br />

EXPERIMENTS: [Maeda et al., 2009; Mestayer et al, 2009]<br />

isovalue plots of the electronic density


Wave packet on elliptic trajectory<br />

l<strong>in</strong>early polarizated <strong>control</strong> field, rotational symmetry around z-axis,<br />

snapshots at different phases of Kepler cycle<br />

ρ, z = ±3500 a.u.<br />

[-, Sacha, Del<strong>and</strong>e & Zakrzewski, 1998]<br />

isovalue plots of the electronic density


Clear spectroscopic signature<br />

Floquet spectroscopy of the dressed atom<br />

4<br />

Square dipole (10 −7 a.u.)<br />

3<br />

2<br />

1<br />

0<br />

−1.36 −1.35 −1.34<br />

Energy (10 −4 a.u.)<br />

[-, Del<strong>and</strong>e & Zakrzewski, 1996,2002]


Driven helium<br />

Tunel<strong>in</strong>g<br />

H = p2 1 + p 2 2<br />

2<br />

− Z r 1<br />

− Z r 2<br />

+ 1<br />

r 12<br />

+ F(x 1 + x 2 ) cosωt<br />

e<br />

e<br />

The frozen planet configuration<br />

e<br />

Z<br />

e<br />

Scatter<strong>in</strong>g<br />

[Corkum, 1993]<br />

lives on a well def<strong>in</strong>ed adiabatic <strong>potential</strong>.<br />

V eff<br />

/ N −2<br />

0.0<br />

−0.2<br />

0 5 10<br />

z 1<br />

/ N 2<br />

Does atomic structure matter?


Nondispersive wave packets <strong>in</strong> driven (2D) helium<br />

phase space<br />

(projection along field polarization axis)<br />

y<br />

1<br />

0<br />

configuration space<br />

0.11<br />

p 1<br />

0.00<br />

-1<br />

0 2 4 6<br />

x<br />

−0.11<br />

0.11<br />

projective phase space<br />

p 1<br />

0.00<br />

0.4<br />

a<br />

b<br />

−0.11<br />

0 200 0 200 0<br />

200<br />

ωt = 0 . ..π/2 . ..π (left to right)<br />

life times approx. several hundred field cycles<br />

x<br />

1<br />

p<br />

1<br />

0.0<br />

-0.4<br />

0 10 20<br />

x<br />

1<br />

0 10 20<br />

[Schlagheck & –, 1998, 2003]<br />

[J. Madroñero, PhD thesis, LMU Munich (2004); Madroñero & –, PRA 2008]


A gra<strong>in</strong> of salt – <strong>chaos</strong>-assisted tunnel<strong>in</strong>g<br />

Example: atomic hydrogen 1D<br />

10 −6<br />

10 −7<br />

ionisation rate<br />

10 −8<br />

10 −9<br />

10 −10<br />

10 −11<br />

10 −12<br />

10 −13<br />

10 −14<br />

10 −15<br />

10 −16<br />

spontaneous emission<br />

effective decay rate<br />

10 30 50 70 90 110 130<br />

pr<strong>in</strong>cipal <strong>quantum</strong> number n 0<br />

• tunnel<strong>in</strong>g rate<br />

Γ ǫ ∼ exp(−S sc n 0 /)<br />

• spontaneous emission M ∼ n −α<br />

0<br />

• fluctuat<strong>in</strong>g decay rates:<br />

<strong>chaos</strong>-assisted ionization<br />

[Hornberger & –, 1998; Del<strong>and</strong>e & Zakrzewski, 1998]<br />

[Zakrzewski, Del<strong>and</strong>e & –, 1998]


Solitonic levels <strong>in</strong> many-particle problems<br />

E<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

0.02<br />

Bose-Hubbard Hamiltonian under static tilt<br />

(<br />

H = − J B ∑ )<br />

2 l a† l+1 a l + h.c. + W B<br />

2<br />

∑l n l(n l − 1) + Fd ∑ l ln l<br />

• parametric spectral evolution<br />

H(F)|ψ(F)〉 = E(F)|ψ(F)〉<br />

• <strong>in</strong>set: reorganization<br />

to <strong>for</strong>m – localized – “solitonic level”<br />

occupation<br />

1.5<br />

−0.02<br />

0 0.01<br />

0 0.1 0.2 0.3<br />

F<br />

N = 3, L = 11, J B = 0.038, W B = 0.032<br />

1.<br />

0.5<br />

1 2 3 4 5 6 7 8 9 10 11<br />

lattice site


Entanglement generation vs. decoherence<br />

1.75<br />

1.5<br />

C k<br />

C k<br />

1.25<br />

1<br />

0.75<br />

0.5<br />

0.25<br />

0<br />

1.75<br />

1.5<br />

1.25<br />

1<br />

0.75<br />

0.5<br />

0.25<br />

0<br />

1<br />

0<br />

0<br />

1<br />

0 4 8 12 16 20<br />

t<br />

• classically chaotic dynamics encoded <strong>in</strong><br />

k = 5 (top), k = 8 (bottom) qub<strong>its</strong><br />

• <strong>in</strong>itial conditions <strong>in</strong> elliptic isl<strong>and</strong> (blue), <strong>in</strong><br />

chaotic doma<strong>in</strong> (red)<br />

• without (open symbols) <strong>and</strong> with (filled<br />

symbols) scaled diffusive noise<br />

! elliptic isl<strong>and</strong> screens entanglement aga<strong>in</strong>st<br />

noise-<strong>in</strong>duced decay – the larger k, the<br />

better<br />

[García-Mata et al., PRL 2007]


Wrap-up II<br />

Nondispersive wave packets . . .<br />

• anchored to nonl<strong>in</strong>ear resonances <strong>in</strong> classical mixed, regular-chaotic<br />

phase space<br />

• allow to shuttle around, <strong>and</strong> to store, <strong>quantum</strong> states <strong>in</strong> phase space<br />

• screen entanglement aga<strong>in</strong>st decoherence<br />

[–, D. Del<strong>and</strong>e & J. Zakrzewski, Phys. Rep. 368, 409 (2002); I. Garcia-Mata et<br />

al., Phys. Rev. Lett. 98, 120504 (2007)]


Order/Control from Disorder/Chaos<br />

I Wave packets, nonl<strong>in</strong>ear resonances<br />

II Nondispersive wave packets – examples<br />

III Web-states <strong>in</strong> non-KAM systems


Kicked HO: phase space structure <strong>and</strong> level dynamics<br />

φ<br />

6<br />

4<br />

2<br />

v<br />

−360 −180 0 180 360<br />

360<br />

180<br />

0<br />

−180<br />

−360<br />

u<br />

H = p2<br />

2m + mν2 x 2<br />

2<br />

+ Acos(kx) ∑ n<br />

δ(t − nτ)<br />

• e.g., cold ions/atoms <strong>in</strong> harmonic<br />

trap<br />

φ<br />

0<br />

0.2 0.3 0.4 0.5<br />

6<br />

4<br />

2<br />

η<br />

v<br />

−40 −20 0 20 40<br />

40<br />

20<br />

0<br />

−20<br />

−40<br />

u<br />

• Eigenphases φ of one-cycle √ Floquet<br />

<br />

propagator vs. η = k<br />

2mν ∼ √ <br />

• q = 2π<br />

ντ<br />

= 5 (top), q = 6 (bottom),<br />

K = Ak2<br />

mν = 2.0<br />

• <strong>in</strong>sets: classical trajectory after 40000<br />

kicks – note the web!<br />

0<br />

0.2 0.3<br />

η<br />

0.4 0.5


Web-states anticross localized eigenstates<br />

Husimi representations of anticross<strong>in</strong>g eigenstates at<br />

η = 0.459 (left), η = 0.469 (right)<br />

• at η = 0.464, the localized <strong>in</strong>itial<br />

state |ψ 0 〉 = |0〉 has maximal overlap<br />

with the extended web-state (top<br />

left <strong>and</strong> bottom right)<br />

• enhanced diffusion due to<br />

anticross<strong>in</strong>g with web-states!<br />

60<br />

1.45<br />

Mean Energy<br />

40<br />

20<br />

1.35 φ<br />

b<br />

c<br />

1.25<br />

0.455 a 0.465 0.475<br />

η<br />

c<br />

b<br />

classical<br />

0<br />

0 200 400 600<br />

Number of kicks<br />

a<br />

• alike metal-<strong>in</strong>sulator transition<br />

[Fromhold et al., 2004]


An experimental tool <strong>for</strong> <strong>control</strong>led heat<strong>in</strong>g<br />

The Lamb-Dicke parameter is easily tuned <strong>in</strong> experiments on trapped cold atoms or ions<br />

150<br />

6<br />

Mean Energy<br />

100<br />

4<br />

φ<br />

• enhanced mean energy always<br />

associated with strong coupl<strong>in</strong>g to<br />

web-states!<br />

• probe of local spectral structure<br />

50<br />

2<br />

[A.R.R. Carvalho & –, 2004]<br />

0<br />

0.2 0.3 0.4 0.5<br />

η<br />

0


What to take away . . .<br />

• nondispersive wave packets are generic (s<strong>in</strong>ce nonl<strong>in</strong>ear resonances are)!<br />

• eigenstates of virtually any periodically driven <strong>quantum</strong> system<br />

• they are <strong>robust</strong> aga<strong>in</strong>st technical noise, due to KAM<br />

• screen many-particle entanglement aga<strong>in</strong>st noise (not shown)<br />

• <strong>quantum</strong> <strong>control</strong> also <strong>in</strong> non-KAM systems, e.g. through web-states<br />

Literature (selection):<br />

• G.P. Berman & G.M. Zaslavsky, Phys. Lett. A 61, 295 (1977); H. Klar, Z. Phys. D 11, 45 (1989); I. Bia̷lynicki-Birula, M. Kaliński,<br />

<strong>and</strong> J.H. Eberly, Phys. Rev. Lett. 73, 1777 (1994); D. Del<strong>and</strong>e & –, Adv. At. Mol. Opt. Phys. 34, 85 (1994); D. Farelly, E. Lee, <strong>and</strong><br />

T. Uzer, Phys. Rev. Lett. 75, 972 (1995); –, D. Del<strong>and</strong>e, & J. Zakrzewski, Phys. Rep. 368, 409 (2002); D.G. Arbo et al., Phys. Rev.<br />

A 67, 63401 (2003); J. Madroñero, PhD thesis, LMU München (2004); F.B. Dunn<strong>in</strong>g et al., Adv. At. Mol. Opt. Phys. 52, 49 (2005),<br />

Phys. Rev. A 78, 045501 (2009) ; J. Madroñero et al., Adv. At. Mol. Opt. Phys. 53, 33 (2006); J. Madroñero & –, Phys. Rev. A<br />

77, 053402 (2008); H. Maeda & T.F. Gallagher, Phys. Rev. Lett. 92, 133004 (2004), Science 307, 1757 (2005), Phys. Rev. Lett.<br />

102, 103001 (2009); J.J. Mestayer et al., Phys. Rev. A 79, 033417 (2009).<br />

• T.M. Fromhold et al., Nature 428, 726 (2004); A.R.R. de Carvalho & –, Phys. Rev. Lett. 93, 204101 (2004).<br />

• I. Garcia-Mata et al., Phys. Rev. Lett. 98, 120504 (2007).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!